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The nonfragile𝐻
∞
filtering problem for a kind of Takagi-Sugeno (T-S) fuzzy stochastic system which has a time-varying delay and

parameter uncertainties has been studied in this paper. Sufficient conditions for stochastic input-to-state stability (SISS) of the fuzzy
stochastic systems are obtained. Attention is focused on the design of a nonfragile𝐻

∞
filter such that the filtering error system can

tolerate some level of the gain variations in the filter and the𝐻
∞
performance level also could be satisfied. By using the SISS result,

the approach to design the nonfragile filter is proposed in terms of linear matrix inequalities. Finally, an illustrative example is given
to demonstrate the effectiveness of the proposed method.

1. Introduction

As the performance of a control system is affected by param-
eter perturbations, exogenous disturbances, measurement
errors, and other uncertainties, the research of the robust
control problem has had a vital status in the studies of control
theory. Considering Lyapunov stability theory which is not
suitable for analyzing and processing the state responses of
the system with perturbations, some newmethods have been
developed, such as input-to-state stability (ISS). Since Sontag
presented the qualitative aspect of ISS for the system response
to input with boundedmagnitude in 1989 [1], ISS has become
an essential concept inmodern controller and filter design for
the nonlinear system. The ISS problem has been extensively
investigated by many authors [2–6] until now. At the same
time, ISS has been studied for stochastic systems. Stochastic
input-to-state stability (SISS) of Lure distributed parameter
control system has been investigated in [7], and sufficient
conditions for SISS in Hilbert space have been presented
in terms of linear operator inequalities. In [8], SISS and
the 𝐻

∞
filtering problem have been considered, and the

filter has been designed in LMIs. A mean-square exponential
ISS problem for stochastic delay neural networks has been
investigated in [9].

On the other hand, fuzzy model could turn the nonlinear
models into a linear representation by partitioning the orig-
inal dynamic differential equations into linear ones [10]. T-S
fuzzymodel [11] has been considered as an efficient technique
to linearize the nonlinear systems. This model has been first
put forward in the truck trailer system [12]. And another
typical application is in the stirred tank reactor system which
has been addressed in [13]. Until now, there have been a lot of
results of T-S fuzzy system reported in literature.The stability
and control problemhave been investigated in [14–19] and the
references therein.

Meanwhile, it is well known that state estimation can
estimate the unavailable state variables or their linear com-
bination for a given system [20, 21], and it has been found
in many practical applications over decades. As a branch of
state estimation theory, 𝐻

∞
filter can process the estimation

problem without exact statistical data for the external noise.
This problem for the T-S fuzzy system has been addressed
in [22–27]; and the robust filters for stochastic systems are
designed in [28, 29]. During the filter design, gain pertur-
bations are usually unavoidable. According to [30], those
gain perturbations could destabilize the filtering error system
even if they are very small, which makes the filter fragile.
Hence, it is reasonable to design a filter that could tolerate
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some level of the gain variations, which is called nonfragile
filter.The nonfragile filter has received considerable attention
over the past two decades; refer to [31–34] and the references
therein. From what is mentioned above, it is worth noting
that T-S fuzzy model can be used to divide the nonlinear
stochastic systems into several subsystems. The solution to
fuzzy stochastic differential equations with local martingales
has been presented in [35]. The work in [36] has considered
the robust fault detection problem for T-S fuzzy stochastic
systems. And the stabilization for the fuzzy stochastic systems
with delays has been investigated in [37–39]. The control
problem has been considered in [40–45].

Motivated by the above discussion, this paper will focus
on the filter design for the fuzzy stochastic system, where
few results have been found. The nonfragile fuzzy delay-
dependent 𝐻

∞
filter design for a T-S time-delay fuzzy sto-

chastic system with norm-bounded parameter uncertainties
is studied in this paper. The Lyapunov-Krasovskii functional
technique is used and the sufficient conditions obtained
are expressed in terms of linear matrix inequality (LMI)
approach. This paper is organized as follows. Section 2
presents the problem formulation and preliminaries. Sec-
tion 3 gives main results for the nonfragile filter design. In
Section 4, a numerical example is shown to illustrate the
effectiveness of the proposed methods. Section 5 concludes
the paper.

Notation. The notation used in this paper is fairly stan-
dard. The superscript “𝑇” stands for matrix transposition.
Throughout this paper, for real symmetric matrices𝑋 and 𝑌,
the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means that the matrix
𝑋 − 𝑌 is positive semidefinite (resp., positive definite). R𝑛
denotes the 𝑛-dimensional Euclidean space andR𝑚×𝑛 denotes
the set of all 𝑚 × 𝑛 real matrices. 𝐼 stands for an identity
matrix of appropriate dimension, while 𝐼

𝑛
∈ R𝑛 denotes a

vector of ones. The notation ∗ is used as an ellipsis for terms
that are induced by symmetry. diag(⋅ ⋅ ⋅ ) stands for a block-
diagonal matrix. | ⋅ | denotes the Euclidean norm for vectors
and ‖ ⋅ ‖ denotes the spectral norm for matrices. L

2
[0,∞)

represents the space of square-integrable vector functions
over [0,∞). E(⋅) stands for the mathematical expectation
operator. Matrix dimensions, if not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Problem Formulation and Preliminaries

Consider the time-delay T-S fuzzy stochastic system with
time-varying parameter uncertainties in the following form:

(Σ) : 𝑑𝑥(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))[𝜓

𝑖
𝑑𝑡 + 𝑘

𝑖
𝑑𝜔(𝑡)],

𝑑𝑦 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))[𝐶

𝑖
𝑥(𝑡) + 𝐶

𝑑𝑖
𝑥(𝑡 − 𝜏(𝑡)) + 𝐷

𝑖
V(𝑡)]𝑑𝑡,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))[(𝐿

𝑖
+ Δ𝐿
𝑖
(𝑡))𝑥(𝑡)],

𝑥(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−ℎ
2
, 0];

(1)

where 𝑥(𝑡) ∈ R𝑚 is the state; 𝜓
𝑖

= (𝐴
𝑖
+ Δ𝐴

𝑖
(𝑡))𝑥(𝑡) +

(𝐴
𝑑𝑖

+ Δ𝐴
𝑑𝑖
(𝑡))𝑥(𝑡 − 𝜏(𝑡)) + (𝐵

𝑖
+ Δ𝐵
𝑖
(𝑡))V(𝑡) + 𝐸

𝑖
𝑔(𝑥(𝑡)),

𝑘
𝑖

= (𝐻
𝑖
+ Δ𝐻

𝑖
(𝑡))𝑥(𝑡) + (𝐻

𝑑𝑖
+ Δ𝐻

𝑑𝑖
(𝑡))𝑥(𝑡 − 𝜏(𝑡)); 𝜑(𝑡)

is a given real-value initial function on [−ℎ
2
, 0]; 𝜔(𝑡) is a

scalar zero mean Gaussian white noise process with unit
covariance; 𝑦(𝑡) ∈ R𝑛 is the measured output; 𝑧(𝑡) ∈ R𝑙 is
a signal to be estimated; V(𝑡) ∈ R𝑠 is the input noise signal
which belongs toL

2
[0,∞); 𝜏(𝑡) is a continuous differentiable

function representing the time-varying delay in 𝑥(𝑡), which is
assumed to satisfy 0 ≤ ℎ

1
≤ 𝜏(𝑡) < ℎ

2
for all 𝑡 ≥ 0; and the

real nonlinear function 𝑔(𝑥(𝑡)) satisfies a linear-type growth
condition and local Lipschitz condition ‖𝑔(𝑥(𝑡))‖

2

≤ 𝑙‖𝑥(𝑡)‖
2

and ‖𝑔(𝑥
1
(𝑡)) − 𝑔(𝑥

2
(𝑡))‖
2

≤ 𝜅‖𝑥
1
(𝑡) − 𝑥

2
(𝑡)‖
2, where 𝑙 and 𝜅

are two known positive constant scalars. And using the fuzzy
theory, there always exists, for all 𝑡, ℎ

𝑖
(𝑠(𝑡)) ≥ 0, 𝑖 = 1, 2, . . . , 𝑟,

∑
𝑟

𝑖=1
ℎ
𝑖
(𝑠(𝑡)) = 1.

In the above nonlinear fuzzy stochastic system, 𝐴
𝑖
, 𝐴
𝑑𝑖
,

𝐵
𝑖
,𝐸
𝑖
,𝐻
𝑖
,𝐻
𝑑𝑖
,𝐶
𝑖
,𝐶
𝑑𝑖
,𝐷
𝑖
, and𝐿

𝑖
are known constantmatrices

with appropriate dimensions.Δ𝐴
𝑖
(𝑡),Δ𝐴

𝑑𝑖
(𝑡),Δ𝐵

𝑖
(𝑡),Δ𝐻

𝑖
(𝑡),

Δ𝐻
𝑑𝑖
(𝑡), and Δ𝐿

𝑖
(𝑡) represent the unknown time-varying

parameter uncertainties and are assumed to satisfy

[

Δ𝐴
𝑖
(𝑡) Δ𝐴

𝑑𝑖
(𝑡) Δ𝐵

𝑖
(𝑡)

Δ𝐻
𝑖
(𝑡) Δ𝐻

𝑑𝑖
(𝑡) Δ𝐿

𝑖
(𝑡)

] = [

𝑀
1𝑖

𝑀
2𝑖

]𝐹
𝑖
(𝑡) [𝑁

1𝑖
𝑁
2𝑖

𝑁
3𝑖
] ,

(2)

where 𝑀
1𝑖
, 𝑀
2𝑖
, 𝑁
1𝑖
, 𝑁
2𝑖
, and 𝑁

3𝑖
are known real constant

matrices and the unknown time-varying matrix function
satisfying 𝐹

𝑖
(𝑡)
𝑇

𝐹
𝑖
(𝑡) ≤ 𝐼 for all 𝑡.

Now, we consider a dynamical nonfragile fuzzy filter for
system (Σ):

𝑑𝑥(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) [(𝐴

𝑓𝑖
+ Δ𝐴
𝑓𝑖
(𝑡))𝑥 (𝑡) 𝑑𝑡

+(𝐵
𝑓𝑖

+ Δ𝐵
𝑓𝑖
(𝑡))𝑑𝑦(𝑡) + 𝐸

𝑓𝑖
𝑔(𝑥(𝑡))],

𝑧̂(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))[(𝐿

𝑓𝑖
+ Δ𝐿
𝑓𝑖
(𝑡))𝑥(𝑡)],

(3)

in which the fuzzy rules have the same representations as in
(1). Consider 𝑥(𝑡) ∈ R𝑛 and 𝑧̂(𝑡) ∈ R𝑙. 𝐴

𝑓𝑖
, 𝐵
𝑓𝑖
, 𝐿
𝑓𝑖
, and

𝐸
𝑓𝑖
are the filters needed to be determined. Δ𝐴

𝑓𝑖
(𝑡), Δ𝐵

𝑓𝑖
(𝑡),

and Δ𝐿
𝑓𝑖
(𝑡) represent the unknown time-varying parameter

uncertainties and are assumed to satisfy

[Δ𝐴
𝑓𝑖

(𝑡) Δ𝐵
𝑓𝑖

(𝑡) Δ𝐿
𝑓𝑖

(𝑡)] = 𝑀
4𝑖
𝐹
𝑎𝑖

(𝑡) [𝑁
4𝑖

𝑁
5𝑖

𝑁
6𝑖
] ,

(4)

where𝑀
4𝑖
,𝑁
4𝑖
,𝑁
5𝑖
, and𝑁

6𝑖
are known real constantmatrices

and the unknown time-varying matrix function satisfying
𝐹
𝑎𝑖
(𝑡)
𝑇

𝐹
𝑎𝑖
(𝑡) ≤ 𝐼 for all 𝑡.

Remark 1. There are two approaches to design the filter for
fuzzy systems. One is dependent on the fuzzy rules when the
fuzzy model is available while the other one is independent
of the fuzzy rules. In this paper, we choose the first approach
since the fuzzy model is known here and this approach is
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less conserve. So the nonfragile fuzzy rule-dependent filter
is investigated in this paper as in (3).

Let 𝜉(𝑡) = [𝑥(𝑡)
𝑇

𝑥(𝑡)
𝑇

]
𝑇 and 𝑧̃(𝑡) = 𝑧(𝑡) − 𝑧̂(𝑡).

The filtering error dynamic system can be written as

(Σ̃) : 𝑑𝜉(𝑡) = Φ(𝑡)𝑑𝑡 + 𝐾(𝑡)𝑑𝜔(𝑡),

𝑧̃ (𝑡) = (𝐿̃ + Δ𝐿̃(𝑡))𝜉 (𝑡) ,

(5)

where

Φ(𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝜉 (𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡))𝐺𝜉(𝑡 − 𝜏(𝑡))

+ (𝐵 + Δ𝐵(𝑡))V (𝑡) + 𝐸𝑔(𝑥(𝑡)),

𝐾(𝑡) = (𝐻̃ + Δ𝐻̃(𝑡))𝜉(𝑡) + (𝐻̃
𝑑
+ Δ𝐻̃
𝑑
(𝑡))𝐺𝜉(𝑡 − 𝜏(𝑡)),

𝐴 = [

𝐴 0

𝐵
𝑓
𝐶 𝐴
𝑓

] , 𝐴
𝑑
= [

𝐴
𝑑

𝐵
𝑓
𝐶
𝑑

] ,

𝐻̃ = [
𝐻 0

0 0

] , 𝐸 = [

𝐸 0

0 𝐸
𝑓

] ,

Δ𝐴(𝑡) = [

Δ𝐴 (𝑡) 0

Δ𝐵
𝑓
(𝑡) 𝐶 Δ𝐴

𝑓
(𝑡)

] ,

Δ𝐴
𝑑
(𝑡) = [

Δ𝐴
𝑑
(𝑡)

Δ𝐵
𝑓
(𝑡) 𝐶
𝑑

] , Δ𝐵 = [

Δ𝐵 (𝑡)

Δ𝐵
𝑓
(𝑡) 𝐷

] ,

Δ𝐻̃(𝑡) = [
Δ𝐻 (𝑡) 0

0 0

] , Δ𝐻̃
𝑑
(𝑡) = [

Δ𝐻
𝑑
(𝑡)

0

] ,

𝐻̃
𝑑
= [

𝐻
𝑑

0

] , 𝐵 = [

𝐵

𝐵
𝑓
𝐷

] ,

𝐴 =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) 𝐴

𝑖
, 𝐴

𝑑
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) 𝐴

𝑑𝑖
,

Δ𝐴 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))Δ𝐴

𝑖
(𝑡), 𝐻 =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))𝐻

𝑖
,

𝐻
𝑑
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))𝐻

𝑑𝑖
, Δ𝐴

𝑑
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))Δ𝐴

𝑑𝑖
(𝑡) ,

𝐵 =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) 𝐵

𝑖
, 𝐷 =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) 𝐷

𝑖
,

𝐿̃ = [𝐿 −𝐿
𝑓
] , 𝐺 = [𝐼 0] ,

𝐸 =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) 𝐸

𝑖
, 𝐿 =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) 𝐿

𝑖
,

Δ𝐿̃ (𝑡) = [Δ𝐿 (𝑡) −Δ𝐿
𝑓
(𝑡)] , 𝐶 =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) 𝐶

𝑖
,

𝐶
𝑑
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))𝐶

𝑑𝑖
, Δ𝐵(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))Δ𝐵

𝑖
(𝑡),

𝐴
𝑓

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))𝐴

𝑓𝑖
, 𝐵

𝑓
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))𝐵

𝑓𝑖
,

𝐿
𝑓

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))𝐿

𝑓𝑖
, 𝐸

𝑓
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))𝐸

𝑓𝑖
,

Δ𝐻 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) Δ𝐻

𝑖
(𝑡) ,

Δ𝐻
𝑑
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) Δ𝐻

𝑑𝑖
(𝑡) ,

Δ𝐴
𝑓
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) Δ𝐴

𝑓𝑖
(𝑡) ,

Δ𝐵
𝑓
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) Δ𝐵

𝑓𝑖
(𝑡) ,

Δ𝐿 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠 (𝑡)) Δ𝐿

𝑖
(𝑡) ,

Δ𝐿
𝑓
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑠(𝑡))Δ𝐿

𝑓𝑖
(𝑡).

(6)

We intend to design a dynamical nonfragile fuzzy filter
in the form of (3) in this paper, such that, for any scalar 0 ≤

ℎ
1
< ℎ
2
and a prescribed level of noise attenuation 𝛾 > 0, the

filtering error system (Σ̃) could be stochastic input-to-state
stability and the error system (Σ̃) satisfies 𝐻

∞
performance.

Now, we present the definitions and lemmas used in this
paper, which help to complete the proof of the main results.

Definition 2 (see [46]). In system (Σ), a continuously dif-
ferentiable function 𝑉(𝑥, 𝑡) ∈ 𝜗

2,1

(𝑅
𝑛

× 𝑅
+

; 𝑅
+

) is called a
SISS Lyapunov function, if there exist functions𝛼

1
, 𝛼
2
, 𝛼
3
, and

𝛼
4
∈ 𝐾
∞
, such that

𝛼
1
(‖𝑥‖) ≤ 𝑉(𝑥, 𝑡) ≤ 𝛼

2
(‖𝑥‖),

𝐿𝑉 ≤ −𝛼
3
(‖𝑥‖) + 𝛼

4
(|V|),

(7)

for any 𝑥 ∈ 𝑅
𝑛 and 𝑢 ∈ 𝐿

∞
, where

𝐿𝑉 (𝑡, 𝑥) = 𝑉
𝑡
(𝑡, 𝑥) + 𝑉

𝑥
(𝑡, 𝑥) 𝑓 +

1

2

tr[ℎ𝑇𝑉
𝑥𝑥

(𝑡, 𝑥)ℎ],

𝑓 = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐵V (𝑡) + 𝐸

𝑙
𝑔(𝑥(𝑡)),

ℎ = 𝐷𝑥(𝑡) + 𝐸
2
𝑥(𝑡 − 𝜏).

(8)

Definition 3 (see [31]). The robust stochastic stable system (Σ̃)
is said to satisfy the𝐻

∞
performance; for the given scalar 𝛾 >

0 and any nonzero V(𝑡) ∈ 𝐿
2
[0,∞), the system (Σ̃) satisfies

‖𝑧̃(𝑡)‖
2
< 𝛾‖V(𝑡)‖

2
. (9)

Lemma 4 (see [8]). The system (Σ) is SISS if there exists an
SISS-Lyapunov function.



4 Mathematical Problems in Engineering

3. Robust Stochastic Stabile

Theorem 5. The filtering error system (Σ̃) is SISS with an 𝐻
∞

attenuation level 𝛾 > 0, if there exist matrices 𝑃 = 𝑃
𝑇

> 0,
𝑆 > 0, 𝑅

𝑗
= 𝑅
𝑇

𝑗
> 0, 𝑗 = 1, 2, 3, 𝑄

𝑖
= 𝑄
𝑇

𝑖
> 0, 𝑇

1𝑖
, 𝑇
2𝑖
, 𝑖 = 1, 2,

such that the following matrix inequality holds:

Ψ =

[

[

[

[

[

[

Ω Ψ
12

Ψ
13

Ψ
14

Ψ
15

∗ Ψ
22

0 0 0

∗ ∗ Ψ
33

0 0

∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

< 0, (10)

where

Ω =

[

[

[

[

[

[

[

[

Ω
11

0 0 Ω
14

0 𝑃 (𝐵 + Δ𝐵 (𝑡))

∗ Ω
22

0 Ω
24

0 0

∗ ∗ Ω
33

Ω
34

0 0

∗ ∗ ∗ Ω
44

0 0

∗ ∗ ∗ ∗ Ω
55

0

∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]

]

]

]

]

]

]

]

,

Ψ
12

= [(ℎ
2
− ℎ
1
)𝐴̌
𝑇

𝐺
𝑇

𝑅
1

(ℎ
2
− ℎ
1
)𝐻̌
𝑇

𝐺
𝑇

𝑅
2

𝐻̌
𝑇

𝑃] ,

Ψ
22

= diag {− (ℎ
2
− ℎ
1
) 𝑅
1
, − (ℎ
2
− ℎ
1
) 𝑅
2
, −𝑃} ,

Ψ
13

= [̃𝑇
1

̃
𝑇
2

̃
𝑇
1

̃
𝑇
2
] ,

Ψ
33

= diag {−𝑅
2
, −𝑅
2
, − (ℎ
2
− ℎ
1
) 𝑅
1
, − (ℎ
2
− ℎ
1
) 𝑅
1
} ,

Ψ
14

= [𝐿̃ 0 0 0 0 0]

𝑇

,

Ψ
15

= [𝐸
𝑇

𝑃 0 0 0 0 0]

𝑇

,

Ω
11

= 𝑃(𝐴 + Δ𝐴(𝑡)) + (𝐴 + Δ𝐴(𝑡))

𝑇

𝑃

+ 𝐺
𝑇

(𝑄
1
+ 𝑄
2
+ (ℎ
2
− ℎ
1
)𝑅
3
)𝐺 + 𝑙 + 𝑆,

Ω
14

= 𝑃(𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡)), Ω

22
= −𝑄
1
+ 𝑇
2
+ 𝑇
𝑇

2
,

Ω
24

= −𝑇
2
+ 𝑇
𝑇

2
, Ω

33
= −𝑄
2
− 𝑇
1
− 𝑇
𝑇

1
,

Ω
34

= 𝑇
1
− 𝑇
𝑇

1
, Ω

44
= −𝑇
2
− 𝑇
𝑇

2
+ 𝑇
1
+ 𝑇
𝑇

1
,

Ω
55

= −

𝑅
3

(ℎ
2
− ℎ
1
)

,
̃
𝑇
1
= [0 0 𝑇

𝑇

1
𝑇
𝑇

1
0 0]

𝑇

,

̃
𝑇
2
= [0 𝑇

𝑇

2
0 𝑇
𝑇

2
0 0]

𝑇

,

𝐴̆ = [𝐴 + Δ𝐴(𝑡) 0 0 𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡) 0 𝐵 + Δ𝐵(𝑡)]

𝑇

,

𝐻̆ = [𝐻̃ + Δ𝐻̃(𝑡) 0 0 𝐻̃
𝑑
+ Δ𝐻̃
𝑑
(𝑡) 0 0]

𝑇

.

(11)

Proof. Choose a Lyapunov-Krasovskii candidate for system
(Σ̃) as follows:

𝑉(𝜉(𝑡), 𝑡) = 𝜉
𝑇

(𝑡) 𝑃𝜉 (𝑡)

+ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝛽

(Φ
𝑇

(𝑠)𝐺
𝑇

𝑅
1
𝐺Φ(𝑠)

+ 𝐾
𝑇

(𝑠)𝐺
𝑇

𝑅
2
𝐺𝐾(𝑠))𝑑𝑠 𝑑𝛽

+

2

∑

𝑖=1

∫

𝑡

𝑡−ℎ
𝑖

𝜉
𝑇

(𝑠) 𝐺
𝑇

𝑄
𝑖
𝐺𝜉 (𝑠) 𝑑𝑠

+ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝛽

𝜉
𝑇

(𝑠)𝐺
𝑇

𝑅
3
𝐺𝜉(𝑠)𝑑𝑠 𝑑𝛽.

(12)

Let 𝜆(𝑃) = 𝜆min(𝑃), 𝜆(𝑃) = 𝜆max(𝑃), 𝜆(𝑄
𝑖
) = 𝜆max(𝑄𝑖),

𝑖 = 1, 2, and 𝜆(𝑅
𝑗
) = 𝜆max(𝑅𝑗), 𝑗 = 1, 2, 3; then there exists a

scalar ]
𝑗
, 𝑗 = 1, 2, 3, such that

𝜆 (𝑃)
󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝜉
𝑇

(𝑡) 𝑃𝜉 (𝑡) ≤ 𝜆 (𝑃)
󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

,

0 ≤ ∫

𝑡

𝑡−ℎ
𝑖

𝜉
𝑇

(𝑠) 𝐺
𝑇

𝑄
𝑖
𝐺𝜉 (𝑠) 𝑑𝑠 ≤ ℎ

𝑖
𝜆 (𝑄)

󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

, 𝑖 = 1, 2,

0 ≤ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝛽

Φ
𝑇

(𝑠) 𝐺
𝑇

𝑅
1
𝐺Φ (𝑠) 𝑑𝑠 𝑑𝛽 ≤ ]

1
𝜆 (𝑅)

󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

,

0 ≤ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝛽

𝐾
𝑇

(𝑠) 𝐺
𝑇

𝑅
2
𝐺𝐾 (𝑠) 𝑑𝑠 𝑑𝛽 ≤ ]

2
𝜆 (𝑅)

󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

,

0 ≤ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝛽

𝜉
𝑇

(𝑠)𝐺
𝑇

𝑅
3
𝐺𝜉(𝑠)𝑑𝑠 𝑑𝛽 ≤ ]

3
𝜆(𝑅)

󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

.

(13)

It follows that

𝜆(𝑃)
󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑉 (𝜉 (𝑡) , 𝑡) ≤ 𝜆 (𝑃)
󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ ℎ
1
𝜆 (𝑄)

󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ ℎ
2
𝜆 (𝑄)

󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ ]
1
𝜆(𝑅)

󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ ]
2
𝜆(𝑅)

󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ ]
3
𝜆(𝑅)

󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

.

(14)

From Itô formula, the stochastic differential equation
can be computed as follows: 𝑑𝑉(𝜉(𝑡), 𝑡) = L𝑉(𝜉(𝑡), 𝑡) +

2𝜉
𝑇

(𝑡)𝑃𝐾(𝑡)𝑑𝜔(𝑡), where

L𝑉(𝜉(𝑡), 𝑡)

≤ 2𝜉
𝑇

(𝑡) 𝑃Φ (𝑡) + 𝐾
𝑇

(𝑡) 𝑃𝐾 (𝑡)

+ 𝜉
𝑇

(𝑡) 𝐺
𝑇

𝑄
1
𝐺𝜉 (𝑡) + 𝜉

𝑇

(𝑡) 𝐺
𝑇

𝑄
2
𝐺𝜉 (𝑡)

− 𝜉
𝑇

(𝑡 − ℎ
1
) 𝐺
𝑇

𝑄
1
𝐺𝜉 (𝑡 − ℎ

1
)

− 𝜉
𝑇

(𝑡 − ℎ
2
) 𝐺
𝑇

𝑄
2
𝐺𝜉 (𝑡 − ℎ

2
)

+ (ℎ
2
− ℎ
1
) (Φ
𝑇

(𝑡) 𝐺
𝑇

𝑅
1
𝐺Φ (𝑡) + 𝐾(𝑡)

𝑇

𝐺
𝑇

𝑅
2
𝐺𝐾 (𝑡)

+ 𝜉
𝑇

(𝑡) 𝐺
𝑇

𝑅
3
𝐺Φ (𝑡))

− ∫

𝑡−ℎ
1

𝑡−ℎ
2

[𝜉
𝑇

(𝑠) 𝐺
𝑇

𝑅
3
𝐺𝜉 (𝑠) + Φ

𝑇

(𝑠) 𝐺
𝑇

𝑅
1
𝐺Φ (𝑠)

+ 𝐾
𝑇

(𝑠) 𝐺
𝑇

𝑅
2
𝐺𝐾 (𝑠)]𝑑𝑠
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+ 2𝜂
𝑇

(𝑡) 𝑇
2
𝐺[𝜉 (𝑡 − ℎ

1
) − 𝜉 (𝑡 − 𝜏 (𝑡))

− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

Φ (𝑠) 𝑑𝑠 − ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝐾 (𝑠) 𝑑𝜔 (𝑠)]

+ 2𝜂
𝑇

(𝑡) 𝑇
1
𝐺[𝜉 (𝑡 − 𝜏 (𝑡)) − 𝜉 (𝑡 − ℎ

2
)

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

Φ (𝑠) 𝑑𝑠 − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝐾 (𝑠) 𝑑𝜔 (𝑠)]

+ (𝜏 (𝑡) − ℎ
1
) 𝜂
𝑇

(𝑡) 𝑇
2
𝑅
−1

1
𝑇

𝑇

2
𝜂 (𝑡)

− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝜂
𝑇

(𝑡) 𝑇
2
𝑅
−1

1
𝑇

𝑇

2
𝜂 (𝑡) 𝑑𝑠

+ (ℎ
2
− 𝜏 (𝑡)) 𝜂

𝑇

(𝑡) 𝑇
1
𝑅
−1

1
𝑇

𝑇

1
𝜂 (𝑡)

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝜂
𝑇

(𝑡) 𝑇
1
𝑅
−1

1
𝑇

𝑇

1
𝜂 (𝑡) 𝑑𝑠,

(15)

where

𝜂
𝑇

(𝑡) = [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − ℎ
1
) 𝐺
𝑇

𝜉
𝑇

(𝑡 − ℎ
2
) 𝐺
𝑇

𝜉
𝑇

(𝑡 − 𝜏(𝑡))𝐺
𝑇

(∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜉(𝑠)
𝑇

𝑑𝑠)𝐺
𝑇 V (𝑡)].

(16)

And the final eight lines of (15) are equal to 0 from the
Newton-Leibnitz formula.

Remark 6. In the proof of the theorem, we adopt Newton-
Leibnitz formula to reduce the conservatism. Moreover, the
results obtained in this theorem can be further extended
based on fuzzy or piecewise Lyapunov-Krasovskii function.

Now, it is easy to see that

2𝜉
𝑇

(𝑡)𝑃Φ(𝑡) = 2𝜉
𝑇

(𝑡) 𝑃[(𝐴 + Δ𝐴(𝑡))𝜉(𝑡)

+ (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡))𝐺𝜉(𝑡 − 𝜏(𝑡))

+ (𝐵 + Δ𝐵(𝑡))V(𝑡)]

+ 𝜉
𝑇

(𝑡) 𝑃𝐸𝐸
𝑇

𝑃𝜉 (𝑡) + 𝑔(𝜉(𝑡))
𝑇

𝑔 (𝜉 (𝑡))

≤ 2𝜉
𝑇

(𝑡) 𝑃[(𝐴 + Δ𝐴 (𝑡)) 𝜉 (𝑡)

+ (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡))𝐺𝜉(𝑡 − 𝜏(𝑡))

+(𝐵 + Δ𝐵(𝑡))V(𝑡)]

+ 𝜉
𝑇

(𝑡) (𝑃𝐸𝐸
𝑇

𝑃 + 𝑙𝐼) 𝜉 (𝑡) .

(17)

Moreover,

− ∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜉
𝑇

(𝑠) 𝐺
𝑇

𝑅
3
𝐺𝜉 (𝑠) 𝑑𝑠

≤ −

1

ℎ
2
− ℎ
1

(∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜉(𝑠)𝑑𝑠)

𝑇

𝐺
𝑇

𝑅
3
𝐺(∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜉(𝑠)𝑑𝑠).

(18)

By the above formulas (15)–(18), we can deduce that

L𝑉(𝜉(𝑡), 𝑡) ≤ 𝜂
𝑇

(𝑡) [Ω + Ψ
12
Ψ
−1

22
Ψ
𝑇

12
+ Ψ
13
Ψ
−1

33
Ψ
𝑇

13

+ Ψ
15
Ψ
𝑇

15
]𝜂 (𝑡)

− 𝜉
𝑇

(𝑡) 𝑆𝜉 (𝑡) + 𝜌V𝑇 (𝑡) V (𝑡) ,

(19)

where 𝜌 > 0 is a given positive scalar and

Ω =

[

[

[

[

[

[

[

[

Ω
11

0 0 Ω
14

0 𝑃(𝐵 + Δ𝐵(𝑡))

∗ Ω
22

0 Ω
24

0 0

∗ ∗ Ω
33

Ω
34

0 0

∗ ∗ ∗ Ω
44

0 0

∗ ∗ ∗ ∗ Ω
55

0

∗ ∗ ∗ ∗ ∗ −𝜌𝐼

]

]

]

]

]

]

]

]

. (20)

From (10) and (20), we can deduce

𝜂
𝑇

(𝑡)[Ω + Ψ
12
Ψ
−1

22
Ψ
𝑇

12
+ Ψ
13
Ψ
−1

33
Ψ
𝑇

13
+ Ψ
15
Ψ
𝑇

15
]𝜂 (𝑡) < 0,

(21)

which means

L𝑉(𝜉(𝑡), 𝑡) ≤ −𝜉
𝑇

(𝑡) 𝑆𝜉 (𝑡) + 𝜌V𝑇 (𝑡) V (𝑡)

≤ −𝜆min (𝑆)
󵄩
󵄩
󵄩
󵄩
𝜉(𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ 𝜌‖V(𝑡)‖2.
(22)

Together with (14), (22), and Lemma 4, the system (Σ̃) is
SISS.

Now, we are in the position to proof that (Σ̃) satisfies an
𝐻
∞

attenuation level.
By Itô’s formula, there is

E(𝑉(𝜉(𝑡), 𝑡)) = E(∫

𝑡

0

L𝑉(𝜉(𝑠), 𝑠)𝑑𝑠). (23)

Now, we consider the 𝐻
∞

performance of the filter-
ing error system (Σ̃). Define 𝐽(𝑡) = E{∫

𝑡

0

[𝑧̃(𝑠)
𝑇

𝑧̃(𝑠) −

𝛾
2V(𝑠)𝑇V(𝑠)]𝑑𝑠} and consider (23). It is obvious that

𝐽(𝑡) = E{∫

𝑡

0

[𝑧̃
𝑇

(𝑠)𝑧̃(𝑠) − 𝛾
2V𝑇(𝑠)V(𝑠) + L𝑉(𝜉(𝑠), 𝑠)]𝑑𝑠}

− E(𝑉(𝜉(𝑡), 𝑡))

≤ E{∫

𝑡

0

[𝑧̃
𝑇

(𝑠)𝑧̃(𝑠) − 𝛾
2V𝑇(𝑠)V(𝑠) + L𝑉(𝜉(𝑠), 𝑠)]𝑑𝑠}

= E{∫

𝑡

0

[𝜉
𝑇

(𝑡)(𝐿̃ + Δ𝐿̃(𝑡))

𝑇

(𝐿̃ + Δ𝐿̃(𝑡))𝜉(𝑡)

− 𝛾
2V𝑇(𝑡)V(𝑡) + L𝑉(𝜉(𝑠), 𝑠)]𝑑𝑠}.

(24)
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Using the same method in (15), we can deduce the fol-
lowing formula:

𝜉
𝑇

(𝑡)(𝐿̃ + Δ𝐿̃(𝑡))

𝑇

(𝐿̃ + Δ𝐿̃(𝑡))𝜉(𝑡)

− 𝛾
2V𝑇 (𝑡) V (𝑡) + L𝑉(𝜉(𝑠), 𝑠)

≤ 𝜂
𝑇

(𝑡) [Ω + Ψ
12
Ψ
−1

22
Ψ
𝑇

12
+ Ψ
13
Ψ
−1

33
Ψ
𝑇

13

+ Ψ
14
Ψ
𝑇

14
+ Ψ
15
Ψ
𝑇

15
]𝜂 (𝑡) .

(25)

Then, applying the Schur complement formula to (10),
there is

𝜂
𝑇

(𝑡)[Ω + Ψ
12
Ψ
−1

22
Ψ
𝑇

12
+ Ψ
13
Ψ
−1

33
Ψ
𝑇

13

+Ψ
14
Ψ
𝑇

14
+ Ψ
15
Ψ
𝑇

15
]𝜂 (𝑡) < 0

(26)

for all 𝑡 > 0. Therefore, for all 𝜂(𝑡) ̸= 0, 𝐽(𝑡) < 0, which means
that (9) is satisfied. This completes the proof.

Remark 7. Since not all the delays begin at 0 moments, the
delay we considered here contains both the upper bound and
the lower bound, which is different frommost of the existing
works. Instead of the [0, ℎ) expression of the time delay, a
more reliable sufficient condition is proposed in this paper.

Based on the above results, a sufficient condition for the
solvability of robust 𝐻

∞
filtering problem for system (Σ̃) is

considered in the next theorem.

Theorem 8. Consider the uncertain T-S fuzzy stochastic time-
varying delay system (Σ̃) and a constant scalar 𝛾 > 0. The
robust 𝐻

∞
filtering problem is solvable if there exist scalars

𝜀
1𝑖

> 0, 𝜀
2𝑖

> 0, 𝜀
3𝑖

> 0, 𝜀
4𝑖

> 0, and 𝜀
5𝑖

> 0 and matrices
𝑃
1
> 0, 𝑃

2
> 0, 𝑆

1
> 0, 𝑆

2
> 0, 𝑅

𝑗
> 0, 𝑗 = 1, 2, 3, 𝑄

𝑖
> 0, 𝑇

1𝑖
,

𝑇
2𝑖
, 𝑖 = 1, 2; 𝑊

1𝑖
,𝑊
2𝑖
,𝑊
3𝑖
, 1 ≤ 𝑖 ≤ 𝑟, {󰜚

𝑖
= 󰜚
𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑟}, and

{𝜋
𝑖𝑗
, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟}, such that the following LMIs hold:

[

[

[

[

[

󰜚
1

𝜋
12

⋅ ⋅ ⋅ 𝜋
1𝑟

∗ 󰜚
2

⋅ ⋅ ⋅ 𝜋
2𝑟

.

.

.

.

.

. d
.
.
.

∗ ∗ ⋅ ⋅ ⋅ 󰜚
𝑟

]

]

]

]

]

< 0,

[

[

[

[

[

[

[

[

𝜍
𝑖𝑖

𝜒
1𝑖

𝜒
2𝑖

𝜒
3𝑖

𝜒
4𝑖

𝜒
5𝑖

∗ −𝜀
1𝑖

0 0 0 0

∗ ∗ −𝜀
2𝑖

0 0 0

∗ ∗ ∗ −𝜀
3𝑖

0 0

∗ ∗ ∗ ∗ −𝜀
4𝑖

0

∗ ∗ ∗ ∗ ∗ −𝜀
5𝑖

]

]

]

]

]

]

]

]

< 0, (1 ≤ 𝑖 ≤ 𝑟),

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜍
𝑖𝑗

𝜒
1𝑖

𝜒
1𝑗

𝜒
2𝑖

𝜒
2𝑗

𝜒
3𝑖

𝜒
3𝑗

𝜒
4𝑖

𝜒
4𝑗

𝜒
5𝑖

𝜒
5𝑗

∗ −𝜀
1𝑖

0 0 0 0 0 0 0 0 0

∗ ∗ −𝜀
1𝑗

0 0 0 0 0 0 0 0

∗ ∗ ∗ −𝜀
2𝑖

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝜀
2𝑗

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
3𝑖

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3𝑗

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
4𝑖

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
4𝑗

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
5𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
5𝑗

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (1 ≤ 𝑖 < 𝑗 ≤ 𝑟),

(27)

where

𝜍
𝑖𝑖
= Γ
𝑖𝑖
− 󰜚
𝑖
+ 𝜀
1𝑖
Ξ
1𝑖
Ξ
𝑇

1𝑖
+ 𝜀
2𝑖
Ξ
𝑖
Ξ
𝑇

2𝑖
+ 𝜀
3𝑖
Ξ
3𝑖
Ξ
𝑇

3𝑖

+ 𝜀
4𝑖
Ξ
4𝑖
Ξ
𝑇

4𝑖
+ 𝜀
5𝑖
Ξ
5𝑖
Ξ
𝑇

5𝑖
,

𝜍
𝑖𝑗

= Γ
𝑖𝑗
+ Γ
𝑗𝑖

− 𝜋
𝑖𝑗
− 𝜋
𝑗𝑖

+ 𝜀
1𝑖
Ξ
1𝑖
Ξ
𝑇

1𝑖
+ 𝜀
2𝑖
Ξ
𝑖
Ξ
𝑇

2𝑖

+ 𝜀
3𝑖
Ξ
3𝑖
Ξ
𝑇

3𝑖
+ 𝜀
4𝑖
Ξ
4𝑖
Ξ
𝑇

4𝑖
+ 𝜀
5𝑖
Ξ
5𝑖
Ξ
𝑇

5𝑖
+ 𝜀
1𝑗
Ξ
1𝑗
Ξ
𝑇

1𝑗

+ 𝜀
2𝑗
Ξ
𝑗
Ξ
𝑇

2𝑗
+ 𝜀
3𝑗
Ξ
3𝑗
Ξ
𝑇

3𝑗
+ 𝜀
4𝑗
Ξ
4𝑗
Ξ
𝑇

4𝑗
+ 𝜀
5𝑗
Ξ
5𝑗
Ξ
𝑇

5𝑗
,

𝜒
1𝑖

= [𝑀
𝑇

1𝑖
𝑃
1
0
1∗6

(ℎ
2
− ℎ
1
)𝑀
𝑇

1𝑖
𝑅
1
0
1∗10

]

𝑇

,

Ξ
𝑇

1𝑖
= [𝑁
𝑇

1𝑖
0
1∗3

𝑁
𝑇

2𝑖
0 𝑁
𝑇

3𝑖
0
1∗11

] ,

Ξ
𝑇

5𝑖
= [0 −𝑁

6𝑖
0
1∗16

] ,

𝜒
2𝑖

= [0
1∗8

(ℎ
2
− ℎ
1
)𝑀
𝑇

2𝑖
𝑅
2

𝑀
𝑇

2𝑖
𝑃
1
0
1∗8

]

𝑇

,

Ξ
𝑇

2𝑖
= [𝑁
1𝑖

0
1∗3

𝑁
2𝑖

0
1∗13

] ,

𝜒
3𝑖

= [0 𝑀
𝑇

4𝑖
𝑃
2
0
1∗16

]

𝑇

,

Ξ
𝑇

3𝑖
= [𝑁
5𝑖
𝐶
𝑗

𝑁
4𝑖

0 0 𝑁
5𝑖
𝐶
𝑑𝑗

0 𝑁
5𝑖
𝐷
𝑗
0
1∗11

] ,

𝜒
4𝑖

= [0
1∗17

𝑀
𝑇

2𝑖
]

𝑇

, Ξ
𝑇

4𝑖
= [0 𝑁

3𝑖
0
1∗16

] ,

𝜒
5𝑖

= [0
1∗17

𝑀
𝑇

4𝑖
]

𝑇

,

Γ
𝑖𝑗

=

[

[

[

[

[

[

[

[

Γ
11

Γ
12

Γ
13

Γ
14

Γ
15

∗ Γ
22

0 0 0

∗ ∗ Γ
33

0 0

∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

,

Γ
11

=

[

[

[

[

[

[

[

[

[

[

[

[

𝐺
11

𝐶
𝑇

𝑗
𝑊
𝑇

2𝑖
0 0 𝑃

1
𝐴
𝑑𝑖

0 𝑃
1
𝐵
𝑖

∗ 𝐺
22

0 0 𝑊
2𝑖
𝐶
𝑑𝑗

0 𝑊
2𝑖
𝐷
𝑗

∗ ∗ 𝐺
33

0 −𝑇
2
+ 𝑇
𝑇

2
0 0

∗ ∗ ∗ 𝐺
44

𝑇
1
− 𝑇
𝑇

1
0 0

∗ ∗ ∗ ∗ 𝐺
55

0 0

∗ ∗ ∗ ∗ ∗ −

𝑅
3

ℎ
2
− ℎ
1

0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

,
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𝐺
11

= 𝑃
1
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
1
+ 𝑙 + 𝑄

1
+ 𝑄
2
+ (ℎ
2
− ℎ
1
) 𝑅
3
+ 𝑆
1
,

𝐺
22

= 𝑊
𝑇

1𝑖
+ 𝑊
1𝑖

+ 𝑙 + 𝑆
2
,

𝐺
33

= −𝑄
1
+ 𝑇
2
+ 𝑇
𝑇

2
,

𝐺
44

= −𝑄
2
− 𝑇
1
− 𝑇
𝑇

1
,

𝐺
55

= −𝑇
2
− 𝑇
𝑇

2
+ 𝑇
1
+ 𝑇
𝑇

1
,

Γ
12

=

[

[

[

[

[

[

[

[

[

[

[

[

[

(ℎ
2
− ℎ
1
) 𝐴
𝑇

𝑖
𝑅
1

(ℎ
2
− ℎ
1
)𝐻
𝑇

𝑖
𝑅
2

𝐻
𝑇

𝑖
𝑋 𝐻

𝑇

𝑖

(ℎ
2
− ℎ
1
) 𝐴
𝑇

𝑖
𝑅
1

(ℎ
2
− ℎ
1
)𝐻
𝑇

𝑖
𝑅
2

𝐻
𝑇

𝑖
𝑋 𝐻

𝑇

𝑖

0 0 0 0

0 0 0 0

(ℎ
2
− ℎ
1
) 𝐴
𝑇

𝑑𝑖
𝑅
1

(ℎ
2
− ℎ
1
)𝐻
𝑇

𝑑𝑖
𝑅
2

𝐻
𝑇

𝑑𝑖
𝑋 𝐻
𝑇

𝑑𝑖

0 0 0 0

(ℎ
2
− ℎ
1
) 𝐵
𝑇

𝑖
𝑅
1

0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Γ
22

= diag{−(ℎ
2
− ℎ
1
)𝑅
1
, −(ℎ
2
− ℎ
1
)𝑅
2
, [

−𝑃
1

0

0 −𝑃
2

]},

Γ
13

= [̃𝑇
1

̃
𝑇
2

(ℎ
2
− ℎ
1
)
̃
𝑇
1

(ℎ
2
− ℎ
1
)
̃
𝑇
2
] ,

Γ
33

= diag{−𝑅
2
, −𝑅
2
, −(ℎ
2
− ℎ
1
)𝑅
1
, −(ℎ
2
− ℎ
1
)𝑅
1
},

Γ
𝑇

14
= [𝐿
𝑇

𝑖
−𝐿
𝑇

𝑓𝑖
0 0 0 0 0] ,

Γ
𝑇

15
= [

𝑃
1
𝐸
𝑇

𝑖
0 0 0 0 0 0

0 𝑊
𝑇

3𝑖
0 0 0 0 0

] .

(28)

When the LMIs (27) are feasible, the nonfragile filter we
desired here can be chosen as

𝐴
𝑓𝑖

= 𝑃
−1

2
𝑊
1𝑖
, 𝐵
𝑓𝑖

= 𝑃
−1

2
𝑊
2𝑖
, 𝐿
𝑓𝑖
, 𝐸
𝑓𝑖

= 𝑃
−1

2
𝑊
3𝑖
,

𝑖 = 1, . . . , 𝑟.

(29)

Proof. Define

𝑃 = [

𝑃
1

0

0 𝑃
2

] , 𝑆 = [

𝑆
1

0

0 𝑆
2

] . (30)

By using the samemethods in [31], it can be easily proven
that the condition in Theorem 5 and the LMIs in (27) are
equivalent. Then, we can conclude that the filtering error
system (Σ̃) is SISS with 𝐻

∞
performance level 𝛾.

Remark 9. The desired 𝐻
∞

filters can be constructed by
solving the LMIs in (27), which can be implemented by using
standard numerical algorithms, and no tuning of parameters
will be involved.

4. Numerical Example

In this section, a numerical example is provided to show the
effectiveness of the results obtained in the previous section.

Example. Consider the T-S fuzzy stochastic system (Σ̃) with
model parameters given as follows:

𝐴
1
= [

−3.5 1

−1.7 −5.8
] , 𝐴

𝑑1
= [

−0.15 −0.4

0 0.3
] ,

𝐴
2
= [

−2.1 0.6

−1.7 −2.9
] , 𝐻

1
= [

−0.2 0

0 −0.2
] ,

𝐻
𝑑1

= [

−0.01 0.02

0.01 −0.05
] , 𝐻

2
= [

−0.6 −0.1

0.2 0.3
] ,

𝐶
1
= [−0.1 0.1] , 𝐶

𝑑1
= [−0.05 −0.05] ,

𝐶
2
= [0.2 −0.4] , 𝐶

𝑑2
= [−0.4 −0.5] ,

𝐿
1
= [1.5 −0.6] , 𝐿

2
= [−0.3 0.2] ,

𝐷
1
= 0.2, 𝐷

2
= −0.2,

𝐵
1
= [

0.9

−0.2
] , 𝐵

2
= [

−0.2

−0.5
] ,

𝐴
𝑑2

= [

−0.18 0

−0.22 −0.24
] , 𝐻

𝑑2
= [

−0.15 0.6

0.01 0.4
] .

(31)

And the parameter uncertainties are shown as

𝑀
11

= [

0.1 0.2

−0.5 0.1
] , 𝑀

12
= [

−0.2 0.1

0.3 −0.1
] ,

𝑀
21

= [

0.8 −0.1

−0.1 0.2
] , 𝑁

11
= [

0 −0.3

0.1 −0.2
] ,

𝑁
21

= [

−0.2 0

0.2 0.1
] , 𝑀

22
= [

−0.1 0.2

0.4 −0.2
] ,

𝑁
12

= [

−0.5 0

0.2 −0.3
] , 𝑁

22
= [

0 −0.2

0 0.1
] .

(32)

The membership functions are

ℎ
1
(𝑥
1
(𝑡)) = (1 −

𝑥
1

1 + exp(𝑥
1
(𝑡) + 1)

),

ℎ
2
(𝑥
1
(𝑡)) = 1 − ℎ

1
(𝑥
1
(𝑡)).

(33)

By using theMatlab LMI Control Toolbox, the nonfragile
robust 𝐻

∞
filtering problem is solvable to Theorem 8. It can

be calculated that, for any 0 < ℎ
1
(𝑡) ≤ ℎ

2
(𝑡) ≤ 6 and

the nonlinear function 𝑔(𝑥(𝑡)) = sin(𝑥
2
(𝑡)), the robust 𝐻

∞

filtering problem can be solved with the 𝐻
∞

performance
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Figure 1: State responses of 𝑥(𝑡) and 𝑥(𝑡).

level 𝛾 = 0.46. And the desired fuzzy filter can be constructed
as in the form of (3) with

𝐴
𝑓1

= [

−5.4320 0.4511

1.8159 −1.5495
] ,

𝐴
𝑓2

= [

−8.1142 3.4902

2.9687 −5.9058
] ,

𝐵
𝑓1

= [

−1.0301

0.1040
] , 𝐵

𝑓2
= [

−1.0171

0.0415
] ,

𝐿
𝑓1

= [−0.3063 −0.0422] ,

𝐿
𝑓2

= [−0.2667 −0.0422] ,

𝐸
𝑓1

= [

0.00361 0.0000

0.0000 0.00361
] ,

𝐸
𝑓2

= [

0.00274 0.00000

0.00000 0.00274
] .

(34)

The simulation results of the state responses in system (Σ)
and the filter are given in Figure 1, where the initial conditions
are 𝑥
0
(𝑡) = [0.4 0.3]

𝑇 and 𝑥
0
(𝑡) = [0.1 0.1]

𝑇. Figure 2 shows
the simulation results of the signal 𝑧̃(𝑡).

5. Conclusion

This paper considers the nonfragile𝐻
∞
filter design problem

for the uncertain time-delay T-S fuzzy stochastic system.
Sufficient conditions have been addressed to guarantee
that the system (Σ̃) is SISS. An LMI approach has been
developed to design the fuzzy filter ensuring a prescribed
𝐻
∞

performance level of the filtering error system for all
admissible uncertainties. Finally, a numerical example has
been provided to show the effectiveness of the proposed filter
design methods.
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Figure 2: Responses of the error signal 𝑧(𝑡) − 𝑧̂(𝑡).
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