68,991 research outputs found

    Phase diagram of the vortex system in layered superconductors with strong columnar pinning

    Get PDF
    We present the results of a detailed investigation of the low-temperature properties of the vortex system in strongly anisotropic layered superconductors with a random array of columnar pinning centers. Our method involves numerical minimization of a free energy functional in terms of the time-averaged local vortex density. It yields the detailed vortex density distribution for all local free-energy minima, and therefore allows the computation of any desired correlation function of the time-averaged local vortex density. Results for the phase diagram in the temperature vs. pin concentration plane at constant magnetic induction are presented. We confirm that for very low pin concentrations, the low-temperature phase is a Bragg glass, which melts into an interstitial liquid phase via two first-order steps, separated by a Bose glass phase. At higher concentrations, however, the low-temperature phase is a Bose glass, and the melting transition becomes continuous. The transition is then characterized by the onset of percolation of liquid-like regions across the sample. Inhomogeneous local melting of the Bose glass is found to occur. There is also a depinning crossover between the interstitial liquid and a completely unpinned liquid at higher temperatures. At sufficiently large pin concentrations, the depinning line merges with the Bose glass to interstitial liquid transition. Many of the features we find have been observed experimentally and in simulations. We discuss the implications of our results for future experimental and theoretical work.Comment: 15 pages including Figure

    The phase diagram of vortex matter in layered superconductors with tilted columnar pinning centers

    Get PDF
    We study the vortex matter phase diagram of a layered superconductor in the presence of columnar pinning defects, {\it tilted} with respect to the normal to the layers. We use numerical minimization of the free energy written as a functional of the time averaged vortex density of the Ramakrishnan-Yussouff form, supplemented by the appropriate pinning potential. We study the case where the pin density is smaller than the areal vortex density. At lower pin concentrations, we find, for temperatures of the order of the melting temperature of the unpinned lattice, a Bose glass type phase which at lower temperatures converts, via a first order transition, to a Bragg glass, while, at higher temperatures, it crosses over to an interstitial liquid. At somewhat higher concentrations, no transition to a Bragg glass is found even at the lowest temperatures studied. While qualitatively the behavior we find is similar to that obtained using the same procedures for columnar pins normal to the layers, there are important and observable quantitative differences, which we discuss.Comment: 12 pages, including figure

    Every Cloud Has a Push Data Lining: Incorporating Cloud Services in a Context-Aware Application

    Get PDF
    We investigated context-awareness by utilising multiple sources of context in a mobile device setting. In our experiment we developed a system consisting of a mobile client, running on the Android platform, integrated with a cloud-based service. These components were integrated using pushmessaging technology.One of the key featureswas the automatic adaptation of smartphones in accordance with implicit user needs. The novelty of our approach consists in the use of multiple sources of context input to the system, which included the use of calendar data and web based user configuration tool, as well as that of an external, cloud-based, configuration file storing user interface preferences which, pushed at log-on time irrespective of access device, frees the user from having to manually configure its interface.The systemwas evaluated via two rounds of user evaluations (n = 50 users), the feedback of which was generally positive and demonstrated the viability of using cloud-based services to provide an enhanced context-aware user experience

    North Atlantic Deep Water Formation

    Get PDF
    Various studies concerning differing aspects of the North Atlantic are presented. The three major topics under which the works are classified include: (1) oceanography; (2) paleoclimate; and (3) ocean, ice and climate modeling

    The effect of schooling and ability on achievement test scores

    Get PDF
    This paper develops two methods for estimating the effect of schooling on achievement test scores that control for endogeneity of schooling by postulating that both schooling and test scores are generated by a common unobserved latent ability. These methods are applied to data on schooling and test scores. Estimates from the two methods are in close agreement. We find that the effects of schooling on test scores are roughly linear across schooling levels. The effects of schooling on measured test scores are slightly larger for lower latent ability levels. We find that schooling increases the AFQT score on average between 2 and 4 percentage points, roughly twice as large as the effect claimed by Herrnstein and Murray (1994) but in agreement with estimates produced by Neal and Johnson (1996) and Winship and Korenman (1997). We extend the previous literature by estimating the impact of schooling on measured test scores at various quantiles of the latent ability distribution.Education; ability; latent variables; selection; MCMC

    Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College

    Get PDF
    This paper uses factor models to identify and estimate distributions of counterfactuals. We extend LISREL frameworks to a dynamic treatment effect setting, extending matching to account for unobserved conditioning variables. Using these models, we can identify all pairwise and joint treatment effects. We apply these methods to a model of schooling and determine the intrinsic uncertainty facing agents at the time they make their decisions about enrollment in school. Reducing uncertainty in returns raises college enrollment. We go beyond the Veil of Ignorance' in evaluating educational policies and determine who benefits and who loses from commonly proposed educational reforms.

    The role of binaries in the enrichment of the early Galactic halo. II. Carbon-Enhanced Metal-Poor Stars - CEMP-no stars

    Full text link
    The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon - the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds, or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Most programme stars exhibit no statistically significant radial-velocit variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2,000 days and normal eccentricity; the binary frequency for the sample is 17+-9%. The single stars mostly belong to the recently-identified ``low-C band'', while the binaries have higher absolute carbon abundances. We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic ISM by an even earlier, external source, strongly indicating that the CEMP-no stars are likely bona fide second-generation stars. We discuss potential production sites for carbon and its transfer across interstellar distances in the early ISM, and implications for the composition of high-redshift DLA systems. Abridged.Comment: 16 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    An exact formalism to study the thermodynamic properties of hard-sphere systems under spherical confinement

    Get PDF
    This paper presents a modified grand canonical ensemble which provides a new simple and efficient scheme to study few-body fluid-like inhomogeneous systems under confinement. The new formalism is implemented to investigate the exact thermodynamic properties of a hard sphere (HS) fluid-like system with up to three particles confined in a spherical cavity. In addition, the partition function of this system was used to analyze the surface thermodynamic properties of the many-HS system and to derive the exact curvature dependence of both the surface tension and adsorption in powers of the density. The expressions for the surface tension and the adsorption were also obtained for the many- HS system outside of a fixed hard spherical object. We used these results to derive the dependence of the fluid-substrate Tolman length up to first order in density.Comment: 6 figures. The paper includes new exact results about hard spheres fluid-like system

    Transient cavities and the excess chemical potentials of hard-spheroid solutes in dipolar hard sphere solvents

    Get PDF
    Monte Carlo computer simulations are used to study transient cavities and the solvation of hard-spheroid solutes in dipolar hard sphere solvents. The probability distribution of spheroidal cavities in the solvent is shown to be well described by a Gaussian function, and the variations of fit parameters with cavity elongation and solvent properties are analyzed. The excess chemical potentials of hard-spheroid solutes with aspect ratios xx in the range 1/5x51/5 \leq x \leq 5, and with volumes between one and twenty times that of a solvent molecule, are presented. It is shown that for a given molecular volume and solvent dipole moment (or temperature) a spherical solute has the lowest excess chemical potential and hence the highest solubility, while a prolate solute with aspect ratio xx should be more soluble than an oblate solute with aspect ratio 1/x1/x. For a given solute molecule, the excess chemical potential increases with increasing temperature; this same trend is observed in the case of hydrophobic solvation. To help interpret the simulation results, comparison is made with a scaled-particle theory that requires prior knowledge of a solute-solvent interfacial tension and the pure-solvent equation of state, which parameters are obtained from simulation results for spherical solutes. The theory shows excellent agreement with simulation results over the whole range of solute elongations considered.Comment: 10 pages, 10 figure
    corecore