1,915 research outputs found
A high frequency optical trap for atoms using Hermite-Gaussian beams
We present an experimental method to create a single high frequency optical
trap for atoms based on an elongated Hermite-Gaussian TEM01 mode beam. This
trap results in confinement strength similar to that which may be obtained in
an optical lattice. We discuss an optical setup to produce the trapping beam
and then detail a method to load a Bose-Einstein Condensate (BEC) into a TEM01
trap. Using this method, we have succeeded in producing individual highly
confined lower dimensional condensates.Comment: 9 pages, 5 figure
Association of mid-infrared solar plages with Calcium K line emissions and magnetic structures
Solar mid-IR observations in the 8-15 micrometer band continuum with moderate
angular resolution (18 arcseconds) reveal the presence of bright structures
surrounding sunspots. These plage-like features present good association with
calcium CaII K1v plages and active region magnetograms. We describe a new
optical setup with reflecting mirrors to produce solar images on the focal
plane array of uncooled bolometers of a commercial camera preceded by germanium
optics. First observations of a sunspot on September 11, 2006 show a mid-IR
continuum plage exhibiting spatial distribution closely associated with CaII
K1v line plage and magnetogram structures. The mid-IR continuum bright plage is
about 140 K hotter than the neighboring photospheric regions, consistent with
hot plasma confined by the magnetic spatial structures in and above the active
regionComment: 5 pages, 4 figures. Accepted by PAS
Arithmetic complexity via effective names for random sequences
We investigate enumerability properties for classes of sets which permit
recursive, lexicographically increasing approximations, or left-r.e. sets. In
addition to pinpointing the complexity of left-r.e. Martin-L\"{o}f, computably,
Schnorr, and Kurtz random sets, weakly 1-generics and their complementary
classes, we find that there exist characterizations of the third and fourth
levels of the arithmetic hierarchy purely in terms of these notions.
More generally, there exists an equivalence between arithmetic complexity and
existence of numberings for classes of left-r.e. sets with shift-persistent
elements. While some classes (such as Martin-L\"{o}f randoms and Kurtz
non-randoms) have left-r.e. numberings, there is no canonical, or acceptable,
left-r.e. numbering for any class of left-r.e. randoms.
Finally, we note some fundamental differences between left-r.e. numberings
for sets and reals
The Extended Range X-Ray Telescope center director's discretionary fund report
An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and spatial resolution capable of functioning over a broad region of the X-ray/XUV portion of the spectrum has been designed and analyzed. This system has been configured around the glancing-incidence Wolter Type I X-ray mirror system which was flown on the Skylab Apollo Telescope Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly broader spectral range can be realized by the utilization of a thinned, back-illuminated, buried-channel Charge Coupled Device (CCD) as the X-ray/XUV detector rather than photographic film. However, to maintain the high spatial resolution inherent in the X-ray optics when a CCD of 30 micron pixel size is used, it is necessary to increase the telescope plate scale. This can be accomplished by use of a glancing-incidence X-ray microscope to enlarge and re-focus the primary image onto the focal surface of the CCD
Algorithmic Randomness and Capacity of Closed Sets
We investigate the connection between measure, capacity and algorithmic
randomness for the space of closed sets. For any computable measure m, a
computable capacity T may be defined by letting T(Q) be the measure of the
family of closed sets K which have nonempty intersection with Q. We prove an
effective version of Choquet's capacity theorem by showing that every
computable capacity may be obtained from a computable measure in this way. We
establish conditions on the measure m that characterize when the capacity of an
m-random closed set equals zero. This includes new results in classical
probability theory as well as results for algorithmic randomness. For certain
computable measures, we construct effectively closed sets with positive
capacity and with Lebesgue measure zero. We show that for computable measures,
a real q is upper semi-computable if and only if there is an effectively closed
set with capacity q
Bose Einstein Condensate in a Box
Bose-Einstein condensates have been produced in an optical box trap. This
novel optical trap type has strong confinement in two directions comparable to
that which is possible in an optical lattice, yet produces individual
condensates rather than the thousands typical of a lattice. The box trap is
integrated with single atom detection capability, paving the way for studies of
quantum atom statistics.Comment: 4 pages, 5 figure
Estimation of solar prominence magnetic fields based on the reconstructed 3D trajectories of prominence knots
We present an estimation of the lower limits of local magnetic fields in
quiescent, activated, and active (surges) promineces, based on reconstructed
3-dimensional (3D) trajectories of individual prominence knots. The 3D
trajectories, velocities, tangential and centripetal accelerations of the knots
were reconstructed using observational data collected with a single
ground-based telescope equipped with a Multi-channel Subtractive Double Pass
imaging spectrograph. Lower limits of magnetic fields channeling observed
plasma flows were estimated under assumption of the equipartition principle.
Assuming approximate electron densities of the plasma n_e = 5*10^{11} cm^{-3}
in surges and n_e = 5*10^{10} cm^{-3} in quiescent/activated prominences, we
found that the magnetic fields channeling two observed surges range from 16 to
40 Gauss, while in quiescent and activated prominences they were less than 10
Gauss. Our results are consistent with previous detections of weak local
magnetic fields in the solar prominences.Comment: 14 pages, 12 figures, 1 tabl
The Pinhole/Occulter Facility
A large occulting system in space can be used for high resolution X-ray observations and for large aperture coronagraphic observations in visible and UV light. The X-ray observations can combine high angular resolution in hand (10 keV) X-radiation with the high sensitivity of a multiple pinhole camera, and can permit sensitive observations of bremsstrahlung from nonthermal particles in the corona. The large aperture coronagraphs have two major advantages: high angular resolution and good photon collection. This will permit observations of small scale structures in the corona for the first time and will give sufficient counting rates above the coronal background rates for sensitive diagnostic analysis of intensities and line profiles for coronal structures in the solar wind acceleration region. The technical basis for performing observations with a large occulting system in these three wavelength ranges is described as well as a pinhole/occulter facility presently being considered for Spacelab. Some indications about future developments are included
- …