9,186 research outputs found

    Spin Measurements in lp -> hX Deep Inelastic Scattering

    Get PDF
    The production of hadrons in polarized lepton-nucleon deep inelastic scattering is discussed. The helicity density matrix of the hadron is computed within the QCD hard scattering formalism and its elements are shown to yield information on the spin structure of the nucleon and the spin dependence of the quark fragmentation process. The case of ρ\rho vector mesons is considered in more detail and estimates are given.Comment: 3 pages, LaTeX, no figures. Talk delivered by J. Hansson at the XII International Symposium on High Energy Spin Physics, Amsterdam, Sept. 10-14, 1996. To be published in the proceeding

    Dynamical two electron states in a Hubbard-Davydov model

    Full text link
    We study a model in which a Hubbard Hamiltonian is coupled to the dispersive phonons in a classical nonlinear lattice. Our calculations are restricted to the case where we have only two quasi-particles of opposite spins, and we investigate the dynamics when the second quasi-particle is added to a state corresponding to a minimal energy single quasi-particle state. Depending on the parameter values, we find a number of interesting regimes. In many of these, discrete breathers (DBs) play a prominent role with a localized lattice mode coupled to the quasiparticles. Simulations with a purely harmonic lattice show much weaker localization effects. Our results support the possibility that DBs are important in HTSC.Comment: 14 pages, 12 fig

    Microscopic theory of the quantum Hall hierarchy

    Full text link
    We solve the quantum Hall problem exactly in a limit and show that the ground states can be organized in a fractal pattern consistent with the Haldane-Halperin hierarchy, and with the global phase diagram. We present wave functions for a large family of states, including those of Laughlin and Jain and also for states recently observed by Pan {\it et. al.}, and show that they coincide with the exact ones in the solvable limit. We submit that they establish an adiabatic continuation of our exact results to the experimentally accessible regime, thus providing a unified approach to the hierarchy states.Comment: 4 pages, 2 figures. Publishe

    A simple explanation of the non-appearance of physical gluons and quarks

    Full text link
    We show that the non-appearance of gluons and quarks as physical particles is a rigorous and automatic result of the full, i.e. nonperturbative, nonabelian nature of the color interaction in quantum chromodynamics. This makes it in general impossible to describe the color field as a collection of elementary quanta (gluons). Neither can a quark be an elementary quantum of the quark field, as the color field of which it is the source is itself a source, making isolated noninteracting quarks, crucial for a physical particle interpretation, impossible. In geometrical language, the impossibility of quarks and gluons as physical elementary particles arises due to the fact that the color Yang-Mills space does not have a constant trivial curvature. In QCD, the particles ``gluons'' and ``quarks'' are merely artifacts of an approximation method (the perturbative expansion) and are simply absent in the exact theory. This also coincides with the empirical, experimental evidence.Comment: 8 pages, Latex (to appear in Can.J.Phys.

    Charge Fractionalization on Quantum Hall Edges

    Full text link
    We discuss the propagation and fractionalization of localized charges on the edges of quantum Hall bars of variable widths, where interactions between the edges give rise to Luttinger liquid behavior with a non-trivial interaction parameter g. We focus in particular on the separation of an initial charge pulse into a sharply defined front charge and a broader tail. The front pulse describes an adiabatically dressed electron which carries a non-integer charge, which is \sqrt{g} times the electron charge. We discuss how the presence of this fractional charge can, in principle, be detected through measurements of the noise in the current created by tunneling of electrons into the system. The results are illustrated by numerical simulations of a simplified model of the Hall bar.Comment: 15 page

    The Pfaffian quantum Hall state made simple--multiple vacua and domain walls on a thin torus

    Full text link
    We analyze the Moore-Read Pfaffian state on a thin torus. The known six-fold degeneracy is realized by two inequivalent crystalline states with a four- and two-fold degeneracy respectively. The fundamental quasihole and quasiparticle excitations are domain walls between these vacua, and simple counting arguments give a Hilbert space of dimension 2n−12^{n-1} for 2n−k2n-k holes and kk particles at fixed positions and assign each a charge ±e/4\pm e/4. This generalizes the known properties of the hole excitations in the Pfaffian state as deduced using conformal field theory techniques. Numerical calculations using a model hamiltonian and a small number of particles supports the presence of a stable phase with degenerate vacua and quarter charged domain walls also away from the thin torus limit. A spin chain hamiltonian encodes the degenerate vacua and the various domain walls.Comment: 4 pages, 1 figure. Published, minor change

    Edge Theories for Polarized Quantum Hall States

    Full text link
    Starting from recently proposed bosonic mean field theories for fully and partially polarized quantum Hall states, we construct corresponding effective low energy theories for the edge modes. The requirements of gauge symmetry and invariance under global O(3) spin rotations, broken only by a Zeeman coupling, imply boundary conditions that allow for edge spin waves. In the generic case, these modes are chiral, and the spin stiffness differs from that in the bulk. For the case of a fully polarized Μ=1\nu=1 state, our results agree with previous Hartree-Fock calculations.Comment: 15 pages (number of pages has been reduced by typesetting in RevTeX); 2 references adde

    Does export dependency hurt economic development? Empirical evidence from Singapore

    Get PDF
    A rapid export growth in East Asia was once identified as a source of the sustainable economic development that the region enjoyed. However, the current global recession has turned exports from an economic virtue to a vice. There is a growing awareness that a heavy reliance on exports has caused a serious economic downturn in the region. The present paper chooses Singapore as a case study to examine the relationship between the origin of the East Asian Miracle (i.e. export dependency) and the economic growth. For this purpose, the study employs a causality test developed by Toda and Yamamoto. The empirical findings indicate that despite a negative long-run relationship between export dependency and economic growth, Singapore's heavy reliance on exports does not seem to have produced negative effects on the nation's economic growth. This is because the increase in export dependency was an effect, and not a cause, of the country's output expansion.
    • 

    corecore