28,444 research outputs found

    Experimental Comparisons of Derivative Free Optimization Algorithms

    Get PDF
    In this paper, the performances of the quasi-Newton BFGS algorithm, the NEWUOA derivative free optimizer, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), the Differential Evolution (DE) algorithm and Particle Swarm Optimizers (PSO) are compared experimentally on benchmark functions reflecting important challenges encountered in real-world optimization problems. Dependence of the performances in the conditioning of the problem and rotational invariance of the algorithms are in particular investigated.Comment: 8th International Symposium on Experimental Algorithms, Dortmund : Germany (2009

    Quasi-Optimal Filtering in Inverse Problems

    Full text link
    A way of constructing a nonlinear filter close to the optimal Kolmogorov - Wiener filter is proposed within the framework of the statistical approach to inverse problems. Quasi-optimal filtering, which has no Bayesian assumptions, produces stable and efficient solutions by relying solely on the internal resources of the inverse theory. The exact representation is given of the Feasible Region for inverse solutions that follows from the statistical consideration.Comment: 9 pages, 240 K

    Long-time tails and cage effect in driven granular fluids

    Full text link
    We study the velocity autocorrelation function (VACF) of a driven granular fluid in the stationary state in 3 dimensions. As the critical volume fraction of the glass transition in the corresponding elastic system is approached, we observe pronounced cage effects in the VACF as well as a strong decrease of the diffusion constant. At moderate densities the VACF is shown to decay algebraically in time (t^{-3/2}) like in a molecular fluid, as long as the driving conserves momentum locally.Comment: 4 pages, 4 figure

    Gas-liquid critical parameters of asymmetric models of ionic fluids

    Full text link
    The effects of size and charge asymmetry on the gas-liquid critical parameters of a primitive model (PM) of ionic fluids are studied within the framework of the statistical field theory based on the collective variables method. Recently, this approach has enabled us to obtain the correct trends of the both critical parameters of the equisize charge-asymmetric PM without assuming ionic association. In this paper we focus on the general case of an asymmetric PM characterized by the two parameters: hard-sphere diameter-, λ=σ+/σ\lambda=\sigma_{+}/\sigma_{-} and charge, z=q+/qz=q_{+}/|q_{-}|, ratios of the two ionic species. We derive an explicit expression for the chemical potential conjugate to the order parameter which includes the effects of correlations up to the third order. Based on this expression we consider the three versions of PM: a monovalent size-asymmetric PM (λ1\lambda\neq 1, z=1z=1), an equisize charge-asymmetric PM (λ=1\lambda=1, z1z\neq 1) and a size- and charge-asymmetric PM (λ1\lambda\neq 1, z=2z=2). Similar to simulations, our theory predicts that the critical temperature and the critical density decrease with the increase of size asymmetry. Regarding the effects of charge asymmetry, we obtain the correct trend of the critical temperature with zz, while the trend of the critical density obtained in this approximation is inconsistent with simulations, as well as with our previous results found in the higher-order approximation. We expect that the consideration of the higher-order correlations will lead to the correct trend of the critical density with charge asymmetry.Comment: 23 pages, 6 figure

    Real-Time Data Processing in the Muon System of the D0 Detector

    Get PDF
    This paper presents a real-time application of the 16-bit fixed point Digital Signal Processors (DSPs), in the Muon System of the D0 detector located at the Fermilab Tevatron, presently the world's highest-energy hadron collider. As part of the Upgrade for a run beginning in the year 2000, the system is required to process data at an input event rate of 10 KHz without incurring significant deadtime in readout. The ADSP21csp01 processor has high I/O bandwidth, single cycle instruction execution and fast task switching support to provide efficient multisignal processing. The processor's internal memory consists of 4K words of Program Memory and 4K words of Data Memory. In addition there is an external memory of 32K words for general event buffering and 16K words of Dual Port Memory for input data queuing. This DSP fulfills the requirement of the Muon subdetector systems for data readout. All error handling, buffering, formatting and transferring of the data to the various trigger levels of the data acquisition system is done in software. The algorithms developed for the system complete these tasks in about 20 microseconds per event.Comment: 4 pages, Presented and published at the 11th IEEE NPSS Real Time Conference, held at Santa Fe, New Mexico, USA, from June 14-18, 199

    Pearson's random walk in the space of the CMB phases: evidence for parity asymmetry

    Full text link
    The temperature fluctuations of the Cosmic Microwave Background (CMB) are supposed to be distributed randomly in both magnitude and phase, following to the simplest model of inflation. In this paper, we look at the odd and even multipoles of the spherical harmonic decomposition of the CMB, and the different characteristics of these, giving rise to a parity asymmetry. We compare the even and odd multipoles in the CMB power spectrum, and also the even and odd mean angles. We find for the multipoles of the power spectrum, that there is power excess in odd multipoles, compared to even ones, meaning that we have a parity asymmetry. Further, for the phases, we present a random walk for the mean angles, and find a significant separation for even/odd mean angles, especially so for galactic coordinates. This is further tested and confirmed with a directional parity test, comparing the parity asymmetry in galactic and ecliptic coordinates.Comment: Accepted for publication in Phys. Rev. D, 10 pages, 10 figures, 1 table. Some typographical errors corrected, and further references adde

    What it takes to measure a fundamental difference between dark matter and baryons: the halo velocity anisotropy

    Full text link
    Numerous ongoing experiments aim at detecting WIMP dark matter particles from the galactic halo directly through WIMP-nucleon interactions. Once such a detection is established a confirmation of the galactic origin of the signal is needed. This requires a direction-sensitive detector. We show that such a detector can measure the velocity anisotropy beta of the galactic halo. Cosmological N-body simulations predict the dark matter anisotropy to be nonzero, beta~0.2. Baryonic matter has beta=0 and therefore a detection of a nonzero beta would be strong proof of the fundamental difference between dark and baryonic matter. We estimate the sensitivity for various detector configurations using Monte Carlo methods and we show that the strongest signal is found in the relatively few high recoil energy events. Measuring beta to the precision of ~0.03 will require detecting more than 10^4 WIMP events with nuclear recoil energies greater than 100 keV for a WIMP mass of 100 GeV and a 32S target. This number corresponds to ~10^6 events at all energies. We discuss variations with respect to input parameters and we show that our method is robust to the presence of backgrounds and discuss the possible improved sensitivity for an energy-sensitive detector.Comment: 15 pages, 8 figures, accepted by JCAP. Matches accepted versio

    Statistical Description of Hydrodynamic Processes in Ionic Melts with taking into account Polarization Effects

    Full text link
    Statistical description of hydrodynamic processes for ionic melts is proposed with taking into account polarization effects caused by the deformation of external ionic shells. This description is carried out by means of the Zubarev nonequilibrium statistical operator method, appropriate for investigations of both strong and weak nonequilibrium processes. The nonequilibrium statistical operator and the generalized hydrodynamic equations that take into account polarization processes are received for ionic-polarization model of ionic molten salts when the nonequilibrium averaged values of densities of ions number, their momentum, dipole momentum and total energy are chosen for the reduced description parameters. A spectrum of collective excitations is investigated within the viscoelastic approximation for ion-polarization model of ionic melts.Comment: 24 pages, RevTex4.1-format, no figure

    Nonlinear Screening and Effective Electrostatic Interactions in Charge-Stabilized Colloidal Suspensions

    Full text link
    A nonlinear response theory is developed and applied to electrostatic interactions between spherical macroions, screened by surrounding microions, in charge-stabilized colloidal suspensions. The theory describes leading-order nonlinear response of the microions (counterions, salt ions) to the electrostatic potential of the macroions and predicts microion-induced effective many-body interactions between macroions. A linear response approximation [Phys. Rev. E 62, 3855 (2000)] yields an effective pair potential of screened-Coulomb (Yukawa) form, as well as a one-body volume energy, which contributes to the free energy. Nonlinear response generates effective many-body interactions and essential corrections to both the effective pair potential and the volume energy. By adopting a random-phase approximation (RPA) for the response functions, and thus neglecting microion correlations, practical expressions are derived for the effective pair and triplet potentials and for the volume energy. Nonlinear screening is found to weaken repulsive pair interactions, induce attractive triplet interactions, and modify the volume energy. Numerical results for monovalent microions are in good agreement with available ab initio simulation data and demonstrate that nonlinear effects grow with increasing macroion charge and concentration and with decreasing salt concentration. In the dilute limit of zero macroion concentration, leading-order nonlinear corrections vanish. Finally, it is shown that nonlinear response theory, when combined with the RPA, is formally equivalent to the mean-field Poisson-Boltzmann theory and that the linear response approximation corresponds, within integral-equation theory, to a linearized hypernetted-chain closure.Comment: 30 pages, 8 figures, Phys. Rev. E (in press
    corecore