8 research outputs found

    Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults

    No full text
    Dissolved gas analysis (DGA) is attracting greater and greater interest from researchers as a fault diagnostic tool for power transformers filled with vegetable insulating oils. This paper presents experimental results of dissolved gases in insulating oils under typical electrical and thermal faults in transformers. The tests covered three types of insulating oils, including two types of vegetable oil, which are camellia insulating oil, Envirotemp FR3, and a type of mineral insulating oil, to simulate thermal faults in oils from 90 °C to 800 °C and electrical faults including breakdown and partial discharges in oils. The experimental results reveal that the content and proportion of dissolved gases in different types of insulating oils under the same fault condition are different, especially under thermal faults due to the obvious differences of their chemical compositions. Four different classic diagnosis methods were applied: ratio method, graphic method, and Duval’s triangle and Duval’s pentagon method. These confirmed that the diagnosis methods developed for mineral oil were not fully appropriate for diagnosis of electrical and thermal faults in vegetable insulating oils and needs some modification. Therefore, some modification aiming at different types of vegetable oils based on Duval Triangle 3 were proposed in this paper and obtained a good diagnostic result. Furthermore, gas formation mechanisms of different types of vegetable insulating oils under thermal stress are interpreted by means of unimolecular pyrolysis simulation and reaction enthalpies calculation

    Jerk Analysis of a Power-Split Hybrid Electric Vehicle Based on a Data-Driven Vehicle Dynamics Model

    No full text
    Given its highly coupled multi-power sources with diverse dynamic response characteristics, the mode transition process of a power-split Hybrid Electric Vehicle (HEV) can easily lead to unanticipated passenger-felt jerks. Moreover, difficulties in parameter estimation, especially power-source dynamic torque estimation, result in new challenges for jerk reduction. These two aspects entangle with each other and constitute a complicated coupling problem which obstructs the realization of a valid anti-jerk method. In this study, a vehicle dynamics model with reference to a data-driven modeling method is first established, integrating a full-time artificial neural network engine dynamic model that can accurately predict engine dynamic torque. Then the essential reason for the occurrence of vehicle jerks in real driving conditions is analyzed. Finally, to smooth the mode transition process, a more practical anti-jerk strategy based on power-source torque changing rate limitation (TCRL) is proposed. Verification studies indicate that the data-driven vehicle dynamics model has enough accuracy to reflect the vehicle dynamic characteristics, and the proposed TCRL strategy could reduce the vehicle jerk by up to 85.8%, without any sacrifice of vehicle performance. This research provides a feasible method for precise modeling of vehicle dynamics and a reference for improving the riding comfort of hybrid electric vehicles

    Sox10+ Cells Contribute to Vascular Development in Multiple Organs-Brief Report.

    No full text
    ObjectivePrevious genetic lineage tracing studies showed that Sox10+ cells differentiate into vascular mural cells, limited to neural crest-derived blood vessels in craniofacial tissues, aortic arch, pulmonary arch arteries, brachiocephalic, carotid arteries, and thymus. The purpose of this study was to investigate the contribution of Sox10+ cells to the vascular development in other tissues and organs and their relationship with neural crest.Approach and resultsUsing genetic lineage tracing technique based on Cre/LoxP system, we examined blood vessels in the adult organs of the mice expressing Sox10-Cre/Rosa-LoxP-red fluorescent protein or Wnt1-Cre/Rosa-LoxP-red fluorescent protein by immunohistological analysis. In addition to previously reported tissues and organs derived from neural crest, we showed that Sox10+ cells also contributed to vascular mural cells in the lung, spleen, and kidney, which are derived from non-neural crest origin as evidenced by red fluorescent protein-negative blood vessels in these 3 organs of Wnt1-Cre/Rosa-LoxP-red fluorescent protein mice.ConclusionsThis study demonstrates that Sox10+ cells contribute to pericytes and smooth muscle cells in most parts of the body, including those from neural crest and non-neural crest, which has significant implications in vascular remodeling under physiological and pathological conditions
    corecore