19 research outputs found

    Heterologous Expression of the Alba Protein from the Hyperthermophilic Archaeon Aeropyrum Pernix

    Get PDF
    Nucleic acid binding proteins have important roles in DNA and RNA packaging, stabilisation and repair, and in gene regulation, and they are therefore essential for all organisms. All of the known hyperthermophiles have at least one DNA sequence encoding for the Alba proteins. The Alba proteins are small (approximately 10 kDa), DNA-binding, basic proteins that appear to partly compensate for the lack of histones in the archaea Aeropyrum pernix and other hyperthermophiles. Two sequences of these potential histone counterparts, the Alba proteins, were identified in the Aeropyrum pernix genome (APE1832.1 and APE1823). By using a wide range of experimental techniques and by examining several combinations of expression systems the expression of recombinant Alba1 and Alba2 proteins was optimized. Co-expression of both of the Alba proteins was needed when isolating recombinant Alba2. The purification of both recombinant Alba1 and Alba2 His-tagged proteins were simplyfied in satisfactory yield. The electrophoretic mobility shift assay demonstrated the ability of the Alba1 and Alba2 proteins from Aeropyrum pernix to bind DNA. (doi: 10.5562/cca1772

    Nuclear magnetic resonance data of C7H10N2O2

    No full text

    Nuclear magnetic resonance data of C12H12N2O2

    No full text

    Heterologous Expression of the Alba Protein from the Hyperthermophilic Archaeon Aeropyrum Pernix

    No full text
    Nucleic acid binding proteins have important roles in DNA and RNA packaging, stabilisation and repair, and in gene regulation, and they are therefore essential for all organisms. All of the known hyperthermophiles have at least one DNA sequence encoding for the Alba proteins. The Alba proteins are small (approximately 10 kDa), DNA-binding, basic proteins that appear to partly compensate for the lack of histones in the archaea Aeropyrum pernix and other hyperthermophiles. Two sequences of these potential histone counterparts, the Alba proteins, were identified in the Aeropyrum pernix genome (APE1832.1 and APE1823). By using a wide range of experimental techniques and by examining several combinations of expression systems the expression of recombinant Alba1 and Alba2 proteins was optimized. Co-expression of both of the Alba proteins was needed when isolating recombinant Alba2. The purification of both recombinant Alba1 and Alba2 His-tagged proteins were simplyfied in satisfactory yield. The electrophoretic mobility shift assay demonstrated the ability of the Alba1 and Alba2 proteins from Aeropyrum pernix to bind DNA. (doi: 10.5562/cca1772

    A Map of Drosophila melanogaster Small Nuclear RNA-activating Protein Complex (DmSNAPc) Domains Involved in Subunit Assembly and DNA Binding*

    No full text
    Transcription of genes coding for the small nuclear RNAs (snRNAs) is dependent upon a unique transcription factor known as the small nuclear RNA-activating protein complex (SNAPc). SNAPc binds to an essential proximal sequence element located about 40–65 base pairs upstream of the snRNA transcription start site. In the fruit fly Drosophila melanogaster, DmSNAPc contains three distinct polypeptides (DmSNAP190, DmSNAP50, and DmSNAP43) that are stably associated with each other and bind to the DNA as a complex. We have used mutational analysis to identify domains within each subunit that are involved in complex formation with the other two subunits in vivo. We have also identified domains in each subunit required for sequence-specific DNA binding. With one exception, domains required for subunit-subunit interactions lie in the most evolutionarily conserved regions of the proteins. However, DNA binding by DmSNAPc is dependent not only upon the conserved regions but is also highly dependent upon domains outside the conserved regions. Comparison with functional domains identified in human SNAPc indicates many parallels but also reveals significant differences in this ancient yet rapidly evolving system
    corecore