50,100 research outputs found

    A Matrix Convexity Approach to Some Celebrated Quantum Inequalities

    Full text link
    Some of the important inequalities associated with quantum entropy are immediate algebraic consequences of the Hansen-Pedersen-Jensen inequality. A general argument is given using matrix perspectives of operator convex functions. A matrix analogue of Mar\'{e}chal's extended perspectives provides additional inequalities, including a p+q≤1p+q\leq 1 result of Lieb.Comment: 8 page

    Suitability of commercially available laboratory cryogenic refrigerators to support shipboard electro-optical systems in the 10 - 77 Kelvin region

    Get PDF
    The primary development of cryogenically cooled infrared systems was accomplished by FLIR systems designed for airborne, passive night vision. Essential to the development of these FLIR systems was a family of closed cycle refrigerators which had to meet a limited envelope requirement, utilize a nonlubricated compressor module, and be light in weight. Closed cycle refrigerators accomplished the same cooling function, they use modified oil lubricated reciprocating compressors which are limited in their axis of orientation to an angle of approximately 15-20 degrees maximum from horizon

    Electric vehicle power train instrumentation: Some constraints and considerations

    Get PDF
    The application of pulse modulation control (choppers) to dc motors creates unique instrumentation problems. In particular, the high harmonic components contained in the current waveforms require frequency response accommodations not normally considered in dc instrumentation. In addition to current sensing, accurate power measurement requires not only adequate frequency response but must also address phase errors caused by the finite bandwidths and component characteristics involved. The implications of these problems are assessed

    Screened electrostatic interactions between clay platelets

    Full text link
    An effective pair potential for systems of uniformly charged lamellar colloids in the presence of an electrolytic solution of microscopic co- and counterions is derived. The charge distribution on the discs is expressed as a collection of multipole moments, and the tensors which determine the interactions between these multipoles are derived from a screened Coulomb potential. Unlike previous studies of such systems, the interaction energy may now be expressed for discs at arbitrary mutual orientation. The potential is shown to be exactly equivalent to the use of linearized Poisson-Boltzmann theory.Comment: 23 pages, 10 figures, created with Revtex. To appear in Molecular Physic

    Self-Affinity in the Gradient Percolation Problem

    Full text link
    We study the scaling properties of the solid-on-solid front of the infinite cluster in two-dimensional gradient percolation. We show that such an object is self affine with a Hurst exponent equal to 2/3 up to a cutoff-length proportional to the gradient to the power (-4/7). Beyond this length scale, the front position has the character of uncorrelated noise. Importantly, the self-affine behavior is robust even after removing local jumps of the front. The previously observed multi affinity, is due to the dominance of overhangs at small distances in the structure function. This is a crossover effect.Comment: 4 pages, 4 figure

    Tolerance and Sensitivity in the Fuse Network

    Full text link
    We show that depending on the disorder, a small noise added to the threshold distribution of the fuse network may or may not completely change the subsequent breakdown process. When the threshold distribution has a lower cutoff at a finite value and a power law dependence towards large thresholds with an exponent which is less than 0.16±0.030.16\pm0.03, the network is not sensitive to the added noise, otherwise it is. The transition between sensitivity or not appears to be second order, and is related to a localization-delocalization transition earlier observed in such systems.Comment: 12 pages, 3 figures available upon request, plain Te

    Performance characteristics of the 12 GHz, 200 watt transmitter experiment package for CTS

    Get PDF
    The experiment package consists of a 200 W output stage tube (OST) powered by a power processing system (PPS). Descriptions of both the PPS and OST are given. The PPS provides the necessary voltages with a measured dc/dc conversion efficiency of 89 percent. The OST, a traveling wave tube with multiple collectors, has a saturated rf output power of 224 W and operates at an overall efficiency exceeding 40 percent over an 85 MHz bandwidth at 12 GHz. OST performance given includes frequency response, saturation characteristics, group delay, AM to PM conversion, inter-modulation distortion, and two channel gain suppression. Single and dual channel FM video performance is presented. It was determined that for 12 MHz peak to peak frequency deviation on each channel, dual channel FM television signals can be transmitted through the TEP at 60 W, each channel, with 40 MHz channel spacing (center to center)

    A coalescence model for freely decaying two-dimensional turbulence

    Full text link
    We propose a ballistic coalescence model (punctuated-Hamiltonian approach) mimicking the fusion of vortices in freely decaying two-dimensional turbulence. A temporal scaling behaviour is reached where the vortex density evolves like t−ξt^{-\xi}. A mean-field analytical argument yielding the approximation ξ=4/5\xi=4/5 is shown to slightly overestimate the decay exponent ξ\xi whereas Molecular Dynamics simulations give ξ=0.71±0.01\xi =0.71\pm 0.01, in agreement with recent laboratory experiments and simulations of Navier-Stokes equation.Comment: 6 pages, 1 figure, to appear in Europhysics Letter

    Density profiles and surface tensions of polymers near colloidal surfaces

    Full text link
    The surface tension of interacting polymers in a good solvent is calculated theoretically and by computer simulations for a planar wall geometry and for the insertion of a single colloidal hard-sphere. This is achieved for the planar wall and for the larger spheres by an adsorption method, and for smaller spheres by a direct insertion technique. Results for the dilute and semi-dilute regimes are compared to results for ideal polymers, the Asakura-Oosawa penetrable-sphere model, and to integral equations, scaling and renormalization group theories. The largest relative changes with density are found in the dilute regime, so that theories based on non-interacting polymers rapidly break down. A recently developed ``soft colloid'' approach to polymer-colloid mixtures is shown to correctly describe the one-body insertion free-energy and the related surface tension
    • …
    corecore