12 research outputs found

    Properties of the Liquid-Vapor Interface of Acetone-Water Mixtures. A Computer Simulation and ITIM Analysis Study

    Get PDF
    Molecular dynamics simulations of the liquid-vapor interface of acetone-water mixtures of different compositions, covering the entire composition range have been performed on the canonical (N, V, T) ensemble at 298 K, using a model combination that excellently describes the mixing properties of these compounds. The properties of the intrinsic liquid surfaces have been analyzed in terms of the Identification of the Truly Interfacial Molecules (ITIM) method. Thus, the composition, width, roughness, and separation of the subsurface molecular layers, as well as self-association, orientation, and dynamics of exchange with the bulk phase of the surface molecules have been analyzed in detail. Our results show that acetone molecules are strongly adsorbed at the liquid surface, and this adsorption extends to several molecular layers. Like molecules in the surface layer are found to form relatively large lateral self-associates. The effect of the vicinity of the vapor phase on a number of properties of the liquid phase vanishes beyond the first molecular layer, with the second subsurface layer already part of the bulk liquid phase in these respects. The orientational preferences of the surface molecules are governed primarily by the dipole-dipole interaction of the neighboring acetone molecules, and hydrogen bonding interaction of the neighboring acetone-water pairs. (Figure Presented). © 2015 American Chemical Society

    Floating Patches of HCN at the Surface of Their Aqueous Solutions - Can They Make "HCN World" Plausible?

    Get PDF
    The liquid/vapor interface of the aqueous solutions of HCN of different concentrations has been investigated using molecular dynamics simulation and intrinsic surface analysis. Although HCN is fully miscible with water, strong interfacial adsorption of HCN is observed at the surface of its aqueous solutions, and, at the liquid surface, the HCN molecules tend to be located even at the outer edge of the surface layer. It turns out that in dilute systems the HCN concentration can be about an order of magnitude larger in the surface layer than in the bulk liquid phase. Furthermore, HCN molecules show a strong lateral self-association behavior at the liquid surface, forming thus floating HCN patches at the surface of their aqueous solutions. Moreover, HCN molecules are staying, on average, an order of magnitude longer at the liquid surface than water molecules, and this behavior is more pronounced at smaller HCN concentrations. Because of this enhanced dynamical stability, the floating HCN patches can provide excellent spots for polymerization of HCN, which can be the key step in the prebiotic synthesis of partially water-soluble adenine. All of these findings make the hypothesis of "HCN world" more plausible

    Solvation free energy profile of the SCN- ion across the water-1,2-dichloroethane liquid/liquid interface. A computer simulation study

    Get PDF
    The solvation free energy profile of a single SCN- ion is calculated across the water-1,2-dichloroethane liquid/liquid interface at 298 K by the constraint force method. The obtained results show that the free energy cost of transferring the ion from the aqueous to the organic phase is about 70 kJ/mol, The free energy profile shows a small but clear well at the aqueous side of the interface, in the subsurface region of the water phase, indicating the ability of the SCN- ion to be adsorbed in the close vicinity of the interface. Upon entrance of the SCN- ion to the organic phase a coextraction of the water molecules of its first hydration shell occurs. Accordingly, when it is located at the boundary of the two phases the SCN- ion prefers orientations in which its bulky S atom is located at the aqueous side, and the small N atom, together with its first hydration shell, at the organic side of the interface

    Adsorption of Aromatic Hydrocarbon Molecules at the Surface of Ice, As Seen by Grand Canonical Monte Carlo Simulation

    No full text
    The adsorption of four aromatic hydrocarbon compounds, benzene, naphthalene, anthracene, and phenanthrene, at the surface of I-h ice is investigated by grand canonical Monte Carlo (GCMC) computer simulation under tropospheric conditions at 200 K. By systematic variation of the value of adsorbate chemical potential in the simulations, the adsorption isotherms are determined, It is found that adsorption follows the Langmuir mechanism only up to a rather low relative pressure value in every case. In this range specific surface sites, called alpha sites, to which adsorbate molecules can be bound particularly strongly in specific orientation, are occupied. In these alpha sites, presumably the dangling OH bonds of the ice surface form O-H-center dot center dot center dot center dot pi-type hydrogen bonds with the delocalized pi electrons of the adsorbed aromatic molecule lying parallel with the ice surface. Once these alpha sites are saturated, lateral interactions become increasingly important, leading to large fluctuations of the lateral density of the adsorption layer and an increasing deviation of the adsorption isotherm from the Langmuir shape. The adsorption layer is found to be strictly monomolecular and even unsaturated in every case, as condensation well precedes the saturation of this monolayer for all four aromatic adsorbates considered in this study
    corecore