40 research outputs found

    Frontal belt curvature and oblique ramp development at an obliquely collided irregular margin : geometry and kinematics of the NW Taiwan fold-thrust belt

    Get PDF
    Combined structural and tectonic analyses demonstrate that the NW Foothills of the Taiwan collision belt constitute mainly an asymmetric “primary arc” type fold-thrust belt. The arcuate belt developed as a basin-controlled salient in the portion of the foreland basin that was initially thicker, due to the presence of a precollisional depocenter (the Taihsi basin). Additional but limited buttress effects at end points related to interaction with foreland basement highs (Kuanyin and Peikang highs) may have also slightly enhanced curvature. The complex structural pattern results from the interaction between low-angle thrusting related to shallow decollement tectonics and oblique inversion of extensional structures of the margin on the southern edge of the Kuanyin basement high. The tectonic regimes and mechanisms revealed by the pattern of paleostress indicators such as striated outcrop-scale faults are combined with the orientation and geometry of offshore and onshore regional faults in order to accurately define the Quaternary kinematics of the propagating units. The kinematics of this curved range is mainly controlled by distributed transpressional wrenching along the southern edge of the Kuanyin high, leading to the development of a regional-scale oblique ramp, the Kuanyin transfer fault zone, which is conjugate of the NW trending Pakua transfer fault zone north of the Peikang basement high. The divergence between the N120° regional transport direction and the maximum compressive trend that evolved from N120° to N150° (and even to N–S) in the northern part of the arc effectively supports distributed wrench deformation along its northern limb during the Pleistocene. The geometry and kinematics of the western Taiwan Foothills therefore appear to be highly influenced by both the preorogenic structural pattern of the irregularly shaped Chinese passive margin and the obliquity of its Plio-Quaternary collision with the Philippine Sea plate

    Frontal belt curvature and oblique ramp development at an obliquely collided irregular margin : geometry and kinematics of the NW Taiwan fold-thrust belt

    No full text
    Combined structural and tectonic analyses demonstrate that the NW Foothills of the Taiwan collision belt constitute mainly an asymmetric “primary arc” type fold-thrust belt. The arcuate belt developed as a basin-controlled salient in the portion of the foreland basin that was initially thicker, due to the presence of a precollisional depocenter (the Taihsi basin). Additional but limited buttress effects at end points related to interaction with foreland basement highs (Kuanyin and Peikang highs) may have also slightly enhanced curvature. The complex structural pattern results from the interaction between low-angle thrusting related to shallow decollement tectonics and oblique inversion of extensional structures of the margin on the southern edge of the Kuanyin basement high. The tectonic regimes and mechanisms revealed by the pattern of paleostress indicators such as striated outcrop-scale faults are combined with the orientation and geometry of offshore and onshore regional faults in order to accurately define the Quaternary kinematics of the propagating units. The kinematics of this curved range is mainly controlled by distributed transpressional wrenching along the southern edge of the Kuanyin high, leading to the development of a regional-scale oblique ramp, the Kuanyin transfer fault zone, which is conjugate of the NW trending Pakua transfer fault zone north of the Peikang basement high. The divergence between the N120° regional transport direction and the maximum compressive trend that evolved from N120° to N150° (and even to N–S) in the northern part of the arc effectively supports distributed wrench deformation along its northern limb during the Pleistocene. The geometry and kinematics of the western Taiwan Foothills therefore appear to be highly influenced by both the preorogenic structural pattern of the irregularly shaped Chinese passive margin and the obliquity of its Plio-Quaternary collision with the Philippine Sea plate

    Evaluation of tip capacity analysis model for drilled shafts in gravelly soils

    Get PDF
    This paper examines an analysis model for predicting the tip capacity of drilled shaft foundations under gravelly soils. Forty one static compression load test data are utilized for this purpose. Comparison of predicted and measured results demonstrates that the prediction model greatly overestimates the tip capacity of drilled shafts. Further assessment on the model reveals a greater variation in three coefficients, including the effective overburden pressure ( q ), the overburden bearing capacity factor ( q N ), and the bearing capacity modifier for soil rigidity ( qr ζ ). These factors are modified from the back-analysis of the drilled shaft load test results. Varying effective shaft depths are considered for the back-calculation to evaluate their effects on capacity behavior. Based on the analyses, the recommended effective shaft depth for the evaluation of effective overburden pressure is limited to 15B (B = shaft diameter). The q N and qr ζ are enhanced while maintaining their basic relationship with the soil effective friction angle ( ), φ in which the q N increases and qr ζ decreases as φ increases. Specific design recommendations for the tip bearing capacity analysis of drilled shafts in gravelly soils are given for engineering practice

    New minerals tsangpoite Ca5(PO4)2(SiO4) and matyhite Ca9(Ca0.5□0.5)Fe(PO4)7 from the D'Orbigny angrite

    Get PDF
    Tsangpoite, ideally Ca5(PO4)2(SiO4), the hexagonal polymorph of silicocarnotite, and matyhite, ideally Ca9(Ca0.5□0.5)Fe(PO4)7, the Fe-analogue of Ca-merrillite, were identified from the D'Orbigny angrite meteorite by electron probe microanalysis, electron microscopy and micro-Raman spectroscopy. On the basis of electron diffraction, the symmetry of tsangpoite was shown to be hexagonal, P63/m or P63, with a = 9.489(4) Å, c = 6.991(6) Å, V = 545.1(6) Å3 and Z = 2 for 12 oxygen atoms per formula unit, and that of matyhite was shown to be trigonal, R3c, with a = 10.456 (7) Å, c = 37.408(34) Å, V = 3541.6 (4.8) Å3 and Z = 6 for 28 oxygen atoms per formula unit. On the basis of their constant association with the grain-boundary assemblage: Fe sulfide + ulvöspinel + Al-Ti-bearing hedenbergite + fayalite-kirschsteinite intergrowth, the formation of tsangpoite and matyhite, along with kuratite (the Fe-analogue of rhönite), can be readily rationalised as crystallisation from residue magmas at the final stage of the D'Orbigny meteorite formation. Alternatively, the close petrographic relations between tsangpoite/matyhite and the resorbed Fe sulfide rimmed by fayalite + kirschsteinite symplectite, such as the nucleation of tsangpoite in association with magnetite ± other phases within Fe sulfide and the common outward growth of needle-like tsangpoite or plate-like matyhite from the fayalite-kirschsteinite symplectic rim of Fe sulfide into hedenbergite, infer that these new minerals and the grain-boundary assemblage might represent metasomatic products resulting from reactions between an intruding metasomatic agent and the porous olivine-plagioclase plate + fayalite-kirschsteinite overgrowth + augite + Fe sulfide aggregates. Still further thermochemical and kinetics evidence is required to clarify the exact formation mechanisms/conditions of the euhedral tsangpoite, matyhite and kuratite at the grain boundary of the D'Orbigny angrite.Fil: Hwang, Shyh Lung. National Dong Hwa University; RepĂșblica de ChinaFil: Shen, Pouyan. National Sun Yat-sen Universit; RepĂșblica de ChinaFil: Chu, Hao-Tsu. Central Geological Survey; RepĂșblica de ChinaFil: Yui, Tzen-Fu. Institute of Earth Sciences; RepĂșblica de ChinaFil: Varela, Maria Eugenia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Juan. Instituto de Ciencias AstronĂłmicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias AstronĂłmicas, de la Tierra y del Espacio; ArgentinaFil: Iizuka, Yoshiyuki. Institute of Earth Sciences; RepĂșblica de Chin

    Evaluation of tip capacity analysis model for drilled shafts in gravelly soils

    Get PDF
    This paper examines an analysis model for predicting the tip capacity of drilled shaft foundations under gravelly soils. Forty one static compression load test data are utilized for this purpose. Comparison of predicted and measured results demonstrates that the prediction model greatly overestimates the tip capacity of drilled shafts. Further assessment on the model reveals a greater variation in three coefficients, including the effective overburden pressure ( q ), the overburden bearing capacity factor ( q N ), and the bearing capacity modifier for soil rigidity ( qr ζ ). These factors are modified from the back-analysis of the drilled shaft load test results. Varying effective shaft depths are considered for the back-calculation to evaluate their effects on capacity behavior. Based on the analyses, the recommended effective shaft depth for the evaluation of effective overburden pressure is limited to 15B (B = shaft diameter). The q N and qr ζ are enhanced while maintaining their basic relationship with the soil effective friction angle ( ), φ in which the q N increases and qr ζ decreases as φ increases. Specific design recommendations for the tip bearing capacity analysis of drilled shafts in gravelly soils are given for engineering practice

    Evaluation of tip capacity analysis model for drilled shafts in gravelly soils

    Get PDF
    This paper examines an analysis model for predicting the tip capacity of drilled shaft foundations under gravelly soils. Forty one static compression load test data are utilized for this purpose. Comparison of predicted and measured results demonstrates that the prediction model greatly overestimates the tip capacity of drilled shafts. Further assessment on the model reveals a greater variation in three coefficients, including the effective overburden pressure ( q ), the overburden bearing capacity factor ( q N ), and the bearing capacity modifier for soil rigidity ( qr ζ ). These factors are modified from the back-analysis of the drilled shaft load test results. Varying effective shaft depths are considered for the back-calculation to evaluate their effects on capacity behavior. Based on the analyses, the recommended effective shaft depth for the evaluation of effective overburden pressure is limited to 15B (B = shaft diameter). The q N and qr ζ are enhanced while maintaining their basic relationship with the soil effective friction angle ( ), φ in which the q N increases and qr ζ decreases as φ increases. Specific design recommendations for the tip bearing capacity analysis of drilled shafts in gravelly soils are given for engineering practice

    Quantitative analysis of movement along an earthquake thrust scarp: a case study of a vertical exposure of the 1999 surface rupture of the Chelungpu fault at Wufeng, Western Taiwan

    Get PDF
    A vertical exposure across the principal thrust scarp of the 1999 Mw 7.6 earthquake allows quantification of fault slip. The exposure is located on the active Chelungpu fault near Wufeng, along the range front of the fold-and-thrust belt in western Taiwan. The 1999 surface ruptures at the Wufeng site are characterized by a west-facing 2 to 3 m high principal thrust scarp and an east-facing lesser backthrust scarp. We mapped a 15 m-long, 5 m-deep exposure across the principal thrust scarp and characterized complex deformation structures, which include a main basal thrust fault, a wedge thrust, and a pop-up anticlinal fold with two secondary opposing thrust faults. The vertical displacement across the principal thrust scarp is measured directly from the offsets of the same sedimentary horizons between the hangingwall and the footwall. The average vertical displacement is 2.2±0.1 m, and the maximum displacement is 2.5 m, at the crest of the small pop-up fold. Horizontal displacement estimates were determined using line- and area-balancing methods. With line-length methods we estimated a horizontal displacement of 3.3±0.3 m across the principal scarp for four sedimentary horizons. For area balancing, first we selected three horizontal soil/sand deposits with a total thickness of about 0.5 m. The estimate yields an average horizontal displacement of 4.8±1.0 m. Using these individual and relatively thin stratigraphic layers yielded significant standard deviations in displacement estimates as a result of thickness variations. Second, we used the 3 m-thick overbank soil/sand and the lower part of fluvial pebble/cobble to calculate a horizontal displacement of 2.6±0.2 m with the area-balancing technique. According to the geometry of the dip angle (35–40°) of the basal thrust, the line-length measurement and the 3 m-thick package area balancing both provided reasonable results of horizontal displacement. By comparing the different deposits applied to the line- and area-balancing methods, we interpret that decoupling of deformation occurred between the lower fluvial gravels and the upper overbank sand and mud deposits. Due to lesser confining pressure at the surface, additional deformation occurred in the upper 1–2 m thick overbank deposits. This additional deformation yielded further vertical uplift of 0.3–0.5 m and horizontal displacement of 0.2–0.8 m around the core of the pop-up fold. Our work suggests that determination of slip across surface thrust ruptures varies as a function of the mechanical behavior of young late Quaternary deposits

    Reply to “Comment on ‘A Vertical Exposure of the 1999 Surface Rupture of the Chelungpu Fault at Wufeng, Western Taiwan: Structural and Paleoseismic Implications for an Active Thrust Fault,’ by Jian-Cheng Lee, Yue-Gau Chen, Kerry Sieh, Karl Mueller, Wen-Shan Chen, Hao-Tsu Chu, Yu-Chang Chan, Charles Rubin, and Robert Yeats,” by Yuan-Hsi Lee, Shih-Ting Lu, Tung-Sheng Shih, and Wei-Yu Wu

    Get PDF
    We welcome Y. H. Lee et al.'s interest in our article (Lee et al., 2001). We thank them for their comment, which provides a further opportunity for discussing the quantification of the slip amounts including horizontal and vertical components and the fault geometry for an earthquake thrust scarp in Wufeng, western Taiwan, during the 1999 M 7.6 earthquake. In their comment, Y. H. Lee et al. used restoration of deformed concrete fence across the 1999 scarp to estimate the slip vector of the main fault. The estimated slip amount, especially the horizontal component, is different (significantly less) from our results presented in the 2001 BSSA article. They then applied an “area-balance” technique to compare their results with ours. They showed that their area-balance method favored their estimates including the slip amounts and the fault dip angle. They concluded that their estimated slip amounts are more reasonable than ours. The fundamental questions in this issue, in our opinions, include the actual amounts of deformation (slip) and the associated deformation processes, as well as the limitation and uncertainty of the applied techniques on an earthquake-formed thrust scarp. Hereafter we attempt to answer these questions and clarify the related problems

    The Tectono-Thermal Events of Taiwan and Their Relationship with SE China

    Full text link
    We present a new synthesis of the tectono-thermal events of Taiwan, excluding the Coastal Range, based on existing isotopic, geochemical and geochronological data for granitic, metamorphic, volcanic and sedimentary rocks. Nd model ages (TDM) and the inherited zircon ages consistently yielded Proterozoic ages, suggesting that the source rocks from the exposed rocks in Taiwan were formed in the Proterozoic, starting from about 2 Ga ago. The crustal evolution of Taiwan began in the Late Paleozoic (250 ÂĄ_ 20 Ma). Since then, five tectono-thermal events can be delineated: (I) an Early Jurassic event (200 - 175 Ma) registered in the marble and metapelites of the Tananao metamorphic basement complex of northern Taiwan and crystalline limestone of the basement rocks in western Taiwan; (II) a Late Jurassic event (~153 Ma) revealed by a meta-granite of the Tananao metamorphic basement complex of southern Taiwan; (III) a Late Mesozoic event (97 - 77 Ma) recorded in the rocks of the Tananao metamorphic basement complex and offshore of northern and western Taiwan; (IV) a Cenozoic of pre-Pliocene event (episodic from 56 to 9 Ma) registered in the dikes in the Central Range and the intraplate basalts of mainland Taiwan and offshore of northern and western Taiwan; and (V) an ongoing Late Cenozoic event (since 5 Ma) shown in the recent volcanics of onshore and offshore northern Taiwan and offshore northeastern Taiwan
    corecore