1,228 research outputs found

    Non-equilibrium hydrodynamics of a rotating filament

    Full text link
    The nonlinear dynamics of an elastic filament that is forced to rotate at its base is studied by hydrodynamic simulation techniques; coupling between stretch, bend, twist elasticity and thermal fluctuations is included. The twirling-overwhirling transition is located and found to be strongly discontinuous. For finite bend and twist persistence length, thermal fluctuations lower the threshold rotational frequency, for infinite persistence length the threshold agrees with previous analytical predictions

    Instabilities and turbulence-like dynamics in an oppositely driven binary particle mixture

    Full text link
    Using extensive particle-based simulations, we investigate out-of-equilibrium pattern dynamics in an oppositely driven binary particle system in two dimensions. A surprisingly rich dynamical behavior including lane formation, jamming, oscillation and turbulence-like dynamics is found. The ratio of two friction coefficients is a key parameter governing the stability of lane formation. When the friction coefficient transverse to the external force direction is sufficiently small compared to the longitudinal one, the lane structure becomes unstable to shear-induced disturbances, and the system eventually exhibits a dynamical transition into a novel turbulence-like phase characterized by random convective flows. We numerically construct an out-of-equilibrium phase diagram. Statistical analysis of complex spatio-temporal dynamics of the fully nonlinear turbulence-like phase suggests its apparent reminiscence to the swarming dynamics in certain active matter systems.Comment: 6 pages, 6 figures, accepted for publication in EP

    Dynamics of non-equilibrium membrane bud formation

    Full text link
    The dynamical response of a lipid membrane to a local perturbation of its molecular symmetry is investigated theoretically. A density asymmetry between the two membrane leaflets is predominantly released by in-plane lipid diffusion or membrane curvature, depending upon the spatial extent of the perturbation. It may result in the formation of non-equilibrium structures (buds), for which a dynamical size selection is observed. A preferred size in the micrometer range is predicted, as a signature of the crossover between membrane and solvent dominated dynamical membrane response.Comment: 7 pages 3 figure

    Brownian motion in a non-homogeneous force field and photonic force microscope

    Full text link
    The Photonic Force Microscope (PFM) is an opto-mechanical technique based on an optical trap that can be assumed to probe forces in microscopic systems. This technique has been used to measure forces in the range of pico- and femto-Newton, assessing the mechanical properties of biomolecules as well as of other microscopic systems. For a correct use of the PFM, the force field to measure has to be invariable (homogeneous) on the scale of the Brownian motion of the trapped probe. This condition implicates that the force field must be conservative, excluding the possibility of a rotational component. However, there are cases where these assumptions are not fulfilled Here, we show how to improve the PFM technique in order to be able to deal with these cases. We introduce the theory of this enhanced PFM and we propose a concrete analysis workflow to reconstruct the force field from the experimental time-series of the probe position. Furthermore, we experimentally verify some particularly important cases, namely the case of a conservative or rotational force-field

    Colloid-colloid and colloid-wall interactions in driven suspensions

    Full text link
    We investigate the non-equilibrium fluid structure mediated forces between two colloids driven through a suspension of mutually non-interacting Brownian particles as well as between a colloid and a wall in stationary situations. We solve the Smoluchowski equation in bispherical coordinates as well as with a method of reflections, both in linear approximation for small velocities and numerically for intermediate velocities, and we compare the results to a superposition approximation considered previously. In particular we find an enhancement of the friction (compared to the friction on an isolated particle) for two colloids driven side by side as well as for a colloid traveling along a wall. The friction on tailgating colloids is reduced. Colloids traveling side by side experience a solute induced repulsion while tailgating colloids are attracted to each other.Comment: 8 Pages, 8 figure

    Brownian Dynamics of a Sphere Between Parallel Walls

    Full text link
    We describe direct imaging measurements of a colloidal sphere's diffusion between two parallel surfaces. The dynamics of this deceptively simple hydrodynamically coupled system have proved difficult to analyze. Comparison with approximate formulations of a confined sphere's hydrodynamic mobility reveals good agreement with both a leading-order superposition approximation as well as a more general all-images stokeslet analysis.Comment: 4 pages, 3 figures, REVTeX with PostScript figure

    Tilted algebras and short chains of modules

    Full text link
    We provide an affirmative answer for the question raised almost twenty years ago concerning the characterization of tilted artin algebras by the existence of a sincere finitely generated module which is not the middle of a short chain

    Microscale swimming: The molecular dynamics approach

    Full text link
    The self-propelled motion of microscopic bodies immersed in a fluid medium is studied using molecular dynamics simulation. The advantage of the atomistic approach is that the detailed level of description allows complete freedom in specifying the swimmer design and its coupling with the surrounding fluid. A series of two-dimensional swimming bodies employing a variety of propulsion mechanisms -- motivated by biological and microrobotic designs -- is investigated, including the use of moving limbs, changing body shapes and fluid jets. The swimming efficiency and the nature of the induced, time-dependent flow fields are found to differ widely among body designs and propulsion mechanisms.Comment: 5 pages, 3 figures (minor changes to text

    A frictionless microswimmer

    Get PDF
    We investigate the self-locomotion of an elongated microswimmer by virtue of the unidirectional tangential surface treadmilling. We show that the propulsion could be almost frictionless, as the microswimmer is propelled forward with the speed of the backward surface motion, i.e. it moves throughout an almost quiescent fluid. We investigate this swimming technique using the special spheroidal coordinates and also find an explicit closed-form optimal solution for a two-dimensional treadmiler via complex-variable techniques.Comment: 6 pages, 4 figure
    • …
    corecore