53 research outputs found

    Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME® trial

    Get PDF
    Aims/hypothesis: In addition to beneficial effects on glycaemia and cardiovascular death, empagliflozin improves adiposity indices. We investigated the effect of empagliflozin on aminotransferases (correlates of liver fat) in individuals with type 2 diabetes. Methods: Changes from baseline alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assessed in the EMPA-REG OUTCOME® trial (n = 7020), pooled data from four 24-week placebo-controlled trials (n = 2477) and a trial of empagliflozin vs glimepiride over 104 weeks (n = 1545). Analyses were performed using data from all participants and by tertiles of baseline aminotransferases. Results: In the EMPA-REG OUTCOME® trial, mean ± SE changes from baseline ALT at week 28 were −2.96 ± 0.18 and −0.73 ± 0.25 U/l with empagliflozin and placebo, respectively (adjusted mean difference: −2.22 [95% CI −2.83, −1.62]; p < 0.0001). Reductions in ALT were greatest in the highest ALT tertile (placebo-adjusted mean difference at week 28: −4.36 U/l [95% CI −5.51, −3.21]; p < 0.0001). The adjusted mean difference in change in ALT was −3.15 U/l (95% CI −4.11, −2.18) with empagliflozin vs placebo at week 24 in pooled 24-week data, and −4.88 U/l (95% CI −6.68, −3.09) with empagliflozin vs glimepiride at week 28. ALT reductions were largely independent of changes in weight or HbA1c. AST changes showed similar patterns to ALT, but the reductions were considerably lower. Conclusions/interpretation: These highly consistent results suggest that empagliflozin reduces aminotransferases in individuals with type 2 diabetes, in a pattern (reductions in ALT>AST) that is potentially consistent with a reduction in liver fat, especially when ALT levels are high

    An update on adrenocortical cell lines of human origin

    Full text link
    Adrenocortical carcinoma (ACC) is a rare, heterogenous and highly malignant disease. Management of ACC is dependent on disease stage with complete surgical resection as the only potentially curative option. However, advanced, un-resectable, metastatic stages and also recurrences often require systemic treatments, which are unfortunately nowadays still unsatisfactory. The scarcity of preclinical models reflecting patient heterogeneities and furthermore drug-resistant phenotypes, has hampered the progress and development of new therapies in recent years. In this review, we provide an overview on the classical models and substantial progress which has been made over the last years in context of this aggressive disease

    Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System

    Get PDF
    Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine

    The Vault Complex Is Significantly Involved in Therapeutic Responsiveness of Endocrine Tumors and Linked to Autophagy under Chemotherapeutic Conditions

    Get PDF
    Cancers display dynamic interactions with their complex microenvironments that influence tumor growth, invasiveness, and immune evasion, thereby also influencing potential resistance to therapeutic treatments. The tumor microenvironment (TME) includes cells of the immune system, the extracellular matrix, blood vessels, and other cell types, such as fibroblasts or adipocytes. Various cell types forming this TME secrete exosomes, and molecules thereby released into the TME have been shown to be important mediators of cellular communication and interplay. Specific stressors in the TME, such as hypoxia, starvation, inflammation, and damage, can furthermore induce autophagy, a fundamental cellular process that degrades and recycles molecules and subcellular components, and recently it has been demonstrated that the small non-coding vault RNA1-1 plays a role as a regulator of autophagy and the coordinated lysosomal expression and regulation (CLEAR) network. Here, we demonstrate for the first time that intra-tumoral damage following effective therapeutic treatment is linked to specific intracellular synthesis and subsequent exosomal release of vault RNAs in endocrine tumors in vitro and in vivo. While we observed a subsequent upregulation of autophagic markers under classical chemotherapeutic conditions, a downregulation of autophagy could be detected under conditions strongly involving inflammatory cascades

    Targeted gene expression profile reveals CDK4 as therapeutic target for selected patients with adrenocortical carcinoma

    Get PDF
    Adrenocortical carcinomas (ACC) are aggressive tumors with a heterogeneous prognosis and limited therapeutic options for advanced stages. This study aims to identify novel drug targets for a personalized treatment in ACC. RNA was isolated from 40 formalin-fixed paraffin-embedded ACC samples. We evaluated gene expression of 84 known cancer drug targets by reverse transcriptase quantitative real time-PCR and calculated fold change using 5 normal adrenal glands as reference (overexpression by fold change >2.0). The most promising candidate cyclin-dependent kinase 4 (CDK4) was investigated at protein level in 104 ACC samples and tested by in vitro experiments in two ACC cell lines (NCI-H295R and MUC1). The most frequently overexpressed genes were TOP2A (100% of cases, median fold change = 16.5), IGF2 (95%, fold change = 52.9), CDK1 (80%, fold change = 6.7), CDK4 (62%, fold change = 2.6), PLK4 (60%, fold change = 2.8), and PLK1 (52%, fold change = 2.3). CDK4 was chosen for functional validation, as it is actionable by approved CDK4/6-inhibitors (e.g., palbociclib). Nuclear immunostaining of CDK4 significantly correlated with mRNA expression (R = 0.52, P < 0.005). We exposed both NCI-H295R and MUC1 cell lines to palbociclib and found a concentration- and time-dependent reduction of cell viability, which was more pronounced in the NCI-H295R cells in line with higher CDK4 expression. Furthermore, we tested palbociclib in combination with insulin-like growth factor 1/insulin receptor inhibitor linsitinib showing an additive effect. In conclusion, we demonstrate that RNA profiling is useful to discover potential drug targets and that CDK4/6 inhibitors are promising candidates for treatment of selected patients with ACC

    Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial.

    Get PDF
    AIMS: We previously reported that in the EMPA-REG OUTCOME(®) trial, empagliflozin added to standard of care reduced the risk of 3-point major adverse cardiovascular events, cardiovascular and all-cause death, and hospitalization for heart failure in patients with type 2 diabetes and high cardiovascular risk. We have now further investigated heart failure outcomes in all patients and in subgroups, including patients with or without baseline heart failure. METHODS AND RESULTS: Patients were randomized to receive empagliflozin 10 mg, empagliflozin 25 mg, or placebo. Seven thousand and twenty patients were treated; 706 (10.1%) had heart failure at baseline. Heart failure hospitalization or cardiovascular death occurred in a significantly lower percentage of patients treated with empagliflozin [265/4687 patients (5.7%)] than with placebo [198/2333 patients (8.5%)] [hazard ratio, HR: 0.66 (95% confidence interval: 0.55-0.79); P \u3c 0.001], corresponding to a number needed to treat to prevent one heart failure hospitalization or cardiovascular death of 35 over 3 years. Consistent effects of empagliflozin were observed across subgroups defined by baseline characteristics, including patients with vs. without heart failure, and across categories of medications to treat diabetes and/or heart failure. Empagliflozin improved other heart failure outcomes, including hospitalization for or death from heart failure [2.8 vs. 4.5%; HR: 0.61 (0.47-0.79); P \u3c 0.001] and was associated with a reduction in all-cause hospitalization [36.8 vs. 39.6%; HR: 0.89 (0.82-0.96); P = 0.003]. Serious adverse events and adverse events leading to discontinuation were reported by a higher proportion of patients with vs. without heart failure at baseline in both treatment groups, but were no more common with empagliflozin than with placebo. CONCLUSION: In patients with type 2 diabetes and high cardiovascular risk, empagliflozin reduced heart failure hospitalization and cardiovascular death, with a consistent benefit in patients with and without baseline heart failure

    Transplantation of porcine adrenal spheroids for the treatment of adrenal insufficiency

    Get PDF
    Primary adrenal insufficiency is a life-threatening disorder, which requires lifelong hormone replacement therapy. Transplantation of xenogeneic adrenal cells is a potential alternative approach for the treatment of adrenal insufficiency. For a successful outcome of this replacement therapy, transplanted cells should provide adequate hormone secretion and respond to adrenal physiological stimuli. Here, we describe the generation and characterization of primary porcine adrenal spheroids capable of replacing the function of adrenal glands in vivo. Cells within the spheroids morphologically resembled adult adrenocortical cells and synthesized and secreted adrenal steroid hormones in a regulated manner. Moreover, the embedding of the spheroids in alginate led to the formation of cellular elongations of steroidogenic cells migrating centripetally towards the inner part of the slab, similar to zona Fasciculata cells in the intact organ. Finally, transplantation of adrenal spheroids in adrenalectomized SCID mice reversed the adrenal insufficiency phenotype, which significantly improved animals' survival. Overall, such adrenal models could be employed for disease modeling and drug testing, and represent the first step toward potential clinical trials in the future

    Innovative multidimensional models in a high-throughput-format for different cell types of endocrine origin

    Full text link
    The adrenal gland provides an important function by integrating neuronal, immune, vascular, metabolic and endocrine signals under a common organ capsule. It is the central organ of the stress response system and has been implicated in numerous stress-related disorders. While for other diseases, regeneration of healthy organ tissue has been aimed at such approaches are lacking for endocrine diseases - with the exception of type-I-diabetes. Moreover, adrenal tumor formation is very common, however, appropriate high-throughput applications reflecting the high heterogeneity and furthermore relevant 3D-structures in vitro are still widely lacking. Recently, we have initiated the development of standardized multidimensional models of a variety of endocrine cell/tissue sources in a new multiwell-format. Firstly, we confirmed common applicability for pancreatic pseudo-islets. Next, we translated applicability for spheroid establishment to adrenocortical cell lines as well as patient material to establish spheroids from malignant, but also benign adrenal tumors. We aimed furthermore at the development of bovine derived healthy adrenal organoids and were able to establish steroidogenic active organoids containing both, cells of cortical and medullary origin. Overall, we hope to open new avenues for basic research, endocrine cancer and adrenal tissue-replacement-therapies as we demonstrate potential for innovative mechanistic insights and personalized medicine in endocrine (tumor)-biology
    • …
    corecore