29 research outputs found

    Research on low frequency ripple suppression technology of inverter based on model prediction

    Get PDF
    The low frequency ripple of the input side current of the single-phase inverter will reduce the efficiency of the power generation system and affect the overall performance of the system. Aiming at this problem, this paper proposes a two-modal modulation method and its MPC multi-loop composite control strategy on the circuit topology of a single-stage boost inverter with a buffer unit. The control strategy achieves the balance of active power on both sides of AC and DC by controlling the stable average value of the buffer capacitor voltage, and provides a current reference for inductance current of the DC input side. At the same time, the MPC controller uses the minimum inductor current error as the cost function to control inductor current to track its reference to achieve low frequency ripple suppression of the input current. In principle, it is expounded that the inverter using the proposed control strategy has better low frequency ripple suppression effect than the multi-loop PI control strategy, and the conclusion is proved by the simulation data. Finally, an experimental device of a single-stage boost inverter using MPC multi-loop composite control strategy is designed and fabricated, and the experimental results show that the proposed research scheme has good low frequency ripple suppression effect and strong adaptability to different types of loads

    Assessment of the reliability and quality of breast cancer related videos on TikTok and Bilibili: cross-sectional study in China

    Get PDF
    BackgroundAs the most common malignant tumor in the world, breast cancer also brings a huge disease burden to China. Ordinary people are increasingly inclined to use the Internet, especially video social platforms, as a source of health information. Educating the public to obtain correct information is important to reduce the incidence of breast cancer and improve the prognosis. However, the quality and reliability of breast cancer-related video content have not been fully studied.ObjectiveThis study aims to evaluate the quality of the information of breast cancer-related videos on TikTok and Bilibili video sharing platforms and factors related to video quality.MethodsWe collected the top 100 videos about breast cancer on TikTok and Bilibili, respectively. Categorize videos according to video source and video content. Video quality and reliability were assessed using Global Quality Score (GQS) and modified DISCERN (mDISCERN) tools. We also analyzed the correlation between video quality and video likes, comments, saves, and shares.ResultsAlthough the quality and reliability of Bilibili’s breast cancer videos were higher than TikTok (p = 0.002 and p = 0.001, respectively), the video quality of both video sharing platforms was not satisfactory, with a median GQS scores of 2.00 and 3.00 and mDISCERN scores of 1.00 and 2.00, respectively. In general, the quality and reliability of videos released by medical practitioners were higher than those of non-medical practitioners, and the quality and reliability of videos covering disease-related knowledge were higher than those of news reports (all p < 0.001). Among medical practitioners, the quality of videos uploaded by doctors in breast disease was significantly lower than that of doctors in other areas (p < 0.05). There was a significant positive correlation between video quality and duration (r = 0.240, p < 0.001), a weak negative correlation between video quality and likes (r = 0.191, p < 0.01), video quality and comments (r = 0.256, p < 0.001), video reliability and likes (r = 0.198, p < 0.001), video reliability and comments (r = 0.243, p < 0.01).ConclusionOur study shows that the quality and reliability of breast cancer-related videos on TikTok and Bilibili are poor, and the overall quality is unsatisfactory. But videos uploaded by medical practitioners covering disease knowledge, prevention and treatment are of higher quality. Medical practitioners are encouraged to publish more high-quality videos, while video social platforms should formulate relevant policies to censor and supervise health education videos, so as to enable the public to obtain reliable health information

    JK5G postbiotics attenuate immune-related adverse events in NSCLC patients by regulating gut microbiota: a randomized controlled trial in China

    Get PDF
    ScopeThis study aimed to evaluate the effects of JK5G postbiotics to regulate imbalanced gut microbiota and its impacts on the efficacy and incidence rate of immune-related adverse events (irAEs) in non-small-cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs).MethodsThis randomized, double-blind, placebo-controlled trial was conducted in China and included non-squamous or squamous NSCLC patients without EGFR, ROS1, and ALK alteration, treatment-naive, and stage IIIb-IV. Patients were randomly (1:1) divided into two groups to receive four cycles (three weeks for each cycle) of programmed cell death-1 (PD-1) plus chemotherapy plus placebo (control group, n = 30) or to receive PD-1 plus chemotherapy plus JK5G postbiotics (JK5G group, n = 30). The primary endpoint was objective response rate. The secondary endpoints were quality of life (QoL), adverse effects, and the 16S DNA sequencing of gut microbiota, blood inflammatory cytokines, and lymphocyte subsets. This study was registered at www.chictr.org.cn (ChiCTR2200064690).ResultsSixty patients were enrolled. The objective response rate was 36.67% (11/30) in the control group and 50.00% (15/30) in the JK5G group (p = 0.297). The JK5G group had better QoL and nutritional levels, as well as lower depression symptoms than the control group (all p < 0.05). Moreover, the JK5G group had a lower incidence of anemia (63.33% vs. 13.33%, p < 0.001), decreased lymphocyte count (20.00% vs. 0%, p = 0.010), decreased appetite (53.33% vs. 16.67%, p = 0.003), nausea (33.33% vs. 6.67%, p = 0.010), and asthenia (30.00% vs. 6.67%, p = 0.017) than the control group. Moreover, JK5G attenuated gut microbiota imbalance, accompanied by increased Faecalibacterium, Ruminococcaceae, and fecal butyrate concentration, and diminished Escherichia-Shigella. Furthermore, JK5G administration significantly decreased the levels of pro-inflammatory markers, including TNF-α, IL-2, and C-reactive protein (CRP) (all p < 0.05). Significant increases in CD3+CD4+ T cells and CD4/CD8 ratio were observed in the peripheral blood of JK5G group patients (all p < 0.05). The enterotype data showed that patients were clustered into Blautia (E1) and Escherichia-Shigella (E2) enterotypes, and JK5G postbiotics intervention might be related to enterotype modulations.ConclusionOur current findings indicated that JK5G postbiotics might attenuate irAEs, and enhance the QoL and nutrition levels of advanced NSCLC patients who received ICIs. JK5G postbiotics could also improve the gut microbiota structures and ameliorate the tumor microenvironment and inflammation.Clinical trial registrationwww.chictr.org.cn, identifier ChiCTR2200064690

    Video delivery networks : challenges, solutions and future directions

    Get PDF
    Internet video ecosystems are faced with the increasing requirements in versatile applications, ubiquitous consumption and freedom of creation and sharing, in which the user experience for high-quality services has become more and more important. Internet is also under tremendous pressure due to the exponential growth in video consumption. Video providers have been using content delivery networks (CDNs) to deliver high-quality video services. However, the new features in video generation and consumption require CDN to address the scalability, quality of service and flexibility challenges. As a result, we need to rethink future CDN for sustainable video delivery. To this end, we give an overview for the Internet video ecosystem evolution. We survey the existing video delivery solutions from the perspective of economic relationships, algorithms, mechanisms and architectures. At the end of the article, we propose a data-driven information plane for video delivery network as the future direction and discuss two case studies to demonstrate its necessity

    A Low-Cost Relative Positioning Method for UAV/UGV Coordinated Heterogeneous System Based on Visual-Lidar Fusion

    No full text
    Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs) are commonly used for various purposes, and their cooperative systems have been developed to enhance their capabilities. However, tracking and interacting with dynamic UAVs poses several challenges, including limitations of traditional radar and visual systems, and the need for the real-time monitoring of UAV positions. To address these challenges, a low-cost method that uses LiDAR (Light Detection and Ranging) and RGB-D cameras to detect and track UAVs in real time has been proposed. This method relies on a learning model and a linear Kalman filter, and has demonstrated satisfactory estimation accuracy using only CPU (Central Processing Unit)- in GPS (Global Positioning System)-denied environments without any prior information

    Switchable photothermal conversion efficiency for reprogrammable actuation

    No full text
    Abstract Reprogrammable soft matter brings flexibility to soft robots so that they can display various motions, which is flourishing in soft robotics. However, the reprogramming of photoresponsive materials used in soft robots is time-consuming using existing methods. In this study, we promote a strategy for rapid reprogramming via switchable photothermal conversion efficiency (PCE). The liquid crystalline elastomers doped with semiconductor bismuth compounds (Bi-LCE) used in this work exhibited large photothermal actuation with over 35% shrinkage in 5 s at high PCE state, which demonstrated little deformation at low PCE state. Furthermore, the material was capable of being reprogrammed up to 10 times, with only 20 min required for one PCE reversible switch. Based on this switchable PCE effect, the same Bi-LCE film displayed various shape changes through different programmable pattern. Additionally, a reprogrammable hollow tube made of PCE reprogrammable materials could tune the diameter, cross-section configuration, and surface morphology, which was crucial for microfluidics field. Reprogrammable materials provide endless possibilities for reusability and sustainability in robotics

    Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load

    No full text
    Accurate medium- and long-term electricity peak load forecasting is critical for power system operation, planning, and electricity trading. However, peak load forecasting is challenging because of the complex and nonlinear relationship between peak load and related factors. Here, we propose a hybrid LSTM–BPNN-to-BPNN model combining a long short-term memory network (LSTM) and back propagation neural network (BPNN) to separately extract the features of the historical data and future information. Their outputs are then concatenated to a vector and inputted into the next BPNN model to obtain the final prediction. We further analyze the peak load characteristics for reducing prediction error. To overcome the problem of insufficient annual data for training the model, all the input variables distributed over various time scales are converted into a monthly time scale. The proposed model is then trained to predict the monthly peak load after one year and the maximum value of the monthly peak load is selected as the predicted annual peak load. The comparison results indicate that the proposed method achieves a predictive accuracy superior to that of benchmark models based on a real-world dataset

    Effect of Cu-Sn Addition on Corrosion Property of Pressureless Sintered Fe-Cu-Co Substrate Alloys

    No full text
    Fe-Cu-Co prealloyed powder is used for bonding metal of diamond tools. In order to obtain diamond tools with good mechanical properties by pressureless sintering, it is necessary to add Cu-Sn sintering aids. The substrate also has high corrosion resistance requirements, which is conducive to the chemical erosion of diamond tools. This paper mainly studies the effects of Cu-Sn on the corrosion behavior of pressureless sintered Fe-Cu-Co substrate. The results show that the linear contraction rate and relative density of pressureless sintered Fe-Cu-Co alloy at 875 °C reach their peak when the Cu-Sn content is 8 wt.%, 15.13% and 97.5%, respectively. The substrate is mainly composed of α-Fe and Cu-rich phases, and selective corrosion occurs during electrochemical corrosion; namely, α-Fe grains are more prone to corrosion than Cu-rich grains to form porous corrosion surfaces. With the increase in Cu-Sn addition, the volume fraction of the Cu-rich phase increases, the corrosion current density and the passive current density gradually decrease, and the corrosion resistance of the alloy is improved. The amount and integrity of anodic passive film on the Fe-Cu-Co surface increases with the increase in Cu-Sn addition. The oxygen content of the anodic passivation film is lower than that of the active corrosion products of the α-Fe phase, thus reducing the oxygen concentration gradient and slowing down the corrosion. The addition of Cu-Sn is conducive to improving the corrosion resistance of Fe-Cu-Co alloy as the substrate of diamond tools
    corecore