54,313 research outputs found

    Thermodynamics and phase behavior of the lamellar Zwanzig model

    Full text link
    Binary mixtures of lamellar colloids represented by hard platelets are studied within a generalization of the Zwanzig model for rods, whereby the square cuboids can take only three orientations along the xx, yy or zz axes. The free energy is calculated within Rosenfeld's ''Fundamental Measure Theory'' (FMT) adapted to the present model. In the one-component limit, the model exhibits the expected isotropic to nematic phase transition, which narrows as the aspect ratio ζ=L/D\zeta=L/D (DD is the width and LL the thickness of the platelets) increases. In the binary case the competition between nematic ordering and depletion-induced segregation leads to rich phase behaviour.Comment: 9 pages, 6 figure

    Ka-band (32 GHz) benefits to planned missions

    Get PDF
    The benefits of using 32 GHz downlinks for a set of deep space missions, as well as the implications to radio science and the Deep Space Network (DSN) are documented. The basic comparison is between the use of the current X-band (8.4 GHz) and a 32 GHZ (Ka-band) downlink. There was shown to be approximately an 8 dB (about 600%) link advantage for 32 GHz. This 8 dB advantage would be able to either reduce mission cost or improve mission science return. Included here are studies on how the 8 dB advantage would be used for the Cassini and Mars Sample Return missions. While the work is preliminary, it shows that the 8 dB advantage can be exploited to provide large benefits to future deep space missions. There can be significant mass and/or power savings to the spacecraft, which can translate into cost savings. Alternatively, the increased downlink telecommunications performance can provide a greater science return

    On the nonlocal viscosity kernel of mixtures

    Get PDF
    In this report we investigate the multiscale hydrodynamical response of a liquid as a function of mixture composition. This is done via a series of molecular dynamics simulations where the wave vector dependent viscosity kernel is computed for three mixtures each with 7-15 different compositions. We observe that the nonlocal viscosity kernel is dependent on composition for simple atomic mixtures for all the wave vectors studied here, however, for a model polymer melt mixture the kernel is independent of composition for large wave vectors. The deviation from ideal mixing is also studied. Here it is shown that a Lennard-Jones mixture follows the ideal mixing rule surprisingly well for a large range of wave vectors, whereas for both the Kob-Andersen mixture and the polymer melt large deviations are found. Furthermore, for the polymer melt the deviation is wave vector dependent such that there exists a critical length scale at which the ideal mixing goes from under-estimating to over-estimating the viscosity

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD) Volume 7: IPAD benefits and impact

    Get PDF
    The potential benefits, impact and spinoff of IPAD technology are described. The benefits are projected from a flowtime and labor cost analysis of the design process and a study of the flowtime and labor cost savings being experienced with existing integrated systems. Benefits in terms of designer productivity, company effectiveness, and IPAD as a national resource are developed. A description is given of the potential impact of information handling as an IPAD technology, upon task and organization structure and people who use IPAD. Spinoff of IPAD technology to nonaerospace industries is discussed. The results of a personal survey made of aerospace, nonaerospace, government and university sources are given

    Three dimensional global modeling of atmospheric CO2

    Get PDF
    A model was developed to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO2 variations. The approach uses a three dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO2 at the surface. The 3-D model employed is identified and biosphere, ocean and fossil fuel sources and sinks are discussed. Some preliminary model results are presented

    Screened electrostatic interactions between clay platelets

    Full text link
    An effective pair potential for systems of uniformly charged lamellar colloids in the presence of an electrolytic solution of microscopic co- and counterions is derived. The charge distribution on the discs is expressed as a collection of multipole moments, and the tensors which determine the interactions between these multipoles are derived from a screened Coulomb potential. Unlike previous studies of such systems, the interaction energy may now be expressed for discs at arbitrary mutual orientation. The potential is shown to be exactly equivalent to the use of linearized Poisson-Boltzmann theory.Comment: 23 pages, 10 figures, created with Revtex. To appear in Molecular Physic
    corecore