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In this Brief Report we investigate the multiscale hydrodynamical response of a liquid as a function of mixture
composition. This is done via a series of molecular dynamics simulations in which the wave-vector-dependent
viscosity kernel is computed for three mixtures, each with 7–15 different compositions. We observe that the
viscosity kernel is dependent on composition for simple atomic mixtures for all the wave vectors studied here;
however, for a molecular mixture the kernel is independent of composition for large wave vectors. The deviation
from ideal mixing is also studied. Here it is shown that the Lorentz-Berthelot interaction rule follows ideal mixing
surprisingly well for a large range of wave vectors, whereas for both the Kob-Andersen and molecular mixtures
large deviations are found. Furthermore, for the molecular system the deviation is wave-vector dependent such
that there exists a characteristic correlation length scale at which the ideal mixing goes from underestimating to
overestimating the viscosity.

DOI: 10.1103/PhysRevE.85.022201 PACS number(s): 66.20.Ej, 47.11.Mn

Hydrodynamics on very small length scales has become
an important research area because it is believed to hold
the key to understanding the many different phenomena
observed in nanofluidic devices. Recent studies [1,2] have
shown that the spatial correlations in the fluid reduce the shear
stress compared to the stress predicted via a local response
function. The nonlocal response is defined via generalized
hydrodynamics [3], in which the response function is a
wave-vector-dependent quantity. The wave-vector-dependent
viscosity, i.e., the viscosity kernel, accounts for the momentum
flux due to a nonzero strain rate. It has been evaluated for one-
component fluids through molecular dynamics simulations and
it was found that it follows a simple functional form reasonably
well for atomic, diatomic, and polymer fluids [3–6]. The
wave-vector-dependent viscosity kernel has been predicted by
mode-coupling theory [7]; however, the theoretical predictions
do not agree with the data from simulations [3,4]. Nevertheless,
at present, the effect of the multiscale response is understood
fairly well for a range of simple single-component fluids [3–6]
and glasses [8,9].

In microscale and nanoscale devices usually multicompo-
nent mixtures are transported around very narrow tubes. For
example, in electro-osmosis ions are added to the fluid and
will act as an actuator under appropriate conditions [10]. Thus
the small-scale hydrodynamical response of multicomponent
systems is of importance. In order to investigate this for
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two-component mixtures we evaluate the viscosity kernel
for three different simple-model two-component mixtures
using molecular dynamics. These are (i) a Kob-Andersen
(KA) mixture [11], (ii) a Lennard-Jones (LJ) mixture using
the Lorentz-Berthelot interaction rule, and (iii) a molecular
mixture [12]. Mixtures (i) and (ii) thus represent atomic
fluids, where only the interactions between unlike particles
are different, and mixture (iii) is a simple molecular mixture
that we expect to have a different hydrodynamical response
compared to the atomic ones.

In all the simulations the particles interact through
the Lennard-Jones cut and shifted potential ULJ(rij ) =
4ε[(σ/rij )12 − (σ/rij )6] − U (rc) for rij � rc, where rij is the
distance between particle i and j , σ is a length scale, ε is an
energy scale, rc is the interaction range (cutoff), and U (rc) is
the unshifted potential at rc. The values of σ and ε are different
for the KA and LJ mixtures depending on the pair of particles
that interact (see Table I).

The cutoff radius is set to rc = 2.5σ for the KA and
LJ mixtures and rc = 21/6σ for the molecular system. The
latter is also referred to as the Weeks-Chandler-Andersen pair
potential [13]. In the molecular mixture the particles (or beads)
are bonded via the finite extensible nonlinear elastic potential
[12] UFENE = −kR0ln[1 − (rij /R0)2]/2, where k = 30ε/σ 2

and R0 = 1.5σ . It is composed of two types of molecules:
one with two beads, component B, and one with ten beads,
component A. In what follows we give all quantities in terms
of Lennard-Jones reduced units, for example, reduced distance
r∗
ij = rij /σ and number density ρ∗ = ρσ 3. For simplicity of

notation, we will hereafter omit the asterisk.
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TABLE I. List of the Kob-Andersen and Lennard-Jones parame-
ters used in this work.

Parameter Kob-Andersen Lennard-Jones

εAA/εAA 1 1
εBB/εAA 1/2 1/2
εAB/εAA 0.8

√
1/2

σAA/σAA 1 1
σBB/σAA 0.88 0.88
σAB/σAA 0.8 0.94

The simulations are carried out at an average reduced
pressure of p = 1 and temperature T = 2.5, which ensures
that no phase separation takes place and that the system
is homogeneous. The target pressure was obtained via an
anisotropic Berendsen barostat [14] such that the simulation
box was varied in the x direction only. The temperature was
controlled via a Nosé-Hoover thermostat [15,16].

The expression for the wave-vector-dependent viscosity can
be found from the generalized Navier-Stokes equation and is
given in terms of the transverse-momentum current-density
autocorrelation function C̃⊥(k,t) [17,18],

η(k,ω) = ρ

k2

C̃⊥(k,t = 0) − iωĈ⊥(k,ω)

Ĉ⊥(k,ω)
, (1)

where ρ is the mass density; k is the z component the
wave vector, i.e., k = 2πn/Lz, n = 1,2, . . ., where Lz is
the simulation box length in the z direction; and C̃⊥(k,t) =
〈J̃y(k,0)J̃y(k,t)〉/V . The transverse-momentum density is
here defined via J̃y(k,t) = ∑N

i=1 mivy,i(t)eikzi , where mi

and vy,i are the center of mass and center-of-mass velocity
of the molecule or particle i. The term Ĉ⊥(k,ω) is the
Fourier-Laplace transform of C̃⊥(k,t), that is, Ĉ⊥(k,ω) =∫ ∞

0 C̃⊥(k,t)eiωtdt . Also note that because the barostat is
anisotropic and only varies the simulation box in the x

direction, Lz is constant.
In Fig. 1 we have plotted the viscosity kernel data in the limit

ω → 0 for different composition fractions of A, xA = NA/Nt ,
where NA is the number of A particles and Nt is the total
number of particles. Recall that in the molecular system we
label the ten-bead molecule A. From Fig. 1 it is observed
that for the KA and LJ mixtures the hydrodynamical response
is dependent on the exact composition for all length scales
studied here. This is not the case for the molecular system:
Here the fluid response is largely independent of the fluid
composition for sufficiently large wave vectors. The reason
behind this is that the molecular fluid experiences the same
physical environment at the small lengths scales no matter the
composition. We believe this is linked to the fact that the bead-
bead intramolecular and intermolecular particle interactions
are the same and therefore no distinct microscale structures
are present at these length scales. The scale at which this
occurs is here denoted by the characteristic correlation length
scale and we shall return to this later. We also point out that
no characteristic correlation length is observed for the atomic
systems where the atom interactions are dependent on the
type.
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FIG. 1. (Color online) Viscosity kernel data (symbols) for (a) the
Kob-Andersen mixture, (b) the Lennard-Jones mixture, and (c) the
molecular mixture. (a) and (b) xA = 0 (solid squares), 0.8 (upward-
pointing solid triangles), and 1 (downward-pointing open triangles).
(c) xA = 0 (solid squares), 0.25 (upward-pointing solid triangles),
and 1 (downward-pointing open triangles). The error bars are the
standard error. Lines represent the best fit of the data to Eq. (2). The
insets depict the kernels for large k.

In order to decrease the statistical error in the further
analysis we fit the data to a Lorentzian functional form

η(k,xA) = η0(xA)

1 + αkβ
, (2)
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FIG. 2. (Color online) Relative excess viscosity as a function of
composition and wave number n. (a) The Kob-Andersen mixture,
(b) the Lennard-Jones mixture, and (c) the molecular mixture. Lines
are the corresponding fits using Eq. (4). Note that the wave number
is given via the definition of the wave vector k = 2πn/Lz.

where α and β are fitting parameters that depend on the fraction
of A, xA, and η0(xA) is the zero-frequency viscosity for k = 0.
Equation (2) has been shown to fit viscosity kernel data well for
a range of different noncharged single-component fluids [4–6]
and is here extended to include the composition dependence.
The result of the fitting is depicted in Fig. 1, where the insets
show the data and the fits for large values of k. It is seen that
Eq. (2) fits data well for all three systems; however, we stress

that the agreement is not satisfactory for large values of k in
the cases of Kob-Andersen and Lennard-Jones mixtures. With
this in mind, we will from now on use the fitted values of the
viscosity kernels rather than the raw molecular dynamics data.

We can define the k-dependent excess viscosity as

ηE(k,xA) = η(k,xA) − ηid(k,xA), (3)

where ηid(k,xA) is the ideal part of the viscosity kernel
given by an Arrhenius-type mixing rule [19,20] ηid(k,xA) =
ηA(k)xAηB(k)1−xA , where ηA(k) and ηB(k) are the viscosity
kernels of pure A and B, respectively. The excess viscosity
has been fitted to various simple mixing models including
the Kendall-Monroe model [20], the Lederer model (see,
for example, Ref. [21]), and an extended version of the
Grundberg-Nissan model [22]. We have found that the fourth-
order McAllister model [23] fit the data best. This model was
originally written in terms of the dynamical viscosity ν = η/ρ

and may readily be extended to include the wave-vector
dependence, that is,

lnν(k,xA)

= x4
Aln[νA(k)] + 4x3

AxB ln[M31(k)] + 6x2
Ax2

B ln[M22(k)]

+ 4xAx3
B ln[M13(k)] + x4

B ln[νB(k)] − ln(xA + xBmr )

+ 4x3
AxB ln

(
3 + mr

4

)
+ 6x2

Ax2
B ln

(
1 + mr

2

)
(4)

+ 4xAx3
B ln

(
1 + 3mr

4

)
+ x4

B ln(mr ),

where mr is given by mB/mA and M31,M22, and M13 are
the wave-vector-dependent McAllister coefficients. Recall
that since we study binary mixtures, xB = 1 − xA. From
Eq. (4) one can easily extract the McAllister excess kinematic
viscosity using M31,M22, and M13 as fitting parameters.
Rather than comparing the absolute excess viscosities, we
compare the relative deviation from ideal mixing using
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FIG. 3. (Color online) McAllister coefficients as functions of
wave vector k. Solid squares represent the results for the Kob-
Andersen mixture, upward-pointing solid triangles represent the
Lennard-Jones mixture, and downward-pointing open triangles rep-
resent the molecular mixture. Lines serve as a guide to the eye.
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ηE(k,xA)/η(k,xA) = 1 − ηid(k,xA)/η(k,xA). This is done in
Fig. 2.

We note that the normalized excess viscosity is a measure
of the relative deviation from ideal mixing. First, it is observed
that the KA and molecular mixtures feature large deviations
from the ideal mixing compared to the LJ mixture, that
is, the Lorentz-Berthelot interaction rule features a more
Arrhenius-like behavior compared to the KA interaction rule
for all wavelengths. Second, for the KA and LJ mixtures the
relative excess viscosity varies very little with respect to wave
vector, meaning that the relative difference between the ideal
mixing response function and the actual response is weakly
wave-vector dependent. For the molecular mixture [Fig. 2(c)]
we observe that the relative excess viscosity is strongly wave-
vector dependent. This was also indicated in Fig. 1(c), where
it was discussed that the kernel is independent of composition
for large k. To high-light this special behavior further we have
plotted the McAllister coefficients as functions of wave vector
in Fig. 3. We see that Mij (k)/Mij (0),{ij} = {31},{22}, and
{13}, fall on a master curve in the case of KA and LJ mixtures;
thus the three functions Mij (k) may be described by a single
function that is directly proportional to any of the three Mij (k).
For the molecular mixture this is not the case, due to the
characteristic correlation length scale featured in this system.
Note that all the McAllister coefficients follow a Lorentzian
form [see Eq. (2)], but for the molecular mixture the parameters
α and β are dependent on the index {ij}.

In this Brief Report we have investigated the multiscale
hydrodynamical viscous response as a function of fluid
composition. This was done through the viscosity kernel

that was computed via equilibrium molecular dynamics
simulations. We studied three different mixtures, namely,
(i) a Kob-Andersen mixture, (ii) a Lennard-Jones mixture us-
ing the Lorentz-Berthelot interaction rule, and (iii) a molecular
mixture. We observed that the viscosity kernel is independent
of the wave vector for large wave vectors in the case of the
molecular system, that is, the hydrodynamical response at
these length scales is independent of the composition. This was
not the case for the simple Kob-Andersen and Lennard-Jones
mixtures. The deviation from ideal mixing is small in the
case of the Lennard-Jones mixture, i.e., the Lorentz-Berthelot
interaction rule agrees reasonably well with the predictions
from ideal mixing for all wave vectors studied here; the
maximum deviation is around 8%. This was not the case for
Kob-Andersen and molecular mixtures, where the deviations
can be as large as 35%. Finally, the relative deviation from
ideal mixing is relatively wave-vector independent in the case
of the Kob-Andersen and Lennard-Jones mixtures. For the
molecular mixture this deviation shows a strong wave-vector
dependence since the ideal mixing rule does not predict
the largely composition-independent behavior of the kernel
[Fig. 1(c)]. The length scale at which the viscous response
is composition independent will likely vary with the model
chosen; we shall leave an in depth investigation of this to
future studies.
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