279 research outputs found

    Influence of Helicobacter pylori culture supernatant on the ecological balance of a dual-species oral biofilm

    Get PDF
    Dental caries is a chronic progressive disease occurring in the tooth hard tissue due to multiple factors, in which bacteria are the initial cause. Both Streptococcus mutans and Streptococcus sanguinis are main members of oral biofilm. Helicobacter pylori may also be detected in dental plaque, playing an important role in the development of dental caries. Objective The aim of this study was to investigate the effect of H. pylori culture supernatant on S. mutans and S. sanguinis dual-species biofilm and to evaluate its potential ability on affecting dental health. Material and methods The effect of H. pylori supernatant on single-species and dual-species biofilm was measured by colony forming units counting and fluorescence in situ hybridization (FISH) assay, respectively. The effect of H. pylori supernatant on S. mutans and S. sanguinis extracellular polysaccharides (EPS) production was measured by both confocal laser scanning microscopy observation and anthrone-sulfuric acid method. The effect of H. pylori supernatant on S. mutans gene expression was measured by quantitative real-time PCR (qRT-PCR) assays. Results H. pylori supernatant could inhibit both S. mutans and S. sanguinis biofilm formation and EPS production. S. sanguinis inhibition rate was significantly higher than that of S. mutans. Finally, S. mutans bacteriocin and acidogenicity related genes expression were affected by H. pylori culture supernatant. Conclusion Our results showed that H. pylori could destroy the balance between S. mutans and S. sanguinis in oral biofilm, creating an advantageous environment for S. mutans, which became the dominant bacteria, promoting the formation and development of dental caries

    Sensitivity Evaluation of AP1000 Nuclear Power Plant Best Estimation Model

    Get PDF
    The best estimation process of AP1000 Nuclear Power Plant (NPP) requires proper selections of parameters and models so as to obtain the most accurate results compared with the actual design parameters. Therefore, it is necessary to identify and evaluate the influences of these parameters and modeling approaches quantitatively and qualitatively. Based on the best estimate thermal-hydraulic system code RELAP5/MOD3.2, sensitivity analysis has been performed on core partition methods, parameters, and model selections in AP1000 Nuclear Power Plant, like the core channel number, pressurizer node number, feedwater temperature, and so forth. The results show that core channel number, core channel node number, and the pressurizer node number have apparent influences on the coolant temperature variation and pressure drop through the reactor. The feedwater temperature is a sensitive factor to the Steam Generator (SG) outlet temperature and the Steam Generator outlet pressure. In addition, the cross-flow model nearly has no effects on the coolant temperature variation and pressure drop in the reactor, in both the steady state and the loss of power transient. Furthermore, some fittest parameters with which the most accurate results could be obtained have been put forward for the nuclear system simulation

    Impact of minerals and water on bitumen-mineral adhesion and debonding behaviours using molecular dynamics simulations

    Get PDF
    This study aims to evaluate the effects of mineral types and water on the adhesion properties and debonding behaviours of bitumen-mineral interface systems. A molecular dynamics modelling approach was employed to simulate the interactions between minerals and bitumen with and without the presence of water. Four representative minerals (quartz, calcite, albite and microcline) were selected to build the mineral-bitumen interface systems and the mineral-water-bitumen interface systems in the molecular dynamics models. The adhesion property between minerals and bitumen was quantified by work of adhesion, defined as the energy required to separate a unit area of the bitumen-mineral interface. The debonding behaviour between minerals and bitumen is characterised by work of debonding, defined as the energy required to displace bitumen by water at the mineral-bitumen interface. The simulation results were validated by available experimental results reported in the literature. It was found that the work of adhesion and the work of debonding for the four bitumen-minerals interface systems are ranked microcline > albite > calcite > quartz at both dry and wet conditions. Moisture can reduce the adhesion between minerals and bitumen by 82%, 84%, 18% and 1% for the quartz, calcite, albite and microcline, respectively. The adhesion between minerals and bitumen is attributed to the non-bond interaction energy, in which the major component is van der Waals interaction for neutral minerals (e.g., quartz) and the electrostatic interaction for the alkali minerals (e.g., calcite, albite and microcline). The bitumen-mineral debonding is a thermodynamically favourable process with reduced total potential energy of the system. It is concluded that the bitumen-mineral adhesion and debonding behaviours strongly depends on the chemistry and mineralogical properties of the minerals. This work provides a fundamental understanding of the adhesion and debonding behaviours of the bitumen-mineral interface at the atomistic scale

    Low T3 syndrome is associated with the severity of myelin oligodendrocyte glycoprotein antibody-associated disease exacerbation

    Get PDF
    BackgroundMyelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare autoimmune inflammatory disease of the central nervous system, (CNS) different from multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). While numerous studies have delved into the involvement of thyroid antibodies (ATAbs) and thyroid function in NMOSD and MS. The objective of this study is to explore the clinical significance of thyroid dysfunction and ATAbs abnormalities in adult patients with MOGAD.Methods36 adult inpatients diagnosed with MOGAD and 47 sex- and age-matched healthy controls were enrolled. Patients were divided into two groups based on the presence or absence of low T3 syndrome. Demographics, clinical characteristics, and results of auxiliary examinations were compared across the subgroups. Moreover, an analysis was conducted to explore the correlations between thyroid hormone levels and Expanded Disability Status Scale (EDSS) scores.ResultsThyroid dysfunction was notably more frequent in MOGAD patients than healthy controls (p < 0.0001), particularly low T3 syndrome (p=0.03). Furthermore, subgroup analyses revealed that the low T3 syndrome group exhibited higher EDSS scores and a higher proportion of individuals with EDSS scores > 3, in comparison to the non-low T3 syndrome group (p = 0.014, p = 0.046). However, no significant differences were observed in demographic characteristics, annual relapse rates, clinical phenotypes, laboratory and MRI results, and EEG abnormalities between the two groups. Additional Spearman's analysis showed significantly negative correlations between the TT3 and FT3 levels with EDSS scores (r = βˆ’0.367, p = 0.028; r = βˆ’0.377, p = 0.024). Typical brain lesions and paralateral ventricle lesions were significantly rare in patients with positive ATAbs compared to those with negative ATAbs (p = 0.0001, p = 0.03), although the incidence of ATAbs abnormalities did not differ significantly between MOGAD patients and healthy controls.ConclusionsOverall, this study confirmed thyroid dysfunction, especially low T3 syndrome, is frequent in adult MOGAD patients. Patients with low T3 syndrome exhibited elevated EDSS scores and a significantly higher incidence of unfavorable condition. additionally, the correlation analysis model manifests that FT3 and TT3 levels were negatively correlated with EDSS scores. These evidences indicate that low T3 syndrome is associated with the severity of MOGAD exacerbation

    Nonfragile Robust H

    Get PDF
    The nonfragile H∞ filtering problem for a kind of Takagi-Sugeno (T-S) fuzzy stochastic system which has a time-varying delay and parameter uncertainties has been studied in this paper. Sufficient conditions for stochastic input-to-state stability (SISS) of the fuzzy stochastic systems are obtained. Attention is focused on the design of a nonfragile H∞ filter such that the filtering error system can tolerate some level of the gain variations in the filter and the H∞ performance level also could be satisfied. By using the SISS result, the approach to design the nonfragile filter is proposed in terms of linear matrix inequalities. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed method

    Structure-Activity Relationship and Substrate-Dependent Phenomena in Effects of Ginsenosides on Activities of Drug-Metabolizing P450 Enzymes

    Get PDF
    Ginseng, a traditional herbal medicine, may interact with several co-administered drugs in clinical settings, and ginsenosides, the major active components of ginseng, may be responsible for these ginseng-drug interactions (GDIs). Results from previous studies on ginsenosides' effects on human drug-metabolizing P450 enzymes are inconsistent and confusing. Herein, we first evaluated the inhibitory effects of fifteen ginsenosides and sapogenins on human CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 enzymes by using commercially available fluorescent probes. The structure-activity relationship of their effects on the P450s was also explored and a pharmacophore model was established for CYP3A4. Moreover, substrate-dependent phenomena were found in ginsenosides' effects on CYP3A4 when another fluorescent probe was used, and were further confirmed in tests with conventional drug probes and human liver microsomes. These substrate-dependent effects of the ginsenosides may provide an explanation for the inconsistent results obtained in previous GDI reports
    • …
    corecore