38,403 research outputs found

    Trace functions as Laplace transforms

    Full text link
    We study trace functions on the form t\to\tr f(A+tB) where f f is a real function defined on the positive half-line, and A A and B B are matrices such that A A is positive definite and B B is positive semi-definite. If f f is non-negative and operator monotone decreasing, then such a trace function can be written as the Laplace transform of a positive measure. The question is related to the Bessis-Moussa-Villani conjecture. Key words: Trace functions, BMV-conjecture.Comment: Minor change of style, update of referenc

    Inequalities for quantum skew information

    Full text link
    We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner-Yanase skew information is the maximal skew information with respect to this order structure in the set of Wigner-Yanase-Dyson skew informations. Key words and phrases: Quantum covariance, metric adjusted skew information, Robertson-type uncertainty principle, operator monotone function, Wigner-Yanase-Dyson skew information

    Toward the Jamming Threshold of Sphere Packings: Tunneled Crystals

    Full text link
    We have discovered a new family of three-dimensional crystal sphere packings that are strictly jammed (i.e., mechanically stable) and yet possess an anomalously low density. This family constitutes an uncountably infinite number of crystal packings that are subpackings of the densest crystal packings and are characterized by a high concentration of self-avoiding "tunnels" (chains of vacancies) that permeate the structures. The fundamental geometric characteristics of these tunneled crystals command interest in their own right and are described here in some detail. These include the lattice vectors (that specify the packing configurations), coordination structure, Voronoi cells, and density fluctuations. The tunneled crystals are not only candidate structures for achieving the jamming threshold (lowest-density rigid packing), but may have substantially broader significance for condensed matter physics and materials science.Comment: 19 pages, 5 figure

    Metric adjusted skew information: Convexity and restricted forms of superadditivity

    Full text link
    We give a truly elementary proof of the convexity of metric adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric adjusted skew informations. Recently, Luo and Zhang introduced the notion of semi-quantum states on a bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew informations for such states. We extend this result to general metric adjusted skew informations. We finally show that a recently introduced extension to parameter values 1<p≤2 1<p\le 2 of the WYD-information is a special case of (unbounded) metric adjusted skew information.Comment: An error in the literature is pointed ou

    Crossover Behavior in Burst Avalanches of Fiber Bundles: Signature of Imminent Failure

    Full text link
    Bundles of many fibers, with statistically distributed thresholds for breakdown of individual fibers and where the load carried by a bursting fiber is equally distributed among the surviving members, are considered. During the breakdown process, avalanches consisting of simultaneous rupture of several fibers occur, with a distribution D(Delta) of the magnitude Delta of such avalanches. We show that there is, for certain threshold distributions, a crossover behavior of D(Delta) between two power laws D(Delta) proportional to Delta^(-xi), with xi=3/2 or xi=5/2. The latter is known to be the generic behavior, and we give the condition for which the D(Delta) proportional to Delta^(-3/2) behavior is seen. This crossover is a signal of imminent catastrophic failure in the fiber bundle. We find the same crossover behavior in the fuse model.Comment: 4 pages, 4 figure

    Asymmetries in the CMB anisotropy field

    Full text link
    We report on the results from two independent but complementary statistical analyses of the WMAP first-year data, based on the power spectrum and N-point correlation functions. We focus on large and intermediate scales (larger than about 3 degrees) and compare the observed data against Monte Carlo ensembles with WMAP-like properties. In both analyses, we measure the amplitudes of the large-scale fluctuations on opposing hemispheres and study the ratio of the two amplitudes. The power-spectrum analysis shows that this ratio for WMAP, as measured along the axis of maximum asymmetry, is high at the 95%-99% level (depending on the particular multipole range included). The axis of maximum asymmetry of the WMAP data is weakly dependent on the multipole range under consideration but tends to lie close to the ecliptic axis. In the N-point correlation function analysis we focus on the northern and southern hemispheres defined in ecliptic coordinates, and we find that the ratio of the large-scale fluctuation amplitudes is high at the 98%-99% level. Furthermore, the results are stable with respect to choice of Galactic cut and also with respect to frequency band. A similar asymmetry is found in the COBE-DMR map, and the axis of maximum asymmetry is close to the one found in the WMAP data.Comment: 6 pages, 5 figures; version to appear in ApJ, textual improvements, added reference

    Classical Nucleation Theory of the One-Component Plasma

    Full text link
    We investigate the crystallization rate of a one-component plasma (OCP) in the context of classical nucleation theory. From our derivation of the free energy of an arbitrary distribution of solid clusters embedded in a liquid phase, we derive the steady-state nucleation rate of an OCP as a function of the Coulomb coupling parameter. Our result for the rate is in accord with recent molecular dynamics simulations, but it is greater than that of previous analytical estimates by many orders of magnitude. Further molecular dynamics simulations of the nucleation rate of a supercooled liquid OCP for several values of the coupling parameter would clarify the physics of this process.Comment: 6 pages, 1 figure, accepted by PR

    The Jahn-Teller active fluoroperovskites ACrF3A\mathrm{CrF_3} A=Na+,K+A=\mathrm{Na^+},\mathrm{K^+}: thermo- and magneto optical correlations as function of the AA-site

    Get PDF
    Chromium (II) fluoroperovskites ACrF3(A=Na+,K+)A\mathrm{CrF_3}(A\mathrm{=Na^+,K^+}) are strongly correlated Jahn-Teller active materials at low temperatures. In this paper, we examine the role that the AA-site ion plays in this family of fluoroperovskites using both experimental methods (XRD, optical absorption spectroscopy and magnetic fields) and DFT simulations. Temperature-dependent optical absorption experiments show that the spin-allowed transitions E2E_2 and E3E_3 only merge completely for AA= Na at 2 K. Field-dependent optical absorption measurements at 2 K show that the oscillating strength of the spin-allowed transitions in NaCrF3\mathrm{NaCrF_3} increases with increasing applied field. Direct magneto-structural correlations which suppress the spin-flip transitions are observed for KCrF3{\rm KCrF_3} below its Ne\'el temperature. In NaCrF3{\rm NaCrF_3} the spin-flip transitions vanish abruptly below 9 K revealing magneto-optical correlations not linked to crystal structure changes. This suggests that as the long range ordering is reduced local JT effects in the individual CrF64−{\rm CrF_6^{4-}} octahedra take control of the observed behavior. Our results show clear deviation from the pattern found for the isoelectronic AxMnF3+xA_x{\rm MnF}_{3+x} system. The size of the AA-site cation is shown to be central in dictating the physical properties and phase transitions in ACrF3A{\rm CrF}_3, opening up the possibility of varying the composition to create novel states of matter with tuneable properties

    Random Diffusion Model with Structure Corrections

    Full text link
    The random diffusion model is a continuum model for a conserved scalar density field driven by diffusive dynamics where the bare diffusion coefficient is density dependent. We generalize the model from one with a sharp wavenumber cutoff to one with a more natural large-wavenumber cutoff. We investigate whether the features seen previously -- namely a slowing down of the system and the development of a prepeak in the dynamic structure factor at a wavenumber below the first structure peak -- survive in this model. A method for extracting information about a hidden prepeak in experimental data is presented.Comment: 13 pages, 8 figure

    Non-equilibrium dynamics in an interacting nanoparticle system

    Get PDF
    Non-equilibrium dynamics in an interacting Fe-C nanoparticle sample, exhibiting a low temperature spin glass like phase, has been studied by low frequency ac-susceptibility and magnetic relaxation experiments. The non-equilibrium behavior shows characteristic spin glass features, but some qualitative differences exist. The nature of these differences is discussed.Comment: 7 pages, 11 figure
    • …
    corecore