9,035 research outputs found

    Tungsten fibre reinforced Zr-based bulk metallic glass composites

    Get PDF
    A Zr-based bulk metallic glass (BMG) alloy with the composition (Zr55Al10Ni5Cu30)98.5Si1.5 was used as the base material to form BMG composites. Tungsten fiber reinforced BMG composites were successfully fabricated by pressure metal infiltration technique, with the volume fraction of the tungsten fiber ranging from 10% to 70%. Microstructure and mechanical properties of the BMG composites were investigated. Tungsten reinforcement significantly increased the material’s ductility by changing the compressive failure mode from single shear band propagation to multiple shear bands propagation, and transferring stress from matrix to tungsten fibers

    Structural Basis for Human PECAM-1-Mediated Trans-homophilic Cell Adhesion

    Get PDF
    published_or_final_versio

    Exotic mesons from quantum chromodynamics with improved gluon and quark actions on the anisotropic lattice

    Full text link
    Hybrid (exotic) mesons, which are important predictions of quantum chromodynamics (QCD), are states of quarks and anti-quarks bound by excited gluons. First principle lattice study of such states would help us understand the role of ``dynamical'' color in low energy QCD and provide valuable information for experimental search for these new particles. In this paper, we apply both improved gluon and quark actions to the hybrid mesons, which might be much more efficient than the previous works in reducing lattice spacing error and finite volume effect. Quenched simulations were done at β=2.6\beta=2.6 and on a ξ=3\xi=3 anisotropic 123×3612^3\times36 lattice using our PC cluster. We obtain 2013±26±712013 \pm 26 \pm 71 MeV for the mass of the 1+1^{-+} hybrid meson qˉqg{\bar q}qg in the light quark sector, and 4369±37±994369 \pm 37 \pm 99Mev in the charm quark sector; the mass splitting between the 1+1^{-+} hybrid meson cˉcg{\bar c}c g in the charm quark sector and the spin averaged S-wave charmonium mass is estimated to be 1302±37±991302 \pm 37 \pm 99 MeV. As a byproduct, we obtain 1438±32±571438 \pm 32 \pm 57 MeV for the mass of a P-wave 1++1^{++} uˉu{\bar u}u or dˉd{\bar d}d meson and 1499±28±651499 \pm 28 \pm 65 MeV for the mass of a P-wave 1++1^{++} sˉs{\bar s}s meson, which are comparable to their experimental value 1426 MeV for the f1(1420)f_1(1420) meson. The first error is statistical, and the second one is systematical. The mixing of the hybrid meson with a four quark state is also discussed.Comment: 12 pages, 3 figures. Published versio

    Integrated health monitoring for a steel beam : an experimental study

    Full text link
    Civil infrastructures begin to deteriorate once they are built and used. Detecting damages in a structure to maintain its safety is a topic that has received considerable attention in the literature in recent years. Many methods are developed, including global vibration-based methods and local GW-based methods. The global vibration-based method uses changes in modal properties to detect damage. The advantage of this approach is that the vibration properties are straightforward to be measured. The disadvantage of this method is that it might not be sensitive to small damage. On the other hand, local method, such as the guided waves (GW) based method is sensitive to small damage, but its sensing range is small. In this paper, an integrated structural health monitoring test scheme is developed to detect damage in a steel beam. Different saw cuts of various depths are made to simulate crack damage. Vibration tests and guided wave tests are conducted after each cut. The vibration method is used to detect the overall condition change of the beam, whereas the GW method is used to locate and quantify the damage. Experimental results show that the integrated method is efficient to detect and quantify local crack damage in steel structures and its influence on the global structure conditions

    Crystallographic phasing with NMR models: an envelope approach

    Get PDF
    published_or_final_versio

    Iron and bismuth bound human serum transferrin reveals a partially-opened conformation in the N-lobe

    Get PDF
    Human serum transferrin (hTF) binds Fe(III) tightly but reversibly, and delivers it to cells via a receptor-mediated endocytosis process. The metal-binding and release result in significant conformational changes of the protein. Here, we report the crystal structures of diferric-hTF (Fe N Fe C-hTF) and bismuth-bound hTF (Bi N Fe C-hTF) at 2.8 and 2.4 Å resolutions respectively. Notably, the N-lobes of both structures exhibit unique 'partially-opened' conformations between those of the apo-hTF and holo-hTF. Fe(III) and Bi(III) in the N-lobe coordinate to, besides anions, only two (Tyr95 and Tyr188) and one (Tyr188) tyrosine residues, respectively, in contrast to four residues in the holo-hTF. The C-lobe of both structures are fully closed with iron coordinating to four residues and a carbonate. The structures of hTF observed here represent key conformers captured in the dynamic nature of the transferrin family proteins and provide a structural basis for understanding the mechanism of metal uptake and release in transferrin families. © 2012 Macmillan Publishers Limited. All rights reserved.published_or_final_versio

    Debond detection in RC structures using piezoelectric materials

    Full text link
    This paper presents a technique to detect the delamination between the steel bars and concrete in the reinforced concrete structures. The piezoelectric components are mounted on reinforcing bars that are embedded in RC structures as sensors and actuators to generate and record the signal, which is sensitive to the delamination between the steel bars and concrete. The experimental study is carried out on a concrete slab with different debonds between the rebars and concrete. The test results show that the delamination between the rebars and concrete can be detected with the embedded piezoelectric sensors and actuators.<br /

    Protein-complex structure completion using IPCAS (Iterative Protein Crystal structure Automatic Solution)

    Get PDF
    published_or_final_versio
    corecore