47 research outputs found

    Efficient excitation and tuning of toroidal dipoles within individual homogenous nanoparticles

    Get PDF
    We revisit the fundamental topic of light scattering by single homogenous nanoparticles from the new perspective of excitation and manipulation of toroidal dipoles. It is revealed that besides within all-dielectric particles, toroidal dipoles can also be efficiently excited within homogenous metallic nanoparticles. Moreover, we show that those toroidal dipoles excited can be spectrally tuned through adjusting the radial anisotropy parameters of the materials, which paves the way for further more flexible manipulations of the toroidal responses within photonic systems. The study into toroidal multipole excitation and tuning within nanoparticles deepens our understanding of the seminal problem of light scattering, and may incubate many scattering related fundamental researches and applications.Comment: Four Figures,Ten Pages and Comments Welcome

    Elusive pure anapole excitation in homogenous spherical nanoparticles with radial anisotropy

    Full text link
    For homogenous isotropic dielectric nanospheres with incident plane waves, Cartesian electric and toroidal dipoles can be tunned to cancel each other in terms of far-field scattering, leading to the effective anopole excitation. At the same time however, other multipoles such as magnetic dipoles with comparable scattered power are simultanesouly excited, mixing with the anopole and leading to a non-negligible total scattering cross section. Here we show that for homogenous dielectric nanospheres, radial anisotropy can be employed to significantly suppress the other multipole excitation, which at the same time does not compromise the property of complete scattering cancallation between Cartesian electric and toroidal dipoles. This enables an elusive pure anopole excitation within radially anisotropic dielectric nanospheres, which may shed new light to many scattering related fundamental researches and applications.Comment: Invited submission with four figures and ten pages. Comments welcome

    The associations between gut microbiota and chronic respiratory diseases: a Mendelian randomization study

    Get PDF
    IntroductionGrowing evidence indicates that variations in the composition of the gut microbiota are linked to the onset and progression of chronic respiratory diseases (CRDs), albeit the causal relationship between the two remains unclear.MethodsWe conducted a comprehensive two-sample Mendelian randomization (MR) analysis to investigate the relationship between gut microbiota and five main CRDs, including chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), sarcoidosis, and pneumoconiosis. For MR analysis, the inverse variance weighted (IVW) method was utilized as the primary method. The MR–Egger, weighted median, and MR-PRESSO statistical methods were used as a supplement. To detect heterogeneity and pleiotropy, the Cochrane and Rucker Q test, MR–Egger intercept test, and MR-PRESSO global test were then implemented. The leave-one-out strategy was also applied to assess the consistency of the MR results.ResultsBased on substantial genetic data obtained from genome-wide association studies (GWAS) comprising 3,504,473 European participants, our study offers evidence that several gut microbial taxa, including 14 probable microbial taxa (specifically, 5, 3, 2, 3 and 1 for COPD, asthma, IPF, sarcoidosis, and pneumoconiosis, respectively) and 33 possible microbial taxa (specifically, 6, 7, 8, 7 and 5 for COPD, asthma, IPF, sarcoidosis, and pneumoconiosis, respectively) play significant roles in the formation of CRDs.DiscussionThis work implies causal relationships between the gut microbiota and CRDs, thereby shedding new light on the gut microbiota-mediated prevention of CRDs

    Nanodelivery of nucleic acids

    Get PDF
    Funding: This work was supported by the European Research Council (ERC) Starting Grant (ERC-StG-2019-848325 to J. Conde) and the Fundação para a Ciência e a Tecnologia FCT Grant (PTDC/BTM-MAT/4738/2020 to J. Conde). J.S. acknowledges US National Institute of Health (NIH) grants (R01CA200900, R01HL156362 and R01HL159012), the US DoD PRCRP Idea Award with Special Focus (W81XWH1910482), the Lung Cancer Discovery Award from the American Lung Association and the Innovation Discovery Grants award from the Mass General Brigham. H.L., D.Y. and X.Z. were supported by the National Key R&D Program of China (no. 2020YFA0710700), the National Natural Science Foundation of China (nos 21991132, 52003264, 52021002 and 52033010) and the Fundamental Research Funds for the Central Universities (no. WK2060000027).There is growing need for a safe, efficient, specific and non-pathogenic means for delivery of gene therapy materials. Nanomaterials for nucleic acid delivery offer an unprecedented opportunity to overcome these drawbacks; owing to their tunability with diverse physico-chemical properties, they can readily be functionalized with any type of biomolecules/moieties for selective targeting. Nucleic acid therapeutics such as antisense DNA, mRNA, small interfering RNA (siRNA) or microRNA (miRNA) have been widely explored to modulate DNA or RNA expression Strikingly, gene therapies combined with nanoscale delivery systems have broadened the therapeutic and biomedical applications of these molecules, such as bioanalysis, gene silencing, protein replacement and vaccines. Here, we overview how to design smart nucleic acid delivery methods, which provide functionality and efficacy in the layout of molecular diagnostics and therapeutic systems. It is crucial to outline some of the general design considerations of nucleic acid delivery nanoparticles, their extraordinary properties and the structure–function relationships of these nanomaterials with biological systems and diseased cells and tissues.publishersversionpublishe

    Conjugation of Functionalized SPIONs with Transferrin for Targeting and Imaging Brain Glial Tumors in Rat Model

    Get PDF
    Currently, effective and specific diagnostic imaging of brain glioma is a major challenge. Nanomedicine plays an essential role by delivering the contrast agent in a targeted manner to specific tumor cells, leading to improvement in accurate diagnosis by good visualization and specific demonstration of tumor cells. This study investigated the preparation and characterization of a targeted MR contrast agent, transferrin-conjugated superparamagnetic iron oxide nanoparticles (Tf-SPIONs), for brain glioma detection. MR imaging showed the obvious contrast change of brain glioma before and after administration of Tf-SPIONs in C6 glioma rat model in vivo on T2 weighted imaging. Significant contrast enhancement of brain glioma could still be clearly seen even 48 h post injection, due to the retention of Tf-SPIONs in cytoplasm of tumor cells which was proved by Prussian blue staining. Thus, these results suggest that Tf-SPIONs could be a potential targeting MR contrast agent for the brain glioma

    Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021

    Get PDF
    Imaging markers of cerebral small vessel disease provide valuable information on brain health, but their manual assessment is time-consuming and hampered by substantial intra- and interrater variability. Automated rating may benefit biomedical research, as well as clinical assessment, but diagnostic reliability of existing algorithms is unknown. Here, we present the results of the VAscular Lesions DetectiOn and Segmentation (Where is VALDO?) challenge that was run as a satellite event at the international conference on Medical Image Computing and Computer Aided Intervention (MICCAI) 2021. This challenge aimed to promote the development of methods for automated detection and segmentation of small and sparse imaging markers of cerebral small vessel disease, namely enlarged perivascular spaces (EPVS) (Task 1), cerebral microbleeds (Task 2) and lacunes of presumed vascular origin (Task 3) while leveraging weak and noisy labels. Overall, 12 teams participated in the challenge proposing solutions for one or more tasks (4 for Task 1-EPVS, 9 for Task 2-Microbleeds and 6 for Task 3-Lacunes). Multi-cohort data was used in both training and evaluation. Results showed a large variability in performance both across teams and across tasks, with promising results notably for Task 1-EPVS and Task 2-Microbleeds and not practically useful results yet for Task 3-Lacunes. It also highlighted the performance inconsistency across cases that may deter use at an individual level, while still proving useful at a population level
    corecore