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Introduction: Growing evidence indicates that variations in the composition of 
the gut microbiota are linked to the onset and progression of chronic respiratory 
diseases (CRDs), albeit the causal relationship between the two remains unclear.

Methods: We conducted a comprehensive two-sample Mendelian randomization 
(MR) analysis to investigate the relationship between gut microbiota and five main 
CRDs, including chronic obstructive pulmonary disease (COPD), asthma, idiopathic 
pulmonary fibrosis (IPF), sarcoidosis, and pneumoconiosis. For MR analysis, the inverse 
variance weighted (IVW) method was utilized as the primary method. The MR–Egger, 
weighted median, and MR-PRESSO statistical methods were used as a supplement. 
To detect heterogeneity and pleiotropy, the Cochrane and Rucker Q test, MR–Egger 
intercept test, and MR-PRESSO global test were then implemented. The leave-one-
out strategy was also applied to assess the consistency of the MR results.

Results: Based on substantial genetic data obtained from genome-wide 
association studies (GWAS) comprising 3,504,473 European participants, our 
study offers evidence that several gut microbial taxa, including 14 probable 
microbial taxa (specifically, 5, 3, 2, 3 and 1 for COPD, asthma, IPF, sarcoidosis, and 
pneumoconiosis, respectively) and 33 possible microbial taxa (specifically, 6, 7, 
8, 7 and 5 for COPD, asthma, IPF, sarcoidosis, and pneumoconiosis, respectively) 
play significant roles in the formation of CRDs.

Discussion: This work implies causal relationships between the gut microbiota and 
CRDs, thereby shedding new light on the gut microbiota-mediated prevention of 
CRDs.
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1. Brief summary

1.1. Evidence before this study

Alterations in the formation of gut microbiota are closely linked to chronic respiratory 
diseases (CRDs). It is imperative to determine whether gut microbes have a causal relationship 
with the development of CRDs or if they are simply a result of shared risk factors.
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1.2. Added value of this study

The study utilized two-sample Mendelian randomization (MR) 
analysis, a novel statistical method, to investigate the correlation 
between the gut microbiota and five prevalent CRDs, including 
chronic obstructive pulmonary disease (COPD), asthma, idiopathic 
pulmonary fibrosis (IPF), sarcoidosis, and pneumoconiosis. Our 
study, which analyzed genetic data from 3,504,473 European 
participants through genome-wide association studies (GWAS), 
provides evidence that numerous gut microbial taxa, including 14 
probable and 33 possible microbial taxa, play important roles in the 
formation of CRDs.

1.3. Implications of all the available 
evidence

This work implies causal relationships between the gut microbiota 
and CRDs, thereby shedding new light on the gut microbiota-
mediated prevention of CRDs.

2. Introduction

Chronic respiratory diseases(CRDs), which affect the airways and 
other lung structures, are among the leading causes of morbidity and 
mortality worldwide. Chronic obstructive pulmonary disease 
(COPD), asthma, interstitial lung disease (ILD), sarcoidosis and 
occupational lung diseases are among the most prevalent chronic 
respiratory conditions. These diseases are huge contributors to the 
escalating global burden of noncommunicable diseases (NCDs; 
Collaborators GBDCRD, 2020) and have grown into a major threat to 
public health in all nations, especially those with developing 
economies and low-income regions (Collaborators GBDCRD, 2020; 
Hussain et  al., 2021). Current data indicate that the number of 
individuals worldwide afflicted by chronic respiratory illnesses has 
surged by 39.8% since 1990, reaching nearly 545 million in 2017 
(Labaki and Han, 2020). Notably, chronic respiratory illnesses caused 
3.8 million fatalities in 2016, representing 9% of all NCD fatalities and 
7% of all deaths globally (Collaborators GBDCRD, 2020).

Although the pathogenesis and etiology of CRDs are not fully 
understood, genetic and environmental factors are of major 
importance in their development. In addition, accumulating evidence 
suggests that alterations in the formation of gut microbiota are closely 
associated with CRDs (Chunxi et al., 2020). The human gut microbiota 
is a complex, dynamic, and spatially heterogeneous ecosystem 
inhabited by a myriad of microorganisms, including bacteria and 
fungi, that interact with each other and with the human host (Gomaa, 
2020). Gut microbiota dysbiosis not only modulates the immune 
responses of the gastrointestinal (GI) tract but also impacts the 
immunity of distal organs, such as the lung, further affecting lung 
health and respiratory diseases, which led to the coining of the 
gut-lung axis concept (Zhou et  al., 2021). Recent studies have 
implicated gut microbial dysbiosis in the etiology and pathogenesis of 
common respiratory disorders such as asthma, COPD, and IPF (Li 
et al., 2021; Saint-Criq et al., 2021; Shi et al., 2021). However, our 
understanding of the mechanism involving the gut-lung axis is still in 
its infancy and requires more clarification (Chunxi et al., 2020; Zhou 

et al., 2021). It is essential to determine whether gut microbes play 
causal roles in the development of CRDs or merely serve as 
consequences of a shared risk factor profile.

Mendelian randomization (MR) is a recently developed statistical 
method for inferring causality that mimics a randomized controlled 
trial because genetic variants are assigned randomly during 
conception (Birney, 2022). MR uses single nucleotide polymorphisms 
(SNPs) as instrumental variables to model and infer causal effects, 
thereby eliminating the influence of confounding variables. Moreover, 
since heredity is irreversible, it can eliminate the interference of 
reverse causation (Xu et al., 2021). MR has been widely applied to 
explore the association between gut microbiota and various diseases, 
including preeclampsia (Li et  al., 2022), diabetic retinopathy (Liu 
et al., 2022), and psychiatric disorders (Ni et al., 2021), yet there is little 
evidence to investigate the causal linkages of gut microbiota on CRDs.

In this work, a comprehensive two-sample MR analysis was 
undertaken to determine the association between the gut microbiota 
and five common CRDs, including COPD, asthma, idiopathic 
pulmonary fibrosis (IPF), sarcoidosis, and pneumoconiosis. Our 
research sheds light on the potential role of the gut microbiota in the 
etiology of CRDs and may lead to the development of novel 
therapeutic options for these debilitating diseases.

3. Materials and methods

3.1. Study design

A comprehensive two-sample Mendelian randomization was 
undertaken at five levels (including phylum, class, order, family and 
genus) to investigate the causative role of gut microbiota on five 
prevalent CRDs. Figure 1A presents the study design alongside the 
essential MR assumptions: (1) instrument variables (IVs) were 
associated with the exposure factors, (2) IVs were not related to any 
confounding factors, and (3) IVs only affected the outcome through 
the pathway of the exposure factors (Davies et al., 2018).

3.2. Data sources

The genetic information of gut microbiota as exposure was 
obtained from the largest genome-wide association study (GWAS) 
conducted by the MiBioGen consortium,1 which included 5,717,754 
SNPs and 18,340 participants from 24 cohorts (total 211 taxa: 9 
phylum, 16 classes, 20 orders, 35 families, and 131 genus; Kurilshikov 
et al., 2021). Furthermore, 15 taxa (12 genus and 3 families) with 
unknown groups were excluded, meaning that 196 bacterial taxa were 
included in the subsequent MR analysis.

GWAS summary statistics (Table  1) for the first three CRDs 
(COPD, asthma, IPF) were extracted from newly published GWAS 
meta-analyses from the Global Biobank Meta-Analysis Initiative 
(GBMI). The GWAS meta-analyses included 54,606 cases and 887,000 
controls for COPD, 95554 cases and 833,538 controls for asthma, and 
6,257 cases and 947,616 controls for IPF, which comprises nine 

1 http://www.mibiogen.org/
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biobanks (BioVU, Colorado Center for Personalized Medicine, 
Estonian Biobank, FinnGen, HUNT Study, Michigan Genomics 
Initiative, Mass General Brigham, UCLA Precision Health Biobank, 

and UK Biobank; Zhou et al., 2022). Additionally, the genetic data on 
sarcoidosis (3,597 cases and 337,121 controls) and pneumoconiosis 
(548 cases and 338,636 controls) were accessed from the eighth 

FIGURE 1

The study design of MR analysis (A) and the overall workflow (B). GWAS, genome-wide association study; MR, mendelian randomization; IVs, 
instrument variables; LD, linkage disequilibrium; SNP, single nucleotide polymorphism; IVW, inverse-variance-weighted; MR-PRESSO, MR pleiotropy 
residual sum and outlier; COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis.

TABLE 1 Characteristics of the GWAS used for analyses.

Trait Data Type N_cases N_controls Ethnicity Consortium PubMed ID

COPD Outcome 54,606 887,000 European GBMI 36,777,996

Asthma Outcome 95,554 833,538 European GBMI 36,777,996

IPF Outcome 6,257 947,616 European GBMI 36,777,996

Sarcoidosis Outcome 3,597 337,121 European FinnGen_r8 36,653,562

Pneumoconiosis Outcome 548 338,636 European FinnGen_r8 36,653,562

Gut Microbiota Exposure 18,340 European MiBioGen 33,462,485
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version of the FinnGen Biobank,2 a prospective cohort study involving 
35,379,992 individuals (Kurki et  al., 2023). Both databases were 
adopted due to their largest sample size of GWAS data currently 
available for these conditions.

There were few overlapping samples or closely related individuals 
between the gut microbiota and CRDs (Supplementary Table S1). At 
the database level, there were no significant overlaps between the 
samples. We then calculated the sample overlap at the country level 
and found the maximum overlap rate to be  just 0.0102, further 
guaranteeing the independence of samples between exposure and 
outcome. The original GWAS were approved by their respective 
institutions, and all the data used in our study were publicly available; 
no additional ethical approval was needed.

3.3. Instrument variables selection

To ensure the accuracy and reliability of the causal relationship 
between the gut microbiota and CRDs, we conducted a series of 
stringent quality tests to pick IVs that met the three assumptions 
of MR analysis. (1) Given the limited number of available SNPs, 
we selected SNPs significantly related to the gut microbiota with a 
loose cutoff of p < 1e-5 (Yu et al., 2023). Then, we clumped genetic 
variations within 10,000 kb at the level of linkage disequilibrium 
(LD) r2 = 0.001. The F statistic (beta2/se2) was calculated to measure 
the statistical strength of each SNP, and those with an F value <10 
were removed for weak strength (MR hypothesis I) (Xie et  al., 
2023). (2) The SNPs that were significantly associated with the 
outcomes (p < 1e-5) were eliminated (MR hypothesis III). (3) 
We  searched all eligible SNPs using PhenoScanner3 to exclude 
SNPs relevant to potential confounders such as smoking and 
occupational exposure (MR hypothesis II; Kamat et al., 2019).

3.4. MR analysis

We conducted an MR study to investigate the causal link 
between the gut microbiota and five prevalent CRDs (COPD, 
asthma, IPF, sarcoidosis, and pneumoconiosis). Four popular MR 
methods were employed, including the random-effect inverse-
variance-weighted (IVW) test, the weighted median (WM), 
Mendelian randomization pleiotropy residual sum and outlier 
(MR-PRESSO), and the MR-Egger regression.

On the assumption that each genetic variant satisfies the IV 
assumptions, the IVW method was employed to incorporate the 
Wald ratio assessments of each instrumental variable into a meta-
analysis, which is equivalent to conducting a weighted linear 
regression of the associations between the instrumental variables. 
The IVW method was reported to be advantageous since it offers 
estimates that are not influenced by horizontal pleiotropy (Burgess 
et al., 2013). Second, assuming at least 50% of the selected SNPs 
are legitimate, the weighted median estimator can yield unbiased 
causal effects (Bowden et  al., 2016). Third, the MR–Egger 

2 https://www.finngen.fi/

3 http://www.phenoscanner.medschl.cam.ac.uk/

sensitivity estimator can generate unbiased estimates of causality 
relationships even if all instrumental SNPs are invalid due to 
pleiotropy (Bowden et al., 2015). Fourth, the MR-PRESSO method 
was implemented because it can discover pleiotropic outliers, and 
after eliminating outliers, the causal impact estimate is obtained 
using the inverse-variance–weighted method (Verbanck et  al., 
2018). If the outcomes of these approaches are incongruent, we will 
prioritize IVW as the primary result. To ensure that each IV was 
correlated with the same effect allele, we harmonized the summary 
statistics and eliminated palindromic SNPs.

Moreover, we  conducted a series of sensitivity analyzes to 
guarantee the authenticity and robustness of the results. On the 
one hand, the MR-PRESSO global test and the MR Egger intercept 
test were employed to evaluate the IVs’ global horizontal 
pleiotropy. p values greater than 0.05 for both methods revealed 
no horizontal pleiotropy (Verbanck et al., 2018). On the other 
hand, Cochran’s Q statistic (MR-IVW) and Rucker’s Q statistic 
(MR Egger) were utilized to identify heterogeneity in this MR 
analysis, and p > 0.05 indicated that there was no heterogeneity 
(Hemani et al., 2018). Finally, a leave-one-out sensitivity test was 
used to identify whether a single SNP influenced the inference of 
causal associations.

3.5. Statistical analysis

To obtain a more stringent interpretation of the causal link, 
we  additionally applied the Bonferroni-corrected significance 
criterion, defined as p = 0.05/n, at each feature level (phylum: 0.05/9, 
class: 0.05/16, order: 0.05/20, family: 0.05/32, and genus: 0.05/119). 
Microbiomes with p values less than 0.05/n were deemed to have a 
highly probable relationship with CRDs, while those that displayed 
nominal significance (0.05) after three main MR analyzes (IVW, WM, 
MR-PRESSO) but lost significance after adjustment were regarded as 
probable features. Microbiomes with p values <0.05 in less than three 
MR analyzes were considered to have possible relationships (Yu et al., 
2021; Long et al., 2023; Xie et al., 2023). The statistical analyses were 
performed using R version 4.1.3 (R Foundation for Statistical 
Computing). “TwoSampleMR,” “MRInstruments,” and 
“MendelianRandomization” are the most frequently employed 
R packages.

4. Results

4.1. Overview

Figure 1B depicts the study’s overall workflow. After screening 
for SNPs linked with exposure and removing LD, we obtained 2,601 
SNPs of 196 taxa and then removed 4 SNPs associated with outcomes 
(rs11597285, rs62240188, rs62028349, rs12925026) and 2 SNPs 
connected with the confounding factor smoking (rs4506202, 
rs12288512). Finally, 2,595 SNPs from 196 taxa were employed as 
IVs, and the F statistics for each SNP ranged from 16.91 to 36.57, 
indicating that no instrument bias was present. 717 SNPs from 72 
taxa were obtained after harmonizing exposure and outcome alleles 
and performing MR analysis (Supplementary Table S2). 
We identified 454 SNPs across 47 taxa after conducting numerous 
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sensitivity analyzes (Supplementary Table S3). Figure 2 summarizes 
the conclusive findings between gut microbiota and CRDs.

4.2. Causal relationship between gut 
microbiota and COPD

This study discovered 5 probable traits in the development of 
COPD, one of which belonged to orders, two to families, and two to 
genus (Figure 3; Table 2). Higher genetically predicted levels of the 
family Bacteroidaceae (IVM: OR = 1.118, 95% CI 1.016–1.229, 
p = 0.022; WM: OR = 1.174, 95% CI 1.038–1.328, p = 0.011; 
MR-PRESSO: OR = 1.118, 95% CI 1.019–1.225, p = 0.049), genus 
Bacteroides(IVM: OR = 1.118, 95% CI 1.016–1.229, p = 0.022; WM: 
OR = 1.174, 95% CI 1.033–1.333, p = 0.014; MR-PRESSO: OR = 1.118, 
95% CI 1.019–1.225, p = 0.049), and genus Lachnoclostridium (IVM: 
OR = 1.173, 95% CI 1.045–1.316, p = 0.007; WM: OR = 1.165, 95% CI 
1.017–1.334, p = 0.027; MR-PRESSO: OR = 1.173, 95% CI 1.045–
1.316, p = 0.030) were significantly linked with an elevated risk of 
COPD. In contrast, elevated genetically predicted levels of the order 
Bacillales (IVW: OR = 0.938, 95% CI 0.895–0.984, p = 0.008; WM: 

OR = 0.925, 95% CI 0.871–0.983, p = 0.011; MR-PRESSO: OR = 0.938, 
95% CI 0.901–0.977, p = 0.028)and the genus Haemophilus (IVM: 
OR = 0.925, 95% CI 0.874–0.98, p = 0.008; WM: OR = 0.906, 95% CI 
0.837–0.98, p = 0.014; MR-PRESSO: OR = 0.925, 95% CI 0.874–0.98, 
p = 0.033) were substantially discharged to a lower risk level. 
Additionally, a possible relationship between the 13 taxa and COPD 
was observed.

The MR–Egger intercept (Figure 3; Supplementary Figure S1) and 
MR-PRESSO global tests revealed that five possible taxa exhibited 
horizontal pleiotropy (class Betaproteobacteria, class Erysipelotrichia, 
family Erysipelotrichaceae, order Burkholderiales, and order 
Erysipelotrichales, p < 0.05). Cochrane’s Q test and Rucker’s Q statistic 
revealed that there was no discernible heterogeneity among the 
selected SNPs in the remaining taxa (p > 0.05; Figure 3). Nonetheless, 
the leave-one-out analysis (Supplementary Figure S2) revealed that a 
few particular SNPs may have overlooked the positive results of two 
other possible taxa (genus Flavonifractor, genus 
RuminococcaceaeUCG003). Following the removal of 7 unsteady 
features, our analysis identified 5 probable (3 hazardous and 2 
protective features) and 6 possible (4 hazardous and 2 protective 
features) taxa on COPD.

FIGURE 2

The summary of MR results of significant relationship between gut microbiota and CRDs. The red indicates risk factors, while the green illustrates 
protection. COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis.
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4.3. Causal relationship between gut 
microbiota and asthma

Results from the Bonferroni-corrected test (Figure 4; Table 3) 
identified higher levels of class Gammaproteobacteria (IVM: OR = 1.15, 
95% CI 1.049–1.26, p = 0.003; WM: OR = 1.143, 95% CI 1.024–1.276, 
p = 0.018; MR-PRESSO: OR = 1.15, 95% CI 1.112–1.189, p = 0.004) and 
order NB1n (IVM: OR = 1.064, 95% CI 1.032–1.096, p = 5.82E-05; 
WM: OR = 1.043, 95% CI 1–1.089, p = 0.052; MR-PRESSO: OR = 1.064, 
95% CI 1.032–1.096, p = 0.002) suggests a highly probable relationship 
with higher risk of asthma, whereas a higher level of genus 
Ruminiclostridium5 (IVM: OR = 0.868, 95% CI 0.811–0.931, p = 6.24E-
05; WM: OR = 0.89, 95% CI 0.81–0.978, p = 0.015; MR-PRESSO: 
OR = 0.868, 95% CI 0.811–0.931, p = 0.005) retains a highly probable 
protective relationship with asthma. In addition, there was a possible 
association between the 16 taxa and asthma.

The MR–Egger intercept (Supplementary Figure S3) and 
MR-PRESSO global tests demonstrated horizontal pleiotropy in six 

candidate taxa (phylum Proteobacteria, class Clostridia, order 
Bacillales, family Oxalobacteracea, family Streptococcaceae, and 
genus Holdemania). According to the Cochrane and Rucker Q tests, 
the remaining taxa showed negligible heterogeneity (Figure 4). In 
addition, the links of three possible taxa (class Bacteroidia, order 
Bacteroidales, genus Anaerofilum) were excluded because the leave-
one-out analysis yielded inconsistent results (Supplementary Figure S4). 
In summary, our analysis identified 3 highly probable (2 harmful and 
1 preventive features) and 7 possible (2 harmful and 5 preventive 
features) taxa associated with asthma.

4.4. Causal relationship between gut 
microbiota and IPF

For IPF, only two microbiotas showed a probable association 
(Figure 5; Table 4). Increasing abundance of the genus Blautia (IVM: 
OR = 1.269, 95% CI 1.029–1.565, p = 0.026; WM: OR = 1.362, 95% CI 

FIGURE 3

MR results and sensitivity analysis of significant relationship between gut microbiota and COPD. COPD, chronic obstructive pulmonary disease; MR, 
Mendelian randomization; SNP, single nucleotide polymorphism; IVW, inverse-variance-weighted; MR-PRESSO, MR pleiotropy residual sum and outlier.
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1.017–1.825, p = 0.038; MR-PRESSO: OR = 1.269, 95% CI 1.033–1.558, 
p = 0.049) and genus Eisenbergiella (IVM: OR = 1.232, 95% CI 1.075–
1.412, p = 0.003; WM: OR = 1.23, 95% CI 1.024–1.478, p = 0.027; 
MR-PRESSO: OR = 1.232, 95% CI 1.09–1.393, p = 0.009) gave rise to 
the development of IPF. In addition, there was a possible relationship 
between the 8 taxa and IPF. There was no evidence of pleiotropy or 
heterogeneity in the associations between these taxa and IPF (Figure 4; 
Supplementary Figure S5), and a leave-one-out analysis provided 
additional support for the consistency of these associations 
(Supplementary Figure S6). Ultimately, our analysis identified 2 
probably pernicious taxa and 8 possible (1 pernicious and 7 defensive 
features) taxa that are linked with IPF.

4.5. Causal relationship between gut 
microbiota and sarcoidosis

Next, we discover that three genetically predicted taxa (Figure 6; 
Table 5) class Methanobacteria (IVM: OR = 0.818, 95% CI 0.705–0.948, 
p = 0.008; WM: OR = 0.805, 95% CI 0.669–0.97, p = 0.022; 
MR-PRESSO: OR = 0.818, 95% CI 0.728–0.918, p = 0.009), order 
Methanobacteriales (IVM: OR = 0.818, 95% CI 0.705–0.948, p = 0.008; 
WM: OR = 0.805, 95% CI 0.664–0.978, p = 0.029; MR-PRESSO: 
OR = 0.818, 95% CI 0.728–0.918, p = 0.009) and family 
Methanobacteriaceae (IVM: OR = 0.818, 95% CI 0.705–0.948, 
p = 0.008; WM: OR = 0.805, 95% CI 0.667–0.973, p = 0.025; 
MR-PRESSO: OR = 0.818, 95% CI 0.728–0.918, p = 0.009) were 
significantly associated with sarcoidosis, and all three belonged to the 

same group. Furthermore, 12 taxa were discovered to have a possible 
association with sarcoidosis.

Three possible taxa exhibited significant pleiotropy or 
heterogeneity (Figure  6; Supplementary Figure S7) within the 
correlations (class Bacilli, genus Eubacteriumruminium, and genus 
Oscillibacter). The relationships of 2 possible taxa (genus 
Eubacteriumbrachy and genus Peptococcus) were also omitted since the 
leave-one-out analysis presented inconsistent findings 
(Supplementary Figure S8). After eliminating unstable traits, our 
analysis identified 3 probably defensive taxa and 7 possible taxa for 
sarcoidosis (2 pernicious and 5 defensive features).

4.6. Causal relationship between gut 
microbiota and pneumoconiosis

In reference to the impact of gut microbiota on 
pneumoconiosis (Figure 7; Table 6), increasing levels of the family 
Alcaligenaceae contributed to disease formation (IVM: OR = 2.394, 
95%CI 1.17–4.896, p = 0.017; WM: OR = 2.909, 95%CI 1.124–
7.531, p = 0.028; MR-PRESSO: OR = 2.394, 95%CI 1.3–4.408, 
p = 0.019). Furthermore, there may have been a possible links 
between the 9 taxa and pneumoconiosis. No obvious pleiotropy 
or heterogeneity in the associations was found between these taxa 
and pneumoconiosis (Figure 7; Supplementary Figure S9). The 
links of four possible taxa (genera Eubacteriumrectale, 
Gordonibacte, Lachnospiraceae, and Slackia) were excluded, 
however, because the leave-one-out analysis produced conflicting 

TABLE 2 MR results of significant relationship between gut microbiota and COPD.

Exposures on 
COPD

SNPs IVW WM MR-Presso MR-Egger

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

C_Betaproteobacteria 8 0.981 (0.849–1.134) 0.797 0.917 (0.796–1.057) 0.231 0.981 (0.849–1.134) 0.805 0.626 (0.459–0.855) 0.026

C_Erysipelotrichia 12 0.997 (0.912–1.091) 0.950 0.999 (0.894–1.116) 0.983 0.997 (0.912–1.091) 0.951 1.552 (1.101–2.187) 0.031

F_Bacteroidaceae 8 1.118 (1.016–1.229) 0.022 1.174 (1.038–1.328) 0.011 1.118 (1.019–1.225) 0.049 0.922 (0.528–1.608) 0.784

F_Erysipelotrichaceae 12 0.997 (0.912–1.091) 0.950 0.999 (0.889–1.123) 0.983 0.997 (0.912–1.091) 0.951 1.552 (1.101–2.187) 0.031

F_Peptococcaceae 8 1.08 (1.013–1.151) 0.018 1.056 (0.97–1.149) 0.212 1.08 (1.042–1.118) 0.004 1.097 (0.946–1.273) 0.266

G_Bacteroides 8 1.118 (1.016–1.229) 0.022 1.174 (1.033–1.333) 0.014 1.118 (1.019–1.225) 0.049 0.922 (0.528–1.608) 0.784

G_Catenibacterium 5 1.057 (1.002–1.114) 0.042 1.036 (0.966–1.11) 0.324 1.057 (1.016–1.099) 0.052 1.19 (0.727–1.949) 0.538

G_Coprococcus2 7 0.919 (0.846–1) 0.049 0.919 (0.825–1.025) 0.130 0.919 (0.88–0.961) 0.010 0.805 (0.419–1.546) 0.543

G_Defluviitaleaceae 8 1.076 (1.01–1.145) 0.023 1.058 (0.978–1.145) 0.161 1.076 (1.034–1.119) 0.008 1.004 (0.81–1.243) 0.975

G_Flavonifractor 4 0.887 (0.769–1.023) 0.098 0.865 (0.754–0.992) 0.037 0.887 (0.769–1.023) 0.197 1.176 (0.697–1.983) 0.605

G_Haemophilus 8 0.925 (0.874–0.98) 0.008 0.906 (0.837–0.98) 0.014 0.925 (0.874–0.98) 0.033 0.838 (0.742–0.947) 0.030

G_Lachnoclostridium 8 1.173 (1.045–1.316) 0.007 1.165 (1.017–1.334) 0.027 1.173 (1.045–1.316) 0.030 0.921 (0.635–1.336) 0.681

G_Oscillospira 6 0.91 (0.837–0.99) 0.029 0.913 (0.815–1.022) 0.115 0.91 (0.837–0.99) 0.079 1.045 (0.726–1.505) 0.824

G_RuminococcaceaeUCG003 12 0.993 (0.908–1.086) 0.880 0.895 (0.803–0.997) 0.043 0.993 (0.908–1.086) 0.882 0.844 (0.639–1.116) 0.262

G_RuminococcaceaeUCG014 9 1.091 (1.013–1.174) 0.021 1.056 (0.953–1.171) 0.300 1.091 (1.026–1.159) 0.024 1.022 (0.853–1.225) 0.821

O_Bacillales 6 0.938 (0.895–0.984) 0.008 0.925 (0.871–0.983) 0.011 0.938 (0.901–0.977) 0.028 0.84 (0.688–1.026) 0.163

O_Burkholderiales 8 0.981 (0.85–1.132) 0.793 0.917 (0.797–1.055) 0.224 0.981 (0.85–1.132) 0.800 0.634 (0.464–0.865) 0.028

O_Erysipelotrichales 12 0.997 (0.912–1.091) 0.950 0.999 (0.891–1.12) 0.983 0.997 (0.912–1.091) 0.951 1.552 (1.101–2.187) 0.031

All data with p < 0.05 are in bold. COPD, chronic obstructive pulmonary disease; MR, Mendelian randomization; SNP, single nucleotide polymorphism; CI, confidence interval; IVW, inverse-
variance-weighted; WM, weighted median; MR-PRESSO, MR pleiotropy residual sum and outlier; OR, odd ratio; P_: phylum; C_: class; O_: order; F_: family; G_: genus.

https://doi.org/10.3389/fmicb.2023.1200937
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Shi et al. 10.3389/fmicb.2023.1200937

Frontiers in Microbiology 08 frontiersin.org

results (Supplementary Figure S10). In the end, our analysis 
revealed that pneumoconiosis is associated with 1 probably 
hazardous taxon and 5 possibly protective taxa.

5. Discussion

To the best of our knowledge, this is the first time that the causal 
links between gut microbiota and CRDs have been investigated 
meticulously using publicly available genetic databases. In our study, 
GWAS data for 196 taxa were subjected to a comprehensive MR 
analysis to explore the potential role of gut microbiota in the onset of 
CRDs. Based on extensive genetic data from over 3,504,473 European 
participants, we identified several gut microbial taxa, including 14 
probable microbial taxa (i.e., Haemophilus, Ruminiclostridium, and 
Blautia) and 33 possible microbial taxa, that play significant roles in 
the development of CRDs.

Studies on the gut-lung axis in respiratory disorders such as 
asthma, COPD, and pulmonary fibrosis suggests that the variation of 
gut microbiota may potentially prevent or ameliorate these conditions. 
The plausible mechanisms encompass the modulation of chronic 
inflammation, the generation of short-chain fatty acids (SCFAs), and 
the regulation of extraintestinal T cell populations (Chunxi et al., 
2020). For instance, the perturbed gut microbiota triggered by 
antibiotic use in individuals with asthma can be characterized as an 
exacerbated Th2, Th1/Th17 immune response and diminished Treg 
population (Russell et al., 2015). It has been reported that individuals 
with COPD exhibit decreased levels of histone deacetylase (HDACs), 
which could contribute to the amplification in inflammatory process. 
And the levels of HDACs could be governed by the gut-microbiota 
metabolites, specifically short-chain fatty acids (SCFAs; Qu 
et al., 2022).

For this study, a growing review of the literature revealed a 
potential association between the gut microbiota involved in this 

FIGURE 4

MR results and sensitivity analysis of significant relationship between gut microbiota and asthma. MR, Mendelian randomization; SNP, single nucleotide 
polymorphism; IVW, inverse-variance-weighted; MR-PRESSO, MR pleiotropy residual sum and outlier.
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TABLE 3 MR results of significant relationship between gut microbiota and asthma.

Exposures on 
Asthma

SNPs IVW WM MR-Presso MR-Egger

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

C_Bacteroidia 8 1.077 (0.989–1.172) 0.088 1.122 (1.012–1.243) 0.028 1.077 (0.989–1.172) 0.132 1.094 (0.837–1.43) 0.534

C_Clostridia 10 0.898 (0.819–0.986) 0.023 0.97 (0.889–1.058) 0.489 0.898 (0.819–0.986) 0.049 0.739 (0.471–1.161) 0.226

C_Gammaproteobacteria 4 1.15 (1.049–1.26) 0.003 1.143 (1.024–1.276) 0.018 1.15 (1.112–1.189) 0.004 1.4 (0.749–2.62) 0.402

F_Lachnospiraceae 16 1.079 (1.018–1.143) 0.010 1.061 (0.989–1.139) 0.097 1.079 (1.018–1.143) 0.021 1.103 (0.944–1.288) 0.238

F_Oxalobacteraceae 12 0.976 (0.939–1.014) 0.218 0.993 (0.949–1.039) 0.762 0.976 (0.939–1.014) 0.243 1.171 (1.039–1.32) 0.027

F_Pasteurellaceae 11 0.958 (0.925–0.992) 0.015 0.957 (0.912–1.004) 0.070 0.958 (0.934–0.982) 0.007 0.993 (0.922–1.069) 0.855

F_Rikenellaceae 13 0.936 (0.878–0.998) 0.043 0.951 (0.879–1.03) 0.218 0.936 (0.878–0.998) 0.066 0.993 (0.806–1.224) 0.951

F_Streptococcaceae 10 0.984 (0.912–1.062) 0.679 0.973 (0.898–1.055) 0.511 0.984 (0.912–1.062) 0.688 0.68 (0.539–0.859) 0.012

G_Anaerofilum 10 0.967 (0.927–1.01) 0.131 0.947 (0.902–0.994) 0.029 0.967 (0.927–1.01) 0.165 0.856 (0.686–1.069) 0.208

G_Haemophilus 8 0.958 (0.921–0.996) 0.032 0.967 (0.918–1.018) 0.200 0.958 (0.937–0.98) 0.007 0.956 (0.877–1.042) 0.347

G_Holdemania 14 0.985 (0.942–1.029) 0.492 0.999 (0.95–1.051) 0.982 0.985 (0.942–1.029) 0.504 1.134 (1.022–1.259) 0.036

G_Ruminiclostridium5 8 0.868 (0.811–0.931) 6.241E-5 0.89 (0.81–0.978) 0.015 0.868 (0.811–0.931) 0.005 0.693 (0.536–0.897) 0.032

O_Bacillales 6 0.977 (0.923–1.034) 0.417 0.937 (0.896–0.98) 0.004 0.977 (0.923–1.034) 0.454 0.822 (0.673–1.004) 0.127

O_Bacteroidales 8 1.077 (0.989–1.172) 0.088 1.122 (1.021–1.233) 0.017 1.077 (0.989–1.172) 0.132 1.094 (0.837–1.43) 0.534

O_Lactobacillales 12 0.93 (0.885–0.977) 0.004 0.945 (0.878–1.018) 0.135 0.93 (0.885–0.977) 0.014 0.848 (0.753–0.956) 0.023

O_NB1n 12 1.064 (1.032–1.096) 5.821E-5 1.043 (1–1.089) 0.052 1.064 (1.032–1.096) 0.002 1.056 (0.927–1.204) 0.431

O_Pasteurellales 11 0.958 (0.925–0.992) 0.015 0.957 (0.912–1.004) 0.070 0.958 (0.934–0.982) 0.007 0.993 (0.922–1.069) 0.855

P_Bacteroidetes 8 1.096 (1.011–1.187) 0.025 1.123 (1.022–1.234) 0.016 1.096 (1.011–1.187) 0.060 1.039 (0.81–1.331) 0.775

P_Proteobacteria 10 0.973 (0.909–1.041) 0.429 0.967 (0.892–1.048) 0.411 0.973 (0.909–1.041) 0.449 0.807 (0.685–0.951) 0.034

All data with p < 0.05 are in bold. MR, Mendelian randomization; SNP, single nucleotide polymorphism; CI, confidence interval; IVW, inverse-variance-weighted; WM, weighted median; 
MR-PRESSO, MR pleiotropy residual sum and outlier; OR, odd ratio; P_: phylum; C_: class; O_: order; F_: family; G_: genus.

FIGURE 5

MR results and sensitivity analysis of significant relationship between gut microbiota and IPF. IPF, idiopathic pulmonary fibrosis; MR, Mendelian 
randomization; SNP, single nucleotide polymorphism; IVW, inverse-variance-weighted; MR-PRESSO, MR pleiotropy residual sum and outlier.
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research and COPD. The proportions of Bacteroides and 
Lachnoclostridium were reported to increase in COPD and were 
even higher in acute exacerbation of COPD (Wu et al., 2021). Fine 
particulate matter (PM2.5) is acknowledged as the most important 

ambient air pollutant and has been associated with increased 
mortality and morbidity in COPD. The abundance of Bacteroides 
was found to increase in the high PM2.5 exposure group and 
comprises the greatest proportion of the gut microbiota in the 

TABLE 4 MR results of significant relationship between gut microbiota and IPF.

Exposures on IPF SNPs IVW WM MR-Presso MR-Egger

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

C_Coriobacteriia 13 0.763 (0.602–0.968) 0.026 0.75 (0.554–1.016) 0.063 0.763 (0.602–0.968) 0.046 0.396 (0.156–1.006) 0.078

F_Acidaminococcaceae 5 0.735 (0.552–0.979) 0.035 0.771 (0.547–1.087) 0.138 0.735 (0.552–0.979) 0.103 0.531 (0.21–1.346) 0.275

F_Coriobacteriaceae 13 0.763 (0.602–0.968) 0.026 0.75 (0.547–1.028) 0.074 0.763 (0.602–0.968) 0.046 0.396 (0.156–1.006) 0.078

F_familyXIII 10 0.782 (0.613–0.998) 0.048 0.784 (0.577–1.065) 0.120 0.782 (0.665–0.92) 0.016 0.825 (0.359–1.894) 0.662

G_Ruminococcusgnavus 7 0.792 (0.629–0.996) 0.046 0.864 (0.678–1.1) 0.235 0.792 (0.629–0.996) 0.093 0.637 (0.226–1.79) 0.431

G_Blautia 10 1.269 (1.029–1.565) 0.026 1.362 (1.017–1.825) 0.038 1.269 (1.033–1.558) 0.049 1.181 (0.763–1.827) 0.476

G_Eisenbergiella 10 1.232 (1.075–1.412) 0.003 1.23 (1.024–1.478) 0.027 1.232 (1.09–1.393) 0.009 0.983 (0.36–2.682) 0.974

G_Holdemania 14 1.271 (1.095–1.476) 0.002 1.208 (0.985–1.481) 0.069 1.271 (1.095–1.476) 0.008 1.127 (0.724–1.756) 0.606

G_Hungatella 3 0.778 (0.629–0.962) 0.021 0.801 (0.609–1.055) 0.114 NA NA 1.377 (0.399–4.747) 0.702

O_Coriobacteriales 13 0.763 (0.602–0.968) 0.026 0.75 (0.547–1.029) 0.074 0.763 (0.602–0.968) 0.046 0.396 (0.156–1.006) 0.078

All data with p < 0.05 are in bold. IPF, idiopathic pulmonary fibrosis; MR, Mendelian randomization; SNP, single nucleotide polymorphism; CI, confidence interval; IVW, inverse-variance-
weighted; WM, weighted median; MR-PRESSO, MR pleiotropy residual sum and outlier; OR, odd ratio; P_: phylum; C_: class; O_: order; F_: family; G_: genus.

FIGURE 6

MR results and sensitivity analysis of significant relationship between gut microbiota and sarcoidosis. MR, Mendelian randomization; SNP, single 
nucleotide polymorphism; IVW, inverse-variance-weighted; MR-PRESSO, MR pleiotropy residual sum and outlier.
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COPD (Lin et al., 2022). These findings provide support for our 
study’s findings that Bacteroides and Lachnoclostridium may 
promote COPD development. Bacteroidaceae and Bacteroides are 
members of the same category and may aid in the formation of 
COPD across a similar mechanism. Our research also found that 
Haemophilus could render the development of COPD. These results 
are in line with recent studies that Haemophilus in the airways of 

COPD could prolong stable duration by increasing sputum IL-1 and 
TNF (tumor necrosis factor) (Wang et al., 2021) and that a decline 
in Haemophilus is linked to increased risk of mortality (Dicker 
et  al., 2021). In addition, the preventative role of Bacillales 
collaborates with recent findings that the relative abundance of 
Bacillales was found to be lower in the high PM2.5 exposure group 
(Lin et al., 2022).

TABLE 5 MR results of significant relationship between gut microbiota and sarcoidosis.

Exposures on 
sarcoidosis

SNPs IVW WM MR-Presso MR-Egger

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

C_Bacilli 18 0.77 (0.625–0.947) 0.013 0.898 (0.67–1.201) 0.467 0.77 (0.638–0.929) 0.014 1.439 (0.814–2.545) 0.229

C_Methanobacteria 9 0.818 (0.705–0.948) 0.008 0.805 (0.669–0.97) 0.022 0.818 (0.728–0.918) 0.009 0.895 (0.499–1.604) 0.720

F_Alcaligenaceae 11 0.672 (0.508–0.89) 0.005 0.815 (0.546–1.217) 0.317 0.672 (0.512–0.884) 0.017 1.43 (0.396–5.168) 0.599

F_Methanobacteriaceae 9 0.818 (0.705–0.948) 0.008 0.805 (0.667–0.973) 0.025 0.818 (0.728–0.918) 0.009 0.895 (0.499–1.604) 0.720

F_Victivallaceae 11 1.177 (1.008–1.374) 0.039 1.165 (0.97–1.399) 0.101 1.177 (1.008–1.374) 0.066 0.838 (0.408–1.723) 0.642

G_Eubacteriumbrachy 10 1.095 (0.923–1.3) 0.298 1.267 (1.038–1.546) 0.020 1.095 (0.923–1.3) 0.325 1.221 (0.59–2.527) 0.606

G_Eubacteriumruminantium 18 1.154 (0.934–1.425) 0.185 1.173 (0.933–1.473) 0.171 1.154 (0.934–1.425) 0.202 0.444 (0.258–0.761) 0.009

G_Ruminococcustorques 7 0.603 (0.379–0.957) 0.032 0.734 (0.415–1.299) 0.289 0.603 (0.379–0.957) 0.076 0.328 (0.079–1.371) 0.187

G_Anaerotruncus 13 1.308 (1.019–1.679) 0.035 1.288 (0.917–1.808) 0.144 1.308 (1.069–1.601) 0.023 1.543 (0.743–3.203) 0.269

G_Eisenbergiella 11 0.846 (0.721–0.992) 0.039 0.828 (0.669–1.024) 0.082 0.846 (0.747–0.957) 0.024 0.775 (0.238–2.526) 0.682

G_Erysipelatoclostridium 15 0.801 (0.671–0.955) 0.014 0.802 (0.632–1.016) 0.068 0.801 (0.686–0.934) 0.013 0.733 (0.366–1.466) 0.396

G_Oscillibacter 12 0.964 (0.731–1.272) 0.797 1.024 (0.779–1.346) 0.864 0.964 (0.731–1.272) 0.802 2.98 (1.269–7) 0.031

G_Peptococcus 12 1.126 (0.973–1.303) 0.112 1.238 (1.02–1.504) 0.031 1.126 (0.978–1.296) 0.128 0.98 (0.558–1.719) 0.944

O_Lactobacillales 15 0.791 (0.629–0.995) 0.046 0.895 (0.65–1.233) 0.498 0.791 (0.642–0.975) 0.046 1.337 (0.739–2.42) 0.355

O_Methanobacteriales 9 0.818 (0.705–0.948) 0.008 0.805 (0.664–0.978) 0.029 0.818 (0.728–0.918) 0.009 0.895 (0.499–1.604) 0.720

All data with p < 0.05 are in bold. MR, Mendelian randomization; SNP, single nucleotide polymorphism; CI, confidence interval; IVW, inverse-variance-weighted; WM, weighted median; 
MR-PRESSO, MR pleiotropy residual sum and outlier; OR, odd ratio; P_: phylum; C_: class; O_: order; F_: family; G_: genus.

FIGURE 7

MR results and sensitivity analysis of significant relationship between gut microbiota and pneumoconiosis. MR, Mendelian randomization; SNP, single 
nucleotide polymorphism; IVW, inverse-variance-weighted; MR-PRESSO, MR pleiotropy residual sum and outlier.
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In terms of the effects of the three highly probable microbiota on 
asthma, the current study reveals that Gammaproteobacteria and NB1-n 
may promote development, whereas Ruminiclostridium has the opposite 
effect. These results are in line with a previous study showing that the 
abundance of Gammaproteobacteria was greater in urban schools with 
a greater asthma prevalence than in rural schools (Fu et al., 2021). 
Tenericutes, primarily ‘NB1-n’ (SILVA taxonomy) or ‘RF3’ (Greengenes 
taxonomy), indicated a decreased abundance in Pglyrp1−/− mice with 
a lower asthmatic response (Skennerton et al., 2016; Banskar et al., 
2019). For Ruminiclostridium, a recent study found that intranasal 
delivery of rural dusts decreased eosinophils and plasma IgE levels in 
mice and contributed to a recovery of gut microbiota diversity and 
Ruminiclostridium in a mouse model, suggesting that exposure to 
Ruminiclostridium may promote allergy management (Yang et al., 2022).

Apart from CRD-related mortality from COPD (3.6% global 
prevalence) and asthma (3.0% global prevalence), interstitial lung 
disease and pulmonary sarcoidosis have been the second largest cause 
of death in high-income nations such as Europe and central Asia 
(Collaborators GBDCRD, 2020). Using MR analysis, we found that 
Blautia and Eisenbergiella have a protective effect against IPF. There has 
been little research on Blautia and IPF, despite studies showing an 
increase in lung cancer and lung tuberculosis. A possible explanation 
for this may be pulmonary structural changes in all these diseases (Liu 
et al., 2019; Naidoo et al., 2021). Recent research indicates that the 
abundance of Eisenbergiella is enhanced in a variety of connective tissue 
illnesses, including scleroderma and rheumatoid arthritis (Consortium 
I, 2022). It is widely known that connective tissue diseases are major 
causes of interstitial lung disease (ILD). Hence, we  postulate that 
Eisenbergiella play a similar role in the pathogenesis of IPF as they do in 
CTD but this hypothesis remains to be validated.

For sarcoidosis, three taxa with causal links all belong to the sort of 
Methanobacteria. Methanobacteria groups are commonly found in 
anaerobic environments, such as soils and the digestive tracts of animals, 
which comprise critical elements of methanogenic archaea and are 
linked to the development of diseases, including cancer (Cai et  al., 
2022). Considering the significance of the three MR analyzes, it is 
essential to perform further studies to determine the specific 
involvement of Methanobacteria in sarcoidosis. To evaluate the impact 
of gut microbiota on pneumoconiosis, we selected patients exposed to 

asbestos and other mineral fibers due to their prevalence and larger 
number of cases. In this study, the Alcaligenaceae family was declared to 
be hazardous, and this finding was similar to that of Diana C’s study, 
which indicated that Alcaligenaceae emerged solely in the Tanner group 
compared to the control group and were deemed pathogenic bacteria. 
(Castellanos-Arévalo et al., 2015). Markedly, to obtain a stringent and 
trustworthy conclusion, we  discarded the significant taxa with 
considerable pleiotropy or heterogeneity that could have influenced the 
strength of the causal links (Hemani et al., 2018; Verbanck et al., 2018).

It is equally important to recognize the limitations of our study. 
First, the majority of patients in the GWAS summary data utilized in 
our study were of European heritage and only a tiny fraction of the gut 
microbiota data were gathered from other ethnic groups. This may 
result in biased estimates and we  must exert caution when 
extrapolating our findings to other ethnicities. Second, expanding the 
sample size is essential for achieving a more precise estimation of the 
link between gut microbiota and CRDs as there is the potential for 
estimation bias resulting from the relatively small sample size of gut 
microbiota. Third, due to a lack of individual data, bacterial taxa were 
only evaluated with summary statistics. To investigate potential 
differences between groups, additional population stratification 
analyzes (e.g., by gender, age) may be conducted. Considering the 
substantial influence of diet on gut microbiota and the variations in 
dietary patterns (Mediterranean, plant-based or high-fat) across 
populations, it is imperative to account for diet when validating these 
potential associations in future researches (Beam et al., 2021). Finally, 
since MR analysis is predicated on untestable hypotheses, further 
clinical validation studies are necessary to ascertain the therapeutic 
value of microbial species.

6. Conclusion

In conclusion, we  systematically evaluated the potential 
relationship between the gut microbiota and five prevalent CRDs and 
discovered 14 probable relationships and 33 possible relationships for 
the first time. This study highlights the probable causative role of gut 
microbes in the genesis of CRDs, indicating to clinicians that 
modifying gut microbiota may be an option for disease prevention.

TABLE 6 MR results of significant relationship between gut microbiota and pneumoconiosis.

Exposures on 
Pneumoconiosis

SNPs IVW WM MR-Presso MR-Egger

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

C_Erysipelotrichia 13 0.393 (0.172–0.901) 0.027 0.406 (0.143–1.153) 0.090 0.393 (0.172–0.901) 0.048 0.029 (0.001–0.806) 0.061

F_Alcaligenaceae 11 2.394 (1.17–4.896) 0.017 2.909 (1.124–7.531) 0.028 2.394 (1.3–4.408) 0.019 2.105 (0.079–56.139) 0.667

F_Erysipelotrichaceae 13 0.393 (0.172–0.901) 0.027 0.406 (0.149–1.101) 0.077 0.393 (0.172–0.901) 0.048 0.029 (0.001–0.806) 0.061

G_Eubacteriumrectale 8 0.414 (0.149–1.149) 0.090 0.279 (0.084–0.929) 0.038 0.414 (0.149–1.149) 0.134 11.209 (0.579–217.15) 0.161

G_Catenibacterium 4 0.518 (0.305–0.879) 0.015 0.57 (0.298–1.093) 0.091 0.518 (0.386–0.695) 0.022 0.979 (0.001–741.033) 0.995

G_Gordonibacter 11 1.224 (0.877–1.707) 0.235 1.545 (1.003–2.382) 0.049 1.224 (0.902–1.659) 0.223 1.403 (0.343–5.748) 0.649

G_Lachnospiraceae 10 0.793 (0.484–1.3) 0.358 0.518 (0.275–0.979) 0.043 0.793 (0.484–1.3) 0.382 7.685 (0.772–76.458) 0.120

G_Ruminococcus1 10 0.471 (0.228–0.973) 0.042 0.763 (0.294–1.976) 0.577 0.471 (0.228–0.973) 0.073 1.063 (0.151–7.488) 0.953

G_Slackia 6 1.717 (0.941–3.134) 0.078 2.184 (1.009–4.723) 0.047 1.717 (1.019–2.894) 0.098 1.825 (0.037–89.29) 0.777

O_Erysipelotrichales 13 0.393 (0.172–0.901) 0.027 0.406 (0.147–1.121) 0.082 0.393 (0.172–0.901) 0.048 0.029 (0.001–0.806) 0.061

All data with p < 0.05 are in bold. MR, Mendelian randomization; SNP, single nucleotide polymorphism; CI, confidence interval; IVW, inverse-variance-weighted; WM, weighted median; 
MR-PRESSO, MR pleiotropy residual sum and outlier; OR, odd ratio; P_: phylum; C_: class; O_: order; F_: family; G_: genus.
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