11 research outputs found

    Expression of invasion-related extracellular matrix molecules in human glioblastoma versus intracerebral lung adenocarcinoma metastasis

    Get PDF
    Tumor cell invasion into the surrounding brain tissue is mainly responsible for the failure of radical surgical resection, with tumor recurrence in the form of microdisseminated disease. Extracellular matrix (ECM)-related molecules and their receptors predominantly participate in the invasion process, including cell adhesion to the surrounding microenvironment and cell migration. The extent of infiltration of the healthy brain by malignant tumors strongly depends on the tumor cell type. Malignant gliomas show much more intensive peritumoral invasion than do metastatic tumors. In this study, the mRNA expression of 30 invasion-related molecules (twenty-one ECM components, two related receptors, and seven ECM-related enzymes) was investigated by quantitative reverse transcriptase-polymerase chain reaction. Fresh frozen human tissue samples from glioblastoma (GBM), intracerebral lung adenocarcinoma metastasis, and normal brain were evaluated. Significant differences were established for 24 of the 30 molecules. To confirm our results at the protein level, immunohistochemical analysis of seven molecules was performed (agrin, neurocan, syndecan, versican, matrix metalloproteinase 2 [MMP-2], MMP-9, and hyaluronan). Determining the differences in the levels of invasion-related molecules for tumors of different origins can help to identify the exact molecular mechanisms that facilitate peritumoral infiltration by glioblastoma cells. These results should allow the selection of target molecules for potential chemotherapeutic agents directed against highly invasive malignant gliomas

    Differential gene expression in pituitary adenomas by oligonucleotide array analysis.

    No full text
    OBJECTIVES: Microarray technology allows for the expression profile of many thousands of genes to be quantified at the same time, and has resulted in novel discoveries about the tumour biology of a number of cancers. We sought to do this in pituitary adenomas, the most common intracranial neoplasm. METHODS: Affymetrix GeneChip HG-U133A oligonucleotide arrays covering 14 500 well-characterised genes from the human genome were used to study pooled RNA for each of the four major pituitary adenoma subtypes. Individual gene-expression levels in the tumours were compared relative to the expression profile in normal pooled pituitary RNA. Three differentially expressed genes with potential importance in tumourigenesis were chosen for validation by real-time quantitative PCR on the original tumours and on an additional 26 adenomas. RESULTS: Bioinformatic analysis showed that 3906 genes and 351 expressed sequence tags were differentially expressed among all pituitary tumour subtypes. Lysosomal-associated protein transmembrane- 4-beta (LAPTM4B), a novel gene upregulated in hepatocellular carcinoma, was significantly over-expressed in adrenocorticotrophin (ACTH)-secreting adenomas and non-functioning pituitary adenomas (NFPAs). Bcl-2-associated athanogene (BAG1), an anti-apoptotic protein found at high levels in a number of human cancers, was significantly over-expressed in growth hormone-secreting and prolactin-secreting adenomas and NFPAs. The cyclin-dependent kinase inhibitor p18, in which murine gene deletion has been shown to produce pituitary ACTH cell hyperplasia and adenomas, was significantly under-expressed in ACTH-secreting adenomas. CONCLUSIONS: Expression array analysis of pituitary adenomas using the Affymetrix GeneChip HG-U133A arrays appears to be a valid method of identifying genes that may be important in tumour pathogenesis

    Differential gene expression in pituitary adenomas by oligonucleotide array analysis.

    No full text
    OBJECTIVES: Microarray technology allows for the expression profile of many thousands of genes to be quantified at the same time, and has resulted in novel discoveries about the tumour biology of a number of cancers. We sought to do this in pituitary adenomas, the most common intracranial neoplasm. METHODS: Affymetrix GeneChip HG-U133A oligonucleotide arrays covering 14 500 well-characterised genes from the human genome were used to study pooled RNA for each of the four major pituitary adenoma subtypes. Individual gene-expression levels in the tumours were compared relative to the expression profile in normal pooled pituitary RNA. Three differentially expressed genes with potential importance in tumourigenesis were chosen for validation by real-time quantitative PCR on the original tumours and on an additional 26 adenomas. RESULTS: Bioinformatic analysis showed that 3906 genes and 351 expressed sequence tags were differentially expressed among all pituitary tumour subtypes. Lysosomal-associated protein transmembrane- 4-beta (LAPTM4B), a novel gene upregulated in hepatocellular carcinoma, was significantly over-expressed in adrenocorticotrophin (ACTH)-secreting adenomas and non-functioning pituitary adenomas (NFPAs). Bcl-2-associated athanogene (BAG1), an anti-apoptotic protein found at high levels in a number of human cancers, was significantly over-expressed in growth hormone-secreting and prolactin-secreting adenomas and NFPAs. The cyclin-dependent kinase inhibitor p18, in which murine gene deletion has been shown to produce pituitary ACTH cell hyperplasia and adenomas, was significantly under-expressed in ACTH-secreting adenomas. CONCLUSIONS: Expression array analysis of pituitary adenomas using the Affymetrix GeneChip HG-U133A arrays appears to be a valid method of identifying genes that may be important in tumour pathogenesis

    A szomatosztatinreceptor-expresszió változásának vizsgálata recidiváló medulloblastomában | Examination of somatostatin receptor expression in recurrent childhood medulloblastomas

    No full text
    Gyermekkorban a leggyakoribb rosszindulatú központi idegrendszeri daganat a medulloblastoma, mely az adekvát terápia ellenére gyakran recidivál. A primer tumor szomatosztatinreceptor-2-t (SSTR-2) expresszál, a recidívák receptorstátuszáról azonban nem állt rendelkezésünkre irodalmi adat. A receptor jelenlétének a recidíva korai kimutatásában és a terápiában is jelentősége lehet. Jelen munkánk célja az volt, hogy megvizsgáljuk, a gyermekkori medulloblastoma recidívája esetén a tumor megtartja-e SSTR-2-expresszióját. A Semmelweis Egyetem Gyermekgyógyászati Klinikáin 1998 és 2004 között kezelt, primeren és recidíva esetén is az Országos Idegsebészeti Tudományos Intézetben operált 10 recidiváló medulloblastomás beteg primer tumorának és recidívájának SSTR-2-expresszióját vizsgáltuk immunhisztokémiai módszerrel. Valamennyi esetben meghatároztuk az SSTR-2-pozitív tumorsejtek százalékos arányát és a festődés intenzitását a primer és recidív tumorokban. A primer tumor minden esetben SSTR-2-pozitív volt és a receptor kifejeződése a recidívában is megmaradt. Az SSTR-2-pozitív tumorsejtek százalékos aránya 30–90% között volt. Pozitív in vivo kontrollként Octreoscan-vizsgálat állt rendelkezésünkre 2 beteg esetében, melyek eredményével az immunhisztokémiai vizsgálatok eredménye korrelált. Amennyiben a tumor primeren SSTR-2-t expresszál, a recidíva korai kimutatása Octreoscan-vizsgálattal lehetséges, és szóba jöhet SSTR-agonista analógok (octreotide) terápiás alkalmazása is a recidívák kezelésében. | Medulloblastoma is the most common malignant pediatric central nervous system tumor. Despite the adequate therapy the tumor often recurs. The primary medulloblastoma expresses somatostatin receptor-2 (SSTR-2), but so far we had no experience about the receptor status in recurrent tumors. The presence of SSTR-2 may have an important role in the early detection and treatment of recurrent medulloblastomas. Our aim was to examine the state of SSTR-2 expression in recurrent childhood medulloblastomas. We examined SSTR-2 expression by immunohistochemistry in primary and recurrent medulloblastoma samples of ten children treated with recurrent medulloblastoma at Semmelweis University, Departments of Pediatrics, between 1998 and 2004. All primary and recurrent tumors have been operated at the National Institute of Neurosurgery. We examined the intensity and the percentage of SSTR-2-positive tumor cells in the primary and recurrent tumor samples. All primary tumors were receptor-positive and SSTR-2 was also expressed in all recurrent medulloblastomas. In our samples the percentage of SSTR-2-positive tumor cells was 30–90%. As a positive in vivo control Octreoscan images were available in two cases. In these cases the results of immunohistochemistry and Octreoscan imaging seemed to correlate. As a conclusion, SSTR-2-positive recurrent tumors can be detected early by Octreoscan imaging, and the presence of SSTR-2 establishes the opportunity of applying somatostatin analogues (octreotide) in the treatment of recurrent childhood medulloblastoma

    A mutation and expression analysis of the oncogene BRAF in pituitary adenomas.

    No full text
    OBJECTIVE: BRAF is an oncogene that is commonly mutated in both melanomas and papillary thyroid carcinomas, usually at position V600E that leads to constitutive activity in the Ras-mitogen-activated protein kinase (MAPK) pathway. We speculated that this same gene may be either mutated at this site, or overexpressed, in pituitary adenomas. DESIGN AND MEASUREMENTS: We sequenced 37 pituitary adenomas for a mutation at the V600E position. In addition, we investigated B-Raf mRNA expression in normal pituitary (n = 5) and nonfunctioning pituitary adenomas (NFPA) (n = 6) by semiquantitative PCR, and in a further 27 pituitary adenomas of various types and 10 normal pituitaries using real-time quantitative PCR. Finally, we explored B-Raf protein expression in 10 normal pituitaries and 12 NFPAs. RESULTS: No sequence mutations for the substitution V600E were identified. B-Raf mRNA was overexpressed in pituitary adenomas compared to normal pituitary, and this was entirely due to overexpression in NFPAs. NFPAs also showed very variable expression of B-Raf protein, but those tumours showing highest levels of B-Raf mRNA expressed the most B-Raf protein. CONCLUSIONS: Mutations previously seen in the majority of melanomas and a substantial minority of papillary thyroid carcinomas are not a frequent finding in pituitary adenomas. However, overexpression of B-Raf mRNA and protein may be a feature of NFPAs, highlighting overactivity of the Ras-B-Raf-MAP kinase pathway in these tumours

    Gene Expression Profiling from Formalin-Fixed Paraffin-Embedded Tumors of Pediatric Glioblastoma

    No full text
    Purpose: Gene expression profiling has proved crucial for understanding the biology of cancer. In rare diseases, including pediatric glioblastoma (pGBM), the lack of readily available fresh frozen (FF) material limits the feasibility of this analysis, as well as its validation, on independent data sets, a step needed to ensure relevance, mandating the use of alternate RNA sources. To overcome the limitation of material number and to validate results we obtained on FF pGBM, we did microarray analysis on RNA extracted from formalin-fixed, paraffin-embedded archival samples from pGBM and control brains, wherein we had no control on the fixation process. Experimental Design: RNA from 16 pGBM and 3 control brains was extracted and linearly amplified. Reverse transcription - PCR on housekeeping and formerly identified tumor-associated genes and microarray analysis were done on this RNA source. Results were validated by immunohistochemistry. Results: Despite extensive RNA degradation, microarray analysis was possible on 16 of 19 samples and reproduced the pattern of results obtained on FF pGBM. Gene lists and ontology subgrouping were highly concordant in both sample types. Similar to the findings on FF samples, we were able to identify two subsets of pGBM based on their association/lack of association with evidence consistent with an active Ras pathway. Conclusions: Archival formalin-fixed, paraffin-embedded tissues are an invaluable resource as they are the most widely available materials often accessible in conjunction with clinical and follow-up data. Gene expression profiling on this material is feasible and may represent a significant advance for understanding the biology of rare human diseases

    Identification of adrenocorticotropin receptor messenger ribonucleic acid in the human pituitary and its loss of expression in pituitary adenomas.

    No full text
    The ACTH receptor (ACTH-R) is the second member of the melanocortin (MC-2) receptor family that includes five seven-transmembrane G protein-coupled receptors and has been shown to be predominantly expressed in the adrenal cortex. It has been postulated that ACTH may regulate its own secretion through ultra-short-loop feedback within the pituitary. ACTH-secreting adenomas are characterized by resistance to glucocorticoid feedback, and they may have dysregulated ACTH feedback. We therefore investigated the ACTH-R in normal and adenomatous human pituitary tissue. We report here the identification of ACTH-R mRNA in the human pituitary gland, which was confirmed by direct sequencing. We studied the expression of the ACTH-R in 23 normal pituitary specimens and 53 pituitary adenomas (22 ACTH-secreting, nine GH-secreting, eight prolactin-secreting, one TSH-secreting, one FSH-secreting, 10 nonfunctioning, and two silent corticotroph adenomas), using the sensitive technique of real-time quantitative PCR. Contamination of ACTH-secreting adenomas and nonfunctioning pituitary adenomas with nonadenomatous tissue was excluded by lack of Pit-1 expression. ACTH-R mRNA was detected in all normal pituitary specimens, and in situ hybridization colocalized expression to ACTH staining cells only. However, ACTH-R mRNA levels were undetectable in 16 of 22 ACTH-secreting tumors and in both silent corticotroph tumors. Diagnostic preoperative plasma ACTH levels were significantly lower in the ACTH-R positive ACTH-secreting tumors, compared with those who were ACTH-R negative (P = 0.0006). Direct sequencing of the coding region of the ACTH-R in cDNA from three ACTH-secreting tumors positively expressing the receptor showed no mutations, as did sequencing of genomic DNA in three receptor negative ACTH-secreting tumors and the two silent corticotrophs. These results provide further evidence compatible with an ACTH feedback loop in the pituitary and suggest that loss of expression of the ACTH-R in corticotroph adenomas of patients with Cushing's disease may play a role in the resistance to feedback of the pituitary-adrenal axis seen in these patients

    Protein western array analysis in human pituitary tumours: insights and limitations.

    Get PDF
    The molecular analysis of pituitary tumours has received a great deal of attention, although the majority of studies have concentrated on the genome and the transcriptome. We aimed to study the proteome of human pituitary adenomas. A protein array using 1005 monoclonal antibodies was used to study GH-, corticotrophin- and prolactin-secreting as well as non-functioning pituitary adenomas (NFPAs). Individual protein expression levels in the tumours were compared with the expression profile of normal pituitary tissue. Out of 316 proteins that were detected in the pituitary tissue samples, 116 proteins had not previously been described in human pituitary tissue. Four prominent differentially expressed proteins with potential importance to tumorigenesis were chosen for validation by immunohistochemistry and western blotting. In the protein array analysis heat shock protein 110 (HSP110), a chaperone associated with protein folding, and B2 bradykinin receptor, a potential regulator of prolactin secretion, were significantly overexpressed in all adenoma subtypes, while C-terminal Src kinase (CSK), an inhibitor of proto-oncogenic enzymes, and annexin II, a calcium-dependent binding protein, were significantly underexpressed in all adenoma subtypes. The immunohistochemical analysis confirmed the overexpression of HSP110 and B2 bradykinin receptor and underexpression of CSK and annexin II in pituitary adenoma cells when compared with their corresponding normal pituitary cells. Western blotting only partially confirmed the proteomics data: HSP110 was significantly overexpressed in prolactinomas and NFPAs, the B2 bradykinin receptor was significantly overexpressed in prolactinomas, annexin II was significantly underexpressed in somatotrophinomas, while CSK did not show significant underexpression in any tumour. Protein expression analysis of pituitary samples disclosed both novel proteins and putative protein candidates for pituitary tumorigenesis, though validation using conventional techniques are necessary to confirm the protein array data

    Somatostatin analogues stimulate p27 expression and inhibit the MAP kinase pathway in pituitary tumours.

    No full text
    OBJECTIVES: Somatostatin (SST) analogues play an important role in the medical management of somatotroph pituitary adenomas and new agonists have the potential to be effective in a wider group of pituitary and other tumours. The anti-proliferative effect of SST occurs through multiple mechanisms, one of which is cell-cycle arrest, where p27, a cyclin-dependent kinase inhibitor, is an important regulator. We hypothesised that SST may upregulate p27 protein levels and downregulate the MAP kinase pathway in these tumours. METHODS: Human pituitary adenoma cells and rat pituitary cell line (GH3) were cultured and treated in vitro with octreotide and the broad-spectrum SST agonist SOM230 (pasireotide). Immunoblotting for p27 and phospho-ERK (pERK) was performed and proliferation assessed by [3H]-thymidine incorporation. Histological samples from acromegalic patients treated with octreotide before surgery were immunostained for p27 and compared to samples from untreated patients matched for sex, age, tumour size, extension and invasiveness. RESULTS: We detected upregulation of p27 protein levels with SST analogue treatment in vitro in human pituitary adenoma samples. pERK1/2 was inhibited by SST analogues in both the human samples and GH3 cells. SST and its analogues inhibited the proliferation of GH3 cells. p27 immunostaining was stronger in samples from patients with longer preoperative octreotide treatment (more than 6 months) than in samples from patients with shorter treatment periods. CONCLUSIONS: This study demonstrates that SST-mediated growth inhibition is associated with the downregulation of pERK and upregulation of p27. More potent and broader-spectrum SST analogues are likely to play an increasing role in the treatment of tumours, where the MAP kinase pathway is overactivated
    corecore