23 research outputs found

    Impact of Monsoon-Transported Anthropogenic Aerosols and Sun-Glint on the Satellite-Derived Spectral Remote Sensing Reflectance in the Indian Ocean

    No full text
    Spectral remote sensing reflectance (Rrs(λ), sr−1) is one of the most important products of ocean color satellite missions, where accuracy is essential for retrieval of in-water, bio-optical, and biogeochemical properties. For the Indian Ocean (IO), where Rrs(λ) accuracy has not been well documented, the quality of Rrs(λ) products from Moderate Resolution Imaging Spectroradiometer onboard both Terra (MODIS-Terra) and Aqua (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite onboard the Suomi National Polar-Orbiting Partnership spacecraft (VIIRS-NPP), is evaluated and inter-compared based on a quality assurance (QA) system, which can objectively grade each individual Rrs(λ) spectrum, with 1 for a perfect spectrum and 0 for an unusable spectrum. Taking the whole year of 2016 as an example, spatiotemporal pattern of Rrs(λ) quality in the Indian Ocean is characterized for the first time, and the underlying factors are elucidated. Specifically, QA analysis of the monthly Rrs(λ) over the IO indicates good quality with the average scores of 0.93 ± 0.02, 0.92 ± 0.02 and 0.92 ± 0.02 for VIIRS-NPP, MODIS-Aqua, and MODIS-Terra, respectively. Low-quality (~0.7) data are mainly found in the Bengal Bay (BB) from January to March, which can be attributed to the imperfect atmospheric correction due to anthropogenic absorptive aerosols transported by the northeasterly winter monsoon. Moreover, low-quality (~0.74) data are also found in the clear oligotrophic gyre zone (OZ) of the south IO in the second half of the year, possibly due to residual sun-glint contributions. These findings highlight the effects of monsoon-transported anthropogenic aerosols, and imperfect sun-glint removal on the Rrs(λ) quality. Further studies are advocated to improve the sun-glint correction in the oligotrophic gyre zone and aerosol correction in the complex ocean–atmosphere environment

    Using 3D Printing Technology to Manufacture Personalized Bone Cement Placeholder Mold for Bone Defect Repair and Reconstruction with Infection: A Case Report

    No full text
    Background Limb salvage surgery is the preferred treatment for most malignant bone tumors, but postoperative infection treatment is very challenging. Simultaneously controlling infection and solving bone defects are clinical treatment challenges. Case Presentation Here we describe a new technique for treating bone defect infection after bone tumor surgery. An 8‐year‐old patient suffered an incision infection after osteosarcoma resection and bone defect reconstruction. In response, we designed her a personalized, anatomically matched, antibiotic‐loaded, bone cement spacer mold using 3D printing technology. The patient's infection was cured, and limb salvage was successful. In follow‐up, the patient had returned to normal postoperative chemotherapy and was able to walk with the help of a cane. There was no obvious pain in the knee joint. At 3 months after operation, the range of motion of the knee joint was 0°–60°. Conclusion The 3D printing spacer mold is an effective solution for treating the infection with large bone defect

    Understanding the Discrepancy of Defect Kinetics on Anionic Redox in Lithium-Rich Cathode Oxides

    No full text
    Understanding the Discrepancy of Defect Kinetics on Anionic Redox in Lithium-Rich Cathode Oxide

    Report of the Topical Group on Cosmic Probes of Fundamental Physics for for Snowmass 2021

    No full text
    International audienceCosmic Probes of Fundamental Physics take two primary forms: Very high energy particles (cosmic rays, neutrinos, and gamma rays) and gravitational waves. Already today, these probes give access to fundamental physics not available by any other means, helping elucidate the underlying theory that completes the Standard Model. The last decade has witnessed a revolution of exciting discoveries such as the detection of high-energy neutrinos and gravitational waves. The scope for major developments in the next decades is dramatic, as we detail in this report

    Report of the Topical Group on Cosmic Probes of Fundamental Physics for for Snowmass 2021

    No full text
    International audienceCosmic Probes of Fundamental Physics take two primary forms: Very high energy particles (cosmic rays, neutrinos, and gamma rays) and gravitational waves. Already today, these probes give access to fundamental physics not available by any other means, helping elucidate the underlying theory that completes the Standard Model. The last decade has witnessed a revolution of exciting discoveries such as the detection of high-energy neutrinos and gravitational waves. The scope for major developments in the next decades is dramatic, as we detail in this report

    Report of the Topical Group on Cosmic Probes of Fundamental Physics for for Snowmass 2021

    No full text
    International audienceCosmic Probes of Fundamental Physics take two primary forms: Very high energy particles (cosmic rays, neutrinos, and gamma rays) and gravitational waves. Already today, these probes give access to fundamental physics not available by any other means, helping elucidate the underlying theory that completes the Standard Model. The last decade has witnessed a revolution of exciting discoveries such as the detection of high-energy neutrinos and gravitational waves. The scope for major developments in the next decades is dramatic, as we detail in this report

    Report of the Topical Group on Cosmic Probes of Fundamental Physics for Snowmass 2021

    No full text
    Cosmic Probes of Fundamental Physics take two primary forms: Very high energy particles (cosmic rays, neutrinos, and gamma rays) and gravitational waves. Already today, these probes give access to fundamental physics not available by any other means, helping elucidate the underlying theory that completes the Standard Model. The last decade has witnessed a revolution of exciting discoveries such as the detection of high-energy neutrinos and gravitational waves. The scope for major developments in the next decades is dramatic, as we detail in this report

    Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

    No full text
    Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset
    corecore