326 research outputs found

    Can Deep Altruism Sustain Space Settlement?

    Full text link
    Space settlement represents a long-term human effort that requires unprecedented coordination across successive generations. In this chapter, I develop a comparative hierarchy for the value of long-term projects based upon their benefits to culture, their development of infrastructure, and their contributions to lasting information. I next draw upon the concept of the time capsule as an analogy, which enables a comparison of historical examples of projects across generational, intergenerational, and deep time. The concept of deep altruism can then be defined as the selfless pursuit of informational value for the well-being of others in the distant future. The first steps toward supporting an effort like space settlement through deep altruism would establish governance and funding models that begin to support ambitions with intergenerational succession.Comment: To be published in The Human Factor in a Mission to Mars: An Interdisciplinary Approach, K. Szocik (Ed.), Springe

    Faint young Sun paradox remains

    Full text link
    The Sun was fainter when the Earth was young, but the climate was generally at least as warm as today; this is known as the `faint young Sun paradox'. Rosing et al. [1] claim that the paradox can be resolved by making the early Earth's clouds and surface less reflective. We show that, even with the strongest plausible assumptions, reducing cloud and surface albedos falls short by a factor of two of resolving the paradox. A temperate Archean climate cannot be reconciled with the low level of CO2 suggested by Rosing et al. [1]; a stronger greenhouse effect is needed.Comment: 3 pages, no figures. In press in Nature. v2 corrects typo in author list in original submissio

    A comparison of RNA amplification techniques at sub-nanogram input concentration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression profiling of small numbers of cells requires high-fidelity amplification of sub-nanogram amounts of RNA. Several methods for RNA amplification are available; however, there has been little consideration of the accuracy of these methods when working with very low-input quantities of RNA as is often required with rare clinical samples. Starting with 250 picograms-3.3 nanograms of total RNA, we compared two linear amplification methods 1) modified T7 and 2) Arcturus RiboAmp HS and a logarithmic amplification, 3) Balanced PCR. Microarray data from each amplification method were validated against quantitative real-time PCR (QPCR) for 37 genes.</p> <p>Results</p> <p>For high intensity spots, mean Pearson correlations were quite acceptable for both total RNA and low-input quantities amplified with each of the 3 methods. Microarray filtering and data processing has an important effect on the correlation coefficient results generated by each method. Arrays derived from total RNA had higher Pearson's correlations than did arrays derived from amplified RNA when considering the entire unprocessed dataset, however, when considering a gene set of high signal intensity, the amplified arrays had superior correlation coefficients than did the total RNA arrays.</p> <p>Conclusion</p> <p>Gene expression arrays can be obtained with sub-nanogram input of total RNA. High intensity spots showed better correlation on array-array analysis than did unfiltered data, however, QPCR validated the accuracy of gene expression array profiling from low-input quantities of RNA with all 3 amplification techniques. RNA amplification and expression analysis at the sub-nanogram input level is both feasible and accurate if data processing is used to focus attention to high intensity genes for microarrays or if QPCR is used as a gold standard for validation.</p

    Towards Integrated Ethical and Scientific Analysis of Geoengineering: A Research Agenda

    Get PDF
    Concerns about the risks of unmitigated greenhouse gas emissions are growing. At the same time, confidence that international policy agreements will succeed in considerably lowering anthropogenic greenhouse gas emissions is declining. Perhaps as a result, various geoengineering solutions are gaining attention and credibility as a way to manage climate change. Serious consideration is currently being given to proposals to cool the planet through solar-radiation management. Here we analyze how the unique and nontrivial risks of geoengineering strategies pose fundamental questions at the interface between science and ethics. To illustrate the importance of integrated ethical and scientific analysis, we define key open questions and outline a coupled scientific-ethical research agenda to analyze solar-radiation management geoengineering proposals. We identify nine key fields of coupled research including whether solar-radiation management can be tested, how quickly learning could occur, normative decisions embedded in how different climate trajectories are valued, and justice issues regarding distribution of the harms and benefits of geoengineering. To ensure that ethical analyses are coupled with scientific analyses of this form of geoengineering, we advocate that funding agencies recognize the essential nature of this coupled research by establishing an Ethical, Legal, and Social Implications program for solar-radiation management

    Demarcating circulation regimes of synchronously rotating terrestrial planets within the habitable zone

    Get PDF
    We investigate the atmospheric dynamics of terrestrial planets in synchronous rotation within the habitable zone of low-mass stars using the Community Atmosphere Model (CAM). The surface temperature contrast between day and night hemispheres decreases with an increase in incident stellar flux, which is opposite the trend seen on gas giants. We define three dynamical regimes in terms of the equatorial Rossby deformation radius and the Rhines length. The slow rotation regime has a mean zonal circulation that spans from day to night side, with both the Rossby deformation radius and the Rhines length exceeding planetary radius, which occurs for planets around stars with effective temperatures of 3300 K to 4500 K (rotation period > 20 days). Rapid rotators have a mean zonal circulation that partially spans a hemisphere and with banded cloud formation beneath the substellar point, with the Rossby deformation radius is less than planetary radius, which occurs for planets orbiting stars with effective temperatures of less than 3000 K (rotation period < 5 days). In between is the Rhines rotation regime, which retains a thermally-direct circulation from day to night side but also features midlatitude turbulence-driven zonal jets. Rhines rotators occur for planets around stars in the range of 3000 K to 3300 K (rotation period ∼ 5 to 20 days), where the Rhines length is greater than planetary radius but the Rossby deformation radius is less than planetary radius. The dynamical state can be observationally inferred from comparing the morphology of the thermal emission phase curves of synchronously rotating planets
    corecore