58 research outputs found

    Catalytic Degradation of Organic Dyes in Aqueous Medium

    Get PDF
    Water pollution by the textile industry is an emerging issue. Textile industry is the major industrial sector which contributes to water pollution. Textile industry releases a huge amount of unfixed dyes in wastewater effluents. About 20% of the dye production all over the world is discharged as waste in industrial effluents by textile industry. These dyes are highly stable and colored substances which disturb the aqueous ecosystem significantly. Therefore, there is a need for methods to remove organic dyes from textile industrial effluents. Photo catalysis and catalytic wet oxidation are best practices for degradation of dyes in wastewater. In photo catalysis, the dye molecules can be completely degraded into inorganic non-toxic compounds by irradiation of the dye solution under visible or ultraviolet light in the presence of semiconductor metal-oxide photo catalysts. In catalytic wet oxidation, various metal-based catalysts in supported or unsupported form can be used as heterogeneous catalysts for degradation of dyes in the presence of oxygen or hydrogen peroxide. These processes have several preferences like easy separation of the catalyst from reaction mixture and recycling of the catalyst

    Dissociation of tetramethylsilane for the growth of SiC nanocrystals by atmospheric pressure microplasma

    Get PDF
    We report on mass spectrometry of residual gases after dissociation of tetramethylsilane (TMS) during the synthesis of silicon carbide (SiC) nanocrystals (NCs) by an atmospheric pressure microplasma. We use these results to provide details that can contribute to the understanding of the formation mechanisms of NCs. Mass spectrometry reveals the presence of high‐mass polymerization products supporting the key role of neutral fragments and limited atomization. On this basis, we found that the loss of methyl groups from TMS, together with hydrogen abstraction, represents important paths leading to nucleation and growth. The combination of TMS concentration and NC residence time controls the NC mean size and the corresponding distributions. For higher precursor concentrations, the reaction kinetics is sufficiently fast to promote coalescence

    A Low-Cost Tonometer Alternative: A Comparison Between Photoplethysmogram and Finger Ballistocardiogram and Validation Against Tonometric Waveform

    Get PDF
    Hypertension is a silent killer and one-third of its sufferers are unaware of its presence. Tonometric devices, like SphygmoCor, Compilor etc., represent the gold standard in pulse wave velocity (PWV) and augmentation index (AIx) measurements which are limited by their high cost and operational accuracy. Here, we present an alternative technology that is low cost and may be suitable for the 'wearable' setting. We undertook the comparisons of arterial waveforms obtained by photoplethysmogram (PPG) and finger ballistocardiogram (BPP) sensors which were then validated against a SphygmoCor tonometric device. Specifically, the agreement analysis of the augmentation, stiffness, reflection, elasticity, ejection elasticity and dicrotic reflection indexes showed that arterial distension waveform sensing using BPP sensor, has precision and accuracy similar to that of a SphygmoCor tonometric device whilst outperforming the volumetric arterial flow sensing using a PPG sensor, in every index. BPP indexes showed the r 2 fit of up to 0.95 and Spearman's rank correlation up to 0.91 when validated against the SphygmoCor tonometer. The estimated individual transfer functions for the BPP sensor, with reference to SphygmoCor, have accuracies of above 85% and 98% for 2 and 4-element windkessel (WK) models, respectively. The findings reported in this work may also be useful for the development of systems that are beneficial in the early and/or routine detection of hypertension

    Cost-effectiveness of clipping vs coiling of intracranial aneurysms after subarachnoid hemorrhage in a developing country-A prospective study

    Get PDF
    Background: Endovascular coil treatment is being used increasingly as an alternative to clipping for some ruptured intracranial aneurysms. The relative benefits of these 2 approaches have yet to be fully established. The aim of this study was to compare the clinical outcome, resource consumption, and cost-effectiveness of endovascular. treatment vs surgical clipping in a developing country.Methods: The study population consisted of 55 Patients with aneurysmal subarachnoid hemorrhage (SAH) identified prospectively from January 2004 to June 2007. Of the 55 Patients with ruptured intracranial aneurysms, 31 underwent surgical clipping, whereas 24 were treated via interventional coils. Clinical outcome at 6 months, using the modified Rankin Scale, and cost of treatment related to all aspects of the inPatient stay were evaluated in both groups.Results: The average age of the Patients in the endovascular group was 38 years, whereas in the surgical group, it was 45 years. Most Patients (43) were found to be in grades (1 and 2). Of these Patients, 18 received coils and 25 were clipped. The remaining 12 Patients were of poor grades (3 and 4), of which 6 had coiling and 6 underwent clipping. Most the Patients (46/55) had anterior circulation aneurysms, and the rest of the Patients (9/55) had posterior circulation aneurysms. The clinical outcome was similar in comparison (good in 81% for clipping and 83% for coiling). The average total cost for Patients undergoing endovascular treatment of the aneurysms was 5080,whereastheaveragetotalcostofsurgicalclippingwas5080, whereas the average total cost of surgical clipping was 3127.Conclusion: Patients with aneurysmal SAH whom we judged to require coiling had higher charges than Patients who could be treated by clipping. The benefits of apparent decrease in length of stay in the endovascular group were offset by higher procedure price and cost of consumables. There was no significant difference in clinical outcome at 6 months. We have proposed a risk scoring system to give guidelines regarding the choice of treatment considering size of aneurysm and resource allocation

    Synthesis of Ag-Fe3O4 nanoparticles for degradation of methylene blue in aqueous medium

    Get PDF
    Fe3O4 known as magnetite is one of the oxides of iron which plays a major role in various fields of sciences. Fe3O4 was synthesized by precipitation method using NH3.H2O, FeCl2.4H2O and FeCl3.6H2O as precursor materials. For synthesis of 5% Ag-Fe3O4, the green synthetic method was used for immobilization of Ag nanoparticles on Fe3O4 using leaves extract of Calotropis gigantea plant. The synthesized Fe3O4 and 5% Ag-Fe3O4 were employed as catalyst in degradation of methylene blue. The photo catalytic activity of Fe3O4 was remarkably enhanced by doping of Fe3O4 with Ag nanoparticles. Advanced instrumental techniques including XRD, EDX, TGA and SEM were used for characterization of synthesized particles. The immobilization of Ag on Fe3O4 enhanced the photo degradation of methylene blue from 40 to 72% at 40 °C which confirms that 5% Ag-Fe3O4 is an active catalyst for treatment of dye contaminated water. Ag-Fe3O4 exhibited almost same catalytic activity in two successive cycles.   Bull. Chem. Soc. Ethiop. 2020, 34(1), 123-134.  DOI: https://dx.doi.org/10.4314/bcse.v34i1.1

    Traumatic carotid-cavernous fistula: Clinical presentation and outcome

    Get PDF
    Objective:To evaluate the presentation, clinical course and outcome of traumatic carotid-cavernous fistula (CCF) withendovascular treatment at our institution during the last five years. Design: Retrospective descriptive study. Setting: The study included patients seen at Aga Khan University Hospital from January 2000 to December 2005. Methods: Retrospective analysis based on data retrieval from medical records using ICD coding system. Only those cases who had traumatic CCF and underwent endovascular treatment were included in the study. Results: A total of 8 patients were diagnosed with post-traumatic CCF and 11 procedures were done. Mean age at presentation was 35.6 years; mean duration of symptoms was 23 weeks after trauma; 6 patients were male and 2 female. Patients presented from 1 week to 2 years after the trauma; 7 had high-flow fistulas and 1 had low-flow fistula. Proptosis was the most common symptom (6 patients); decreased vision was present in 3 patients; 4 patients had an accompanying skull base fracture; and 1 patient had bilateral CCF. All patients were treated by endovascular procedures; 2 patients had recurrences, seen within 1 month of initial treatment and subsequently successfully treated. In 1 patient, the procedure failed due to the small size of the fistula. Conclusion: High success rate with minimal complications as seen in our series supports endovascular treatment as the leading option for CCF managemen

    Controlling the Energy-Level Alignment of Silicon Carbide Nanocrystals by Combining Surface Chemistry with Quantum Confinement

    Get PDF
    This work was supported by the Marie Curie Initial Training Network (RAPID-ITN, Grant 606889) and by EPSRC (Grants EP/K022237/1 and EP/M024938/1). A.U.H. and S.A. are thankful for the financial support from RAPID-ITN and Ulster University’s Vice Chancellor scholarships, respectively.The knowledge of band edges in nanocrystals (NCs) and quantum-confined systems is important for band alignment in technologically significant applications such as water purification, decomposition of organic compounds, water splitting, and solar cells. While the band energy diagram of bulk silicon carbides (SiCs) has been studied extensively for decades, very little is known about its evolution in SiC NCs. Moreover, the interplay between quantum confinement and surface chemistry gives rise to unusual electronic properties and remains barely understood. Here, we report for the first time the complete band energy diagram of SiC NCs synthesized such that they span the regime from strong to intermediate to weak quantum confinement. The absolute positions of the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals show clear size dependence. While the HOMO level follows the expected behavior for quantum-confined electronic states, the LUMO energy shifts below the bulk conduction band minimum, which cannot be explained by a simple quantum confinement caused by the size effect. We show that this effect is a result of the interplay between quantum confinement and the formation of surface states due to partial and site-selective oxygen passivation.Publisher PDFPeer reviewe

    Rapid Plasma Exsolution from an A-site Deficient Perovskite Oxide at Room Temperature

    Get PDF
    The research was supported by EPSRC (Award Nos. EP/R023522/1, EP/R023603/1, EP/R023921/1, EP/R023638/1, EP/R008841/1, and EP/V055232/1) and financial support from the UK Catalysis Hub funded by EPSRC Grant reference EP/R027129/1. J.W. and S.C.P. gratefully acknowledge support from the EPSRC (EP/P007821/1) and also thank the U.K. ARCHER HPC facility and the THOMAS HPC (the UK Materials and Molecular Modelling Hub, partially funded by EPSRC EP/P020194) for providing computation resources, via the membership of the UK's HEC Materials Chemistry Consortium (funded by the EPSRC Grant Nos. EP/L000202, EP/709 P007821/1, EP/R029431, and EP/T022213).High‐performance nanoparticle platforms can drive catalysis progress to new horizons, delivering environmental and energy targets. Nanoparticle exsolution offers unprecedented opportunities that are limited by current demanding process conditions. Unraveling new exsolution pathways, particularly at low‐temperatures, represents an important milestone that will enable improved sustainable synthetic route, more control of catalysis microstructure as well as new application opportunities. Herein it is demonstrated that plasma direct exsolution at room temperature represents just such a step change in the synthesis. Moreover, the factors that most affect the exsolution process are identified. It is shown that the surface defects produced initiate exsolution under a brief ion bombardment of an argon low‐pressure and low‐temperature plasma. This results in controlled nanoparticles with diameters ≈19–22 nm with very high number densities thus creating a highly active catalytic material for CO oxidation which rivals traditionally created exsolved samples.Publisher PDFPeer reviewe

    In silico modeling of the specific inhibitory potential of thiophene-2,3-dihydro-1,5-benzothiazepine against BChE in the formation of β-amyloid plaques associated with Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease, known to be associated with the gradual loss of memory, is characterized by low concentration of acetylcholine in the hippocampus and cortex part of the brain. Inhibition of acetylcholinesterase has successfully been used as a drug target to treat Alzheimer's disease but drug resistance shown by butyrylcholinesterase remains a matter of concern in treating Alzheimer's disease. Apart from the many other reasons for Alzheimer's disease, its association with the genesis of fibrils by β-amyloid plaques is closely related to the increased activity of butyrylcholinesterase. Although few data are available on the inhibition of butyrylcholinesterase, studies have shown that that butyrylcholinesterase is a genetically validated drug target and its selective inhibition reduces the formation of β-amyloid plaques.</p> <p>Rationale</p> <p>We previously reported the inhibition of cholinesterases by 2,3-dihydro-1, 5-benzothiazepines, and considered this class of compounds as promising inhibitors for the cure of Alzheimer's disease. One compound from the same series, when substituted with a hydroxy group at C-3 in ring A and 2-thienyl moiety as ring B, showed greater activity against butyrylcholinesterase than to acetylcholinesterase. To provide insight into the binding mode of this compound (Compound A), molecular docking in combination with molecular dynamics simulation of 5000 ps in an explicit solvent system was carried out for both cholinesterases.</p> <p>Conclusion</p> <p>Molecular docking studies revealed that the potential of Compound A to inhibit cholinesterases was attributable to the cumulative effects of strong hydrogen bonds, cationic-π, π-π interactions and hydrophobic interactions. A comparison of the docking results of Compound A against both cholinesterases showed that amino acid residues in different sub-sites were engaged to stabilize the docked complex. The relatively high affinity of Compound A for butyrylcholinesterase was due to the additional hydrophobic interaction between the 2-thiophene moiety of Compound A and Ile69. The involvement of one catalytic triad residue (His438) of butyrylcholinesterase with the 3'-hydroxy group on ring A increases the selectivity of Compound A. C-C bond rotation around ring A also stabilizes and enhances the interaction of Compound A with butyrylcholinesterase. Furthermore, the classical network of hydrogen bonding interactions as formed by the catalytic triad of butyrylcholinesterase is disturbed by Compound A. This study may open a new avenue for structure-based drug design for Alzheimer's disease by considering the 3D-pharmacophoric features of the complex responsible for discriminating these two closely-related cholinesterases.</p
    corecore