1,628 research outputs found

    Long-term Periodicities of Cataclysmic Variables with Synoptic Surveys

    Get PDF
    A systematic study on the long-term periodicities of known Galactic cataclysmic variables (CVs) was conducted. Among 1580 known CVs, 344 sources were matched and extracted from the Palomar Transient Factory (PTF) data repository. The PTF light curves were combined with the Catalina Real-Time Transient Survey (CRTS) light curves and analyzed. Ten targets were found to exhibit long-term periodic variability, which is not frequently observed in the CV systems. These long-term variations are possibly caused by various mechanisms, such as the precession of the accretion disk, hierarchical triple star system, magnetic field change of the companion star, and other possible mechanisms. We discuss the possible mechanisms in this study. If the long-term period is less than several tens of days, the disk precession period scenario is favored. However, the hierarchical triple star system or the variations in magnetic field strengths are most likely the predominant mechanisms for longer periods.Comment: 33 pages, 9 figures (manuscript form), Accepted for publication in PAS

    Potable Water Reuse through Advanced Membrane Technology

    Full text link
    © 2018 American Chemical Society. Recycling water from municipal wastewater offers a reliable and sustainable solution to cities and regions facing shortage of water supply. Places including California and Singapore have developed advanced water reuse programs as an integral part of their water management strategy. Membrane technology, particularly reverse osmosis, has been playing a key role in producing high quality recycled water. This feature paper highlights the current status and future perspectives of advanced membrane processes to meet potable water reuse. Recent advances in membrane materials and process configurations are presented and opportunities and challenges are identified in the context of water reuse

    Contralateral Cruciate Survival in Dogs with Unilateral Non-Contact Cranial Cruciate Ligament Rupture

    Get PDF
    BACKGROUND: Non-contact cranial cruciate ligament rupture (CrCLR) is an important cause of lameness in client-owned dogs and typically occurs without obvious injury. There is a high incidence of bilateral rupture at presentation or subsequent contralateral rupture in affected dogs. Although stifle synovitis increases risk of contralateral CrCLR, relatively little is known about risk factors for subsequent contralateral rupture, or whether therapeutic intervention may modify this risk. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a longitudinal study examining survival of the contralateral CrCL in client-owned dogs with unilateral CrCLR in a large baseline control population (n = 380), and a group of dogs that received disease-modifying therapy with arthroscopic lavage, intra-articular hyaluronic acid and oral doxycycline (n = 16), and were followed for one year. Follow-up in treated dogs included analysis of mobility, radiographic evaluation of stifle effusion and arthritis, and quantification of biomarkers of synovial inflammation. We found that median survival of the contralateral CrCL was 947 days. Increasing tibial plateau angle decreased contralateral ligament survival, whereas increasing age at diagnosis increased survival. Contralateral ligament survival was reduced in neutered dogs. Our disease-modifying therapy did not significantly influence contralateral ligament survival. Correlative analysis of clinical and biomarker variables with development of subsequent contralateral rupture revealed few significant results. However, increased expression of T lymphocyte-associated genes in the index unstable stifle at diagnosis was significantly related to development of subsequent non-contact contralateral CrCLR. CONCLUSION: Subsequent contralateral CrCLR is common in client-owned dogs, with a median ligament survival time of 947 days. In this naturally occurring model of non-contact cruciate ligament rupture, cranial tibial translation is preceded by development of synovial inflammation. However, treatment with arthroscopic lavage, intra-articular hyaluronic acid and oral doxycycline does not significantly influence contralateral CrCL survival

    Genetic variation regulates opioid-induced respiratory depression in mice.

    Get PDF
    In the U.S., opioid prescription for treatment of pain nearly quadrupled from 1999 to 2014. The diversion and misuse of prescription opioids along with increased use of drugs like heroin and fentanyl, has led to an epidemic in addiction and overdose deaths. The most common cause of opioid overdose and death is opioid-induced respiratory depression (OIRD), a life-threatening depression in respiratory rate thought to be caused by stimulation of opioid receptors in the inspiratory-generating regions of the brain. Studies in mice have revealed that variation in opiate lethality is associated with strain differences, suggesting that sensitivity to OIRD is genetically determined. We first tested the hypothesis that genetic variation in inbred strains of mice influences the innate variability in opioid-induced responses in respiratory depression, recovery time and survival time. Using the founders of the advanced, high-diversity mouse population, the Diversity Outbred (DO), we found substantial sex and genetic effects on respiratory sensitivity and opiate lethality. We used DO mice treated with morphine to map quantitative trait loci for respiratory depression, recovery time and survival time. Trait mapping and integrative functional genomic analysis in GeneWeaver has allowed us to implicate Galnt11, an N-acetylgalactosaminyltransferase, as a gene that regulates OIRD

    The pyruvate decarboxylase activity of IpdC is a limitation for isobutanol production by Klebsiella pneumoniae

    Get PDF
    BACKGROUND: Klebsiella pneumoniae contains an endogenous isobutanol synthesis pathway. The ipdC gene annotated as an indole-3-pyruvate decarboxylase (Kp-IpdC), was identified to catalyze the formation of isobutyraldehyde from 2-ketoisovalerate. RESULTS: Compared with 2-ketoisovalerate decarboxylase from Lactococcus lactis (KivD), a decarboxylase commonly used in artificial isobutanol synthesis pathways, Kp-IpdC has an 2.8-fold lower Km for 2-ketoisovalerate, leading to higher isobutanol production without induction. However, expression of ipdC by IPTG induction resulted in a low isobutanol titer. In vitro enzymatic reactions showed that Kp-IpdC exhibits promiscuous pyruvate decarboxylase activity, which adversely consume the available pyruvate precursor for isobutanol synthesis. To address this, we have engineered Kp-IpdC to reduce pyruvate decarboxylase activity. From computational modeling, we identified 10 amino acid residues surrounding the active site for mutagenesis. Ten designs consisting of eight single-point mutants and two double-point mutants were selected for exploration. Mutants L546W and T290L that showed only 5.1% and 22.1% of catalytic efficiency on pyruvate compared to Kp-IpdC, were then expressed in K. pneumoniae for in vivo testing. Isobutanol production by K. pneumoniae T290L was 25% higher than that of the control strain, and a final titer of 5.5 g/L isobutanol was obtained with a substrate conversion ratio of 0.16 mol/mol glucose. CONCLUSIONS: This research provides a new way to improve the efficiency of the biological route of isobutanol production

    Growth and characterization of α\alpha-Sn thin films on In- and Sb-rich reconstructions of InSb(001)

    Full text link
    α\alpha-Sn thin films can exhibit a variety of topologically non-trivial phases. Both studying the transitions between these phases and making use of these phases in eventual applications requires good control over the electronic and structural quality of α\alpha-Sn thin films. α\alpha-Sn growth on InSb often results in out-diffusion of indium, a p-type dopant. By growing α\alpha-Sn via molecular beam epitaxy on the Sb-rich c(4×\times4) surface reconstruction of InSb(001) rather than the In-rich c(8×\times2), we demonstrate a route to substantially decrease and minimize this indium incorporation. The reduction in indium concentration allows for the study of the surface and bulk Dirac nodes in α\alpha-Sn via angle-resolved photoelectron spectroscopy without the common approaches of bulk doping or surface dosing, simplifying topological phase identification. The lack of indium incorporation is verified in angle-resolved and -integrated ultraviolet photoelectron spectroscopy as well as in clear changes in the Hall response

    Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation

    Full text link
    We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling \& channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks, such as semantic image synthesis. The code is available at https://github.com/Ha0Tang/SelectionGAN.Comment: An extended version of a paper published in CVPR2019. arXiv admin note: substantial text overlap with arXiv:1904.0680
    • …
    corecore