
The phase diagram of vortex matter in layered superconductors with tilted columnar

pinning centers

Chandan Dasgupta∗

Centre for Condensed Matter Theory, Department of Physics,

Indian Institute of Science, Bangalore 560012, India

Oriol T. Valls†

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455

(Dated: September 1, 2009)

We study the vortex matter phase diagram of a layered superconductor in the presence of columnar
pinning defects, tilted with respect to the normal to the layers. We use numerical minimization of the
free energy written as a functional of the time averaged vortex density of the Ramakrishnan-Yussouff
form, supplemented by the appropriate pinning potential. We study the case where the pin density
is smaller than the areal vortex density. At lower pin concentrations, we find, for temperatures of
the order of the melting temperature of the unpinned lattice, a Bose glass type phase which at lower
temperatures converts, via a first order transition, to a Bragg glass, while, at higher temperatures,
it crosses over to an interstitial liquid. At somewhat higher concentrations, no transition to a Bragg
glass is found even at the lowest temperatures studied. While qualitatively the behavior we find is
similar to that obtained using the same procedures for columnar pins normal to the layers, there
are important and observable quantitative differences, which we discuss.

PACS numbers: 74.25.Qt, 74.72.Hs, 74.25.Ha, 74.78.Bz

I. INTRODUCTION

Equilibrium and dynamic properties of vortex matter
in highly anisotropic, layered, high-temperature super-
conductors are known1 to be strongly affected by the
presence of pinning. Effects of random columnar pinning
produced by heavy-ion bombardment have been studied
theoretically2,3, experimentally4 and numerically5–9 for
the situation in which both the columnar pins and the
magnetic field are perpendicular to the layers. In this
geometry, if the areal concentration of columnar pins ex-
ceeds that of vortex lines (i.e. for Bφ > B, where Bφ

is the matching field and B is the magnetic induction),
the vortex system exhibits a continuous Bose glass (BoG)
to vortex liquid (VL) transition2 as the temperature is
increased. If, on the other hand, the relative pin con-
centration c ≡ Bφ/B is substantially smaller than unity,
then the vortex system exhibits a first-order transition3,4

between a high-temperature VL and a low-temperature
BoG phase that has a polycrystalline structure4,7,8 with
grain boundaries separating crystalline domains of dif-
ferent orientations. The VL into which the BoG melts
has the characteristics of an “interstitial liquid” in which
some of the vortices remain localized at the columnar
pins, producing solid-like regions around them, whereas
the remaining, interstitial vortices form liquid-like re-
gions. The pinned vortices delocalize at a “depinning
crossover” that occurs at a higher temperature. Numer-
ical studies6–8 also indicate the occurrence of a topologi-
cally ordered phase, analogous to the Bragg glass (BrG)
phase10,11 in systems with random point pinning, at low
temperatures if the relative concentration of columnar
pins is sufficiently small.

The question of how the behavior described above is

modified in the case of tilted columnar pinning, where
the magnetic field is tilted away from the direction of
the columnar pins, has also received considerable atten-
tion in the past. Theoretical studies2,12 have considered
the geometry in which the columnar pins are perpendic-
ular to the layers and the applied magnetic field makes
an angle θ with the normal to the layers. These stud-
ies predict that for B < Bφ, the effects of the correlated
nature of the columnar pins become less pronounced as
the angle θ is increased. Specifically, the vortex lines are
predicted to remain locked to the columnar pins if θ is
sufficiently small, producing a “transverse Meissner ef-
fect”. For larger values of the angle θ, the vortices hop
from one columnar pin to the next one, forming a stair-
case structure. As θ is increased further, the directional
effect of columnar pinning is lost and the vortex lines fol-
low the field direction. The low-temperature BoG phase
phase persists for small values of θ, but disappears as θ
is increased beyond a critical value. Some of these theo-
retical predictions have been verified in experiments13.

The behavior of vortex systems with tilted columnar
pinning and B > Bφ (c < 1) has been investigated re-
cently in experiments14 and simulations14,15. The exper-
iments were performed on a sample of Bi2Sr2CaCu2O8

(BSCCO) with a small concentration of random colum-
nar pins tilted at an angle of 45◦ from the normal (z-
direction) to the copper oxide layers. The magnitude
and direction of the applied magnetic field H were var-
ied and the location of the BoG to interstitial VL transi-
tion in the Hz versus temperature (T ) plane was deter-
mined for several values of the tilting angle θ between the
directions of the magnetic induction B and the colum-
nar pins. The values of H considered in the experiment
were such that the number density of pancake vortices
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on the layers (determined by Bz) is higher than that of
the columnar pins. The main result of this experiment is
that the temperature at which the BoG to VL transition
occurs for a fixed value of Hz is independent of the tilt
angle θ. The temperature at which the inhomogeneous
VL (called “vortex nanoliquid” in Ref.14) crosses over
to the depinned, homogeneous liquid was also found to
be independent of θ for a fixed value of Hz . The sim-
ulations were performed for a fixed number density of
pancake vortices on the layers (fixed Bz) and different
orientations of the columnar pins, keeping the number
density of pinning centers on each layer fixed at a value
lower than that of pancake vortices. Both Josephson and
electromagnetic interactions between pancake vortices on
different layers were included in the simulations. The re-
sults of the simulations were found to be consistent with
the experimental observation that the locations of the
thermodynamic transitions are independent of the angle
between the columnar pins and the applied field if the
number densities of pancake vortices and pinning centers
on each layer (i.e. the values of Bz and Bφ cosψ where ψ
is the angle between the layer normal and the direction
of the columnar pins) are held fixed.

These results are surprising because tilting the colum-
nar pins away from the direction of the layer normal
introduces “frustration” in the system in the following
sense. If the pinning potential of each pinning center
is sufficiently strong and the temperature sufficiently low
(these conditions are satisfied in the experiment and sim-
ulation described above), then nearly all the pinning cen-
ters on each layer would be occupied by pancake vortices.
For columnar pins perpendicular to the layers, the pinned
vortices on different layers would then be aligned directly
on top of one another. This alignment of the pancake
vortices in the direction of the layer normal minimizes
both the Josephson and electromagnetic interactions be-
tween vortices on different layers. However, if the colum-
nar pins are tilted away from the layer normal, then the
pinned pancake vortices on different layers would not be
aligned directly on top of one another, thereby increasing
the energy associated with the interlayer interactions of
these vortices. For Bz > Bφ cosψ (the case considered
in Refs. 14,15), interstitial pancake vortices that are not
localized at pinning centers can relieve this frustration to
some extent by forming a staircase-like structure in which
they remain aligned in the direction of the layer normal
for a few layers and then shift in the direction of the
tilt. This, however, would increase the energy associated
with the interaction of pancake vortices on the same layer
because the positions of the interstitial vortices relative
to those of the pinned ones, which shift in the direction
of the tilt by a constant amount as one goes from one
layer to the next one, would not be optimal on all the
layers. Thus, tilting the columnar pins away from the
direction of the layer normal should increase the frustra-
tion arising from the competition between the interaction
of the vortices with the pinning centers and the intervor-
tex interactions. This should have a measurable effect on

the transition temperatures unless the energy associated
with interlayer interactions among the pancake vortices
is negligibly small compared to the other energy scales
(the intralayer interactions and the pinning energy) of
the problem. Since increased frustration tends to lower
the temperature at which an ordering transition occurs,
the transition temperatures of the vortex system are ex-
pected to decrease as the tilting angle is increased from
zero.

To shed some light on this problem, we have studied
the structural and thermodynamic properties of a system
of pancake vortices in a strongly anisotropic, layered su-
perconductor in the presence of tilted columnar pinning,
using a mean-field, free-energy based numerical method
developed in our earlier studies7–9,16–18 of vortex mat-
ter with different kinds of pinning. In this method, the
free energy of a system of pancake vortices interacting
among themselves and with pinning centers is written as
a functional of the time-averaged local areal density of the
vortices. Only the electromagnetic interaction between
pancake vortices on different layers is considered. Differ-
ent phases, represented by different local minima of the
free energy, are obtained by numerically minimizing the
free energy, starting from different initial configurations
of the local density. In this description, a first order phase
transition between two phases corresponds to a crossing
of the free energies of two distinct minima representing
the two phases. Here, we use parameters appropriate for
BSCCO and fix the areal density of pancake vortices at a
value corresponding to Bz = 2 kG for the component of
the magnetic induction normal to the layers. This corre-
sponds to the experimental situation where the applied
magnetic field H is in the z-direction and its magnitude
is such that Bz equals 2 kG. We consider different con-
centrations of columnar pinning centers, keeping their
areal density smaller than that of the pancake vortices,
so that the relative pin concentration c ≡ Bφ cosψ/Bz

is much smaller than unity. The columnar nature of the
pins is modeled by repeating the positions of the pin-
ning centers on successive layers with a constant shift
in the case of tilted pins. We then compare the results
obtained for tilted pins with different tilting angles with
those obtained for the same in-plane configuration of pin-
ning centers, but without any tilt (without any shift for
pins oriented in the direction of the layer normal) to an-
alyze the effects of tilting the columnar pins. The main
results of our study are summarized below.

The structural and thermodynamic properties of the
systems with tilted columnar pins are found to be very
similar to those found in our earlier studies7,8 of vortex
systems in which both the magnetic field and a small con-
centration of random columnar pins are perpendicular to
the layers. Specifically, for small values of the relative
pin concentration c defined above, we find, at low tem-
peratures, two distinct minima of the free energy. At
both these minima, nearly all the pinning centers are
occupied by vortices, and both the pinned and the inter-
stitial vortices form lines that are tilted in the direction
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of the columnar pins. The degree of alignment of the vor-
tices in the direction of the tilt is nearly perfect. One of
these two minima corresponds to the BoG phase in which
the vortices on each layer exhibit substantial short-range
translational and bond-orientational order, but topolog-
ical defects such as dislocations are present in small con-
centrations. The other minimum is almost perfectly crys-
talline over the length scale of our finite samples and ex-
hibits features characteristic of the topologically ordered
BrG phase of systems with weak point pinning. At tem-
peratures close to the melting temperature of the vortex
system without any pinning, the BoG phase is the ther-
modynamically stable one with lower free energy. As the
temperature is decreased, the free energy of the more
ordered phase crosses that of the BoG phase at a first or-
der phase transition, so that the BrG-like phase becomes
the thermodynamically stable one at low temperatures.
The minimum representing the BoG phase evolves con-
tinuously to the high-temperature, depinned VL as the
temperature is increased – we do not find a first-order
transition to the VL for the pin concentrations consid-
ered in this study. Using a criterion based on percolation
of liquid-like regions8,9, we define a crossover tempera-
ture for the transformation of the BoG to the interstitial
VL. This crossover occurs at a temperature higher than
the melting temperature of the vortex lattice in pristine
samples without any pinning. For larger values of the rel-
ative pin concentration c, the low-temperature BrG-like
phase is absent and only the crossover between the BoG
and VL phases is found.

Although the general behavior found for tilted colum-
nar pins is qualitatively similar to that of systems with
“vertical” columnar pins normal to the layers, a detailed
comparison between the results for the same vortex sys-
tem with tilted and vertical columnar pins with the same
in-plane arrangement of the pinning centers reveals, in
contrast with some previous studies,14,15 a significant dif-
ferences between the two cases. First, the temperature
of the first-order transition between the BrG and BoG
phases for small values of c is found to be lower by over

5% (about one degree) in the case of tilted pins. The
temperature of the BoG to VL crossover for tilted pins
is also decreased by a similar amount from that for ver-
tical columnar pins. Thus, the expected reduction in the
transition temperatures due to increased frustration in
the tilted pin case is observed in our calculation. Second,
the degree of localization of the pancake vortices, mea-
sured by the heights of the local density peaks that repre-
sent vortex positions at the free-energy minima, is always
slightly lower when the pins are tilted. This is true for
both the vortices trapped at the pinning centers and the
interstitial ones. This is a consequence of the additional
tilting-induced competition between the pinning poten-
tial and interlayer vortex interactions mentioned above.
This competition makes the pinning centers less effective
in trapping vortices and reduces the extent of in-plane
order by decreasing the degree of localization of the in-
terstitial vortices.

The rest of the paper is organized as follows. The
model considered and the numerical methods used in our
study are described in section II. The results obtained in
this study are described in detail in section III. We con-
clude in section IV with a discussion of our main results
in the context of those of earlier studies.

II. MODEL AND METHODS

The general method we use here is that of minimizing
a mean-field free energy functional with respect to the
time-averaged local vortex density ρn(r), where r is a
two dimensional vector denoting a location in the layer
n. The free energy includes both intrinsic and pinning
terms:

F [ρ] = FRY [ρ] + Fp[ρ]. (2.1)

For the first term, we take the Ramakrishnan-Yussouff19

form:

βFRY [ρ] =
∑

n

∫
dr{ρn(r) ln(ρn(r)/ρ0) − δρn(r)} − (1/2)

∑
m

∑
n

∫
dr

∫
dr′Cmn(|r − r

′|)δρm(r)δρn(r′), (2.2)

where β is the inverse temperature and the integrals are
two-dimensional. This free energy is defined with re-
spect to that of a vortex liquid with uniform density
ρ0 = Bz/Φ0 where Bz is the component of the mag-
netic induction in the direction (z direction) normal to
the layers and Φ0 the superconducting flux quantum. In
the above expression, δρn(r) ≡ ρn(r)−ρ0 is the deviation
of ρn(r) from ρ0 and Cmn(r) is the direct pair correlation
function of the layered vortex liquid20 at density ρ0. This

static correlation function depends on the layer separa-
tion |m−n| and on the distance r in the layer plane, and
it contains all the required information about the inter-
actions in the system. As in previous work on columnar
pins7–9 normal to the layers, we use here the Cmn(r)
obtained from a calculation21 via the hypernetted chain
approximation20 for parameter values appropriate for the
layered material BSCCO. Within these premises, two ma-
terial parameters enter the calculations: the London pen-
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etration depth λ(T ) and the dimensionless parameter Γ:

Γ = βdΦ2
0/8π

2λ2(T ). (2.3)

where d is the interplanar distance. We will take here
values appropriate to BSCCO; thus d = 15Å.

The second term in the right side of Eq. (2.1) is the
pinning term and we write it in the form:

Fp[ρ] =
∑

n

∫
drV p

n (r)[ρn(r) − ρ0], (2.4)

where the pinning potential V p
n (r) is computed by sum-

ming over the positions Rj,n of the jth pinning center in
the nth plane:

V p
n (r) =

∑
j

V0(|r − Rj,n|), (2.5)

The potential V0 corresponding to a single pinning center
is taken to be of the usual truncated parabolic form:22

βV0(r) = −αΓ[1 − (r/r0)
2]Θ(r0 − r) (2.6)

where r0 is the range. In terms of our unit of length
a0, defined by πa2

0ρ0 = 1, we take r0 = 0.1a0. For the
strength α, which is a dimensionless number, we take
the value (α = 0.05) at which16 each pinning center pins
slightly less than one vortex in the temperature range
studied. This is the same value used in the previous
studies7–9 of vertical columnar pins. The number of vor-
tices is determined by Bz and we will consider here a
fixed value Bz =2 kG. As in the numerical studies of
Refs. 14,15, the magnitude and direction of the applied
magnetic field H do not appear explicitly in our calcula-
tion. The situation we consider here may be realized
experimentally by applying a magnetic field in the z-
direction and adjusting its magnitude to yield the value
of 2 kG for the z-component of the magnetic induction
B in the superconductor. The pinning columns make an
angle ψ with the z direction. The relative pin concentra-
tion c is (equivalently with the definition given above) the
ratio of the number Np of columnar pins to the number
Nv of vortices in the system.

To study the phase diagram we discretize the posi-
tion variable and numerically minimize the free energy
with respect to the discrete set of variables ρn,i where
the index i denotes a position in the n layer of the dis-
cretized triangular lattice. We have ρn,i ≡ ρn(ri)A0

where A0 = h2
√

3/2 is the area of the in-plane com-
putational cell of lattice constant h. The computational
lattice is of size N2×NL. As in previous work7–9,16–18we
take h = a/16 where a = 1.99a0 is the equilibrium
value16 of the lattice constant of the system in the ab-
sence of pinning at the chosen value of Bz. The mini-
mization procedure we use23 ensures the non-negativity
of the variables ρn,i.

There are some computational issues in solving this
problem which must be explained here. We wish to con-
sider the case where the pin concentration c is much

smaller than unity. We also want to consider values of
the tilt angle ψ in the reasonable experimental range.
The value of N must be large enough so that the number
of vortices present is not too small. The value NL of the
number of layers in the computational lattice has to be17

at least several hundred. There are of course computa-
tional limitations: in our recent18 work on point pinning
the total number of computational lattice sites attain-
able was NC = N2NL = 223. But the main problem
here is that the periodic boundary conditions in the z
direction impose, computationally, an effective “quanti-
zation condition” on the values of ψ that can be used and,
indirectly, on the range of c that can be studied. This oc-
curs for the following reason: implementation of periodic
boundary conditions is only possible if, after NL layers,
the pinning potential repeats itself. Assume that the po-
tential due to one of the tilted columnar pins is such that
after an integer number n of layers it has shifted hori-
zontally by another integer m of in-plane computational
lattice sites. The two integers n and m determine the tilt
angle via tanψ = (mh/nd). In order to implement the
periodic boundary conditions in the z direction, the to-
tal horizontal shift (in units of h) after NL layers, which
is (NL/n)m, has to equal N so that (NL/n) = (N/m).
Thus one also has tanψ = (Nh/NLd). This implies,
since h/d ≈ 70/15 for the chosen value of Bz, that one
needs a large value of NL in order to keep ψ from being
too large. But one cannot increase NL arbitrarily, since
the total number of computational sites NC must remain
within feasible bounds. The value of NL must neverthe-
less be taken as large as possible, but, given NC and NL,
one must still have a number of vortices Nv = (N/16)2

large enough. One has to note also that the value of Nv

puts a lower bound on the values of c that can be stud-
ied, since after all one cannot put less than one pin in the
system. Thus a complicated series of compromises must
be made to optimize the parameter values for which data
are obtained.

With the above in mind, the data presented here have
been obtained with NL = 1024. Two values of N have
been used: most of the data have been obtained for
N = 96 (which means NC = 22032 > 223) and addi-
tional results will be presented for N = 128 (NC = 224).
In the first case Nv = 36 and we have taken Np = 4 or
c = 1/9 while in the second case Nv = 64 and we have
taken Np = 8 and the somewhat larger concentration
c = 1/8. The number of vortices in our samples is larger
that that used in other computational work.15 At N = 96
therefore, we have tanψ = 0.437 while at N = 128 we
have a larger angle, tanψ = 0.583.

III. RESULTS

We can now discuss the results obtained using the
methods described above. The accuracy of these proce-
dures has been repeatedly discussed in previous work7–9

and this issue and other technicalities need not be further
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elaborated upon here. The iteration process continues
until the system reaches a local free energy minimum.
The structure of the system at that minimum is then
inferred by analyzing the vortex density structure, i.e.,
the set of variables {ρn,i}. One needs some initial con-
dition to start the minimization procedure. If one starts
with perfectly disordered initial conditions, (δρn,i ≡ 0)
and one quenches to a sufficiently high temperature, one
obtains a disordered minimum structure. The resulting
values of {ρn,i} can then be used as the initial condition
set at a nearby T . Ordered structures can be then ob-
tained upon cooling the system to a lower T sufficiently
slowly. Ordered states can also be obtained by using a
crystalline structure (we take that which minimizes the
pinning energy with respect to all the symmetry opera-
tions of the lattice) as the initial configuration. These
ordered configurations can then be warmed up and of
course, they eventually become disordered. In general,
the ordered configurations are to be identified, as we will
explain below, with BrG states while the disordered ones
are BoG at lower T , becoming eventually liquid upon
warming. At certain temperatures, more than one local
minimum may be found, and the values of the free en-
ergy then establish which is the stable configuration and
which are only metastable.

A. Structure of minima at c = 1/9

We have studied three random pin configurations at
c = 1/9, N = 96 (as explained above). The behavior
for all three configurations is extremely consistent. For
each pin configuration, we have studied also, for compar-
ison purposes, the behavior of the system with the same
pin configuration in the top layer but with the pinning
columns being normal to the layers, that is, parallel to
the z crystal axis, instead of tilted (ψ = 0). In so doing,
we consider the same pin configuration at the same value
of N to avoid sample to sample variation or finite size
effects tainting the comparison.24 The value of Nz is im-
material for vertical columns, since the problem should
be quasi two-dimensional in this case, but we have ex-
plicitly verified that the results do not change when Nz

is reduced from 1024 to eight.
It is important and very useful to visualize the struc-

ture of the free energy minima from the values of the
variables {ρn,i}. One way of doing so is by considering
the vortex lattice itself, as opposed to the computational
lattice. From the {ρn,i} set of values, we can locate the
position of a vortex at site i in the n layer if the value
of ρn,i at that site is larger that the value of ρn,j at any
site j within a distance a/2 of site i. The position of
these locations can then be directly plotted. This allows
a clear visualization of the arrangement of the vortices
at different minima of the free energy.

We first address the question of the degree of align-
ment of the vortices along the tilted columnar pins. In
our samples, the pin locations shift in the x-direction

by N = 96 spacings of the computational lattice across
NL = 1024 layers. Therefore, there is a shift of 3 spacings
of the computational lattice after every 32 layers. If the
vortices are aligned with the columnar pins, then their
positions would also shift by 3 spacings of the computa-
tional lattice after every 32 layers. We can check whether
this happens by showing in the same plot the vortex po-
sitions on layers nl = k + 32l where k is an arbitrary
integer between 1 and 32 and l = 0, 1, ..., 31. To com-
pensate for the expected shift due to the presence of the
tilted columns, we shift the vortex positions on layer nl

by 3l spacings of the computational lattice in the nega-
tive x-direction. Then, the plotted vortex positions after
the shifts on all the different layers, l = 0, 1, ..., 31, for
any k should lie on top of one another if the vortices
are aligned with the tilted pins. In Fig.1, we show two
such plots for two distinct local minima of the free energy
at T = 17.8K. As discussed below (see Fig. 6) in detail,
these two minima correspond to the BoG (top panel) and
BrG (bottom panel) states at a temperature close to the
transition temperature at which their free energies cross.
We emphasize that each plot shows the vortex positions
on 32 different layers, corresponding to l = 0, 1, ..., 31,
shifted appropriately to compensate for a tilt in the di-
rection of the columnar pins. The dots in the plot are
the pin positions. All other symbols are vortex lattice
sites, the precise meaning of their shapes and colors is
explained below. The vortex positions on these different
layers are found to fall directly on top of one another af-
ter the shifts in both panels of Fig. 1, so that only one
symbol per site can be seen. This observation indicates
that the vortices are almost perfectly aligned in the tilt
direction.

To examine the degree of alignment of the vortices with
the tilted pins for other values (not multiples of 32) of
layer separation, we consider the quantity d(n) which is
defined as the average distance between a vortex site and
its nearest neighbor in an adjacent plane separated by n
layers. This is plotted in Fig. 2 as a function the separa-
tion n between planes for the same BrG and BoG minima
and temperature as in Fig. 1. If the vortex lines are per-
fectly tilted, then, from the geometrical considerations
in Sec. II and the numerical values given there, it follows
that a plot of d(n) vs. n should be a straight line with
slope s = (Nh)/NL ≃ 0.01165a0 for smaller values of
n. Departure from a straight line is to be expected if n
exceeds the value for which d(n) reaches a value close to
a0, since a0 is (as previously mentioned) approximately
half of the average spacing a between nearest-neighboring
vortices on a layer. This is because for such larger values
of n, the vortex in layer (n + m) that has the small-
est lateral separation from a vortex on layer m is not

the one located at a position shifted by ns in the direc-
tion of the tilt from the position of the vortex in layer
m. Thus, since d(n) measures the smallest lateral sepa-
ration between two vortices located on planes separated
by n layer spacings, the linear increase of d(n) with n
should be observed only for d(n) . a0 or n . a0/s ≈ 86.
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FIG. 1: (Color online) Vortex lattice structure for the BoG
(top panel) and BrG (bottom panel) phases. The temperature
is 17.8K where both the phases are locally stable. Each plot
shows vortex positions on 32 different layers, appropriately
shifted to compensate for a tilt along the pinning columns
(see text). Dots represent pin positions, all other symbols are
vortex positions. The Voronoi analysis (see text) of the vor-
tex structure is shown by the symbol shape (and color). The
(black) circles represent ordinary six-fold coordinated sites,
(blue) triangles: 5-fold coordinated, (red) squares: 7-fold co-
ordinated.

One can see from Fig. 2 that a straight line with the ex-
pected slope fits the results perfectly well in the relevant
n range and this, together with the argument in the pre-
vious paragraph shows that as stated in the Introduction,
the vortex lines are indeed nearly perfectly tilted along
the direction of the pinning columns. This behavior is a
consequence of the dominance of the pinning energy over
interlayer vortex interactions for the realistic parameter
values used in our calculation.

Turning now to the structure in the xy plane, we have
analyzed the structure of the vortex arrangement in each
plane by means of a Voronoi construction. A Voronoi
construction in any lattice is performed by dividing it
into cells, one cell per lattice point, each cell consisting
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FIG. 2: (Color online) Distance d(n) between a lattice point
and it nearest neighbor in an adjacent plane (see text) plotted
vs layer separation n for the BrG and BoG phases at T =
17.8K. The circles are our results for the BoG minimum, the
(blue) solid line represents the results for the BrG minimum,
and the (red) dashed straight line shows the result expected
for d(n) . a0 (see text) for perfect alignment with the tilted
columnar pins.

of the region of space which is closest to a certain lattice
point than to any other. For a crystalline lattice, this is
the Wigner-Seitz cell. In general, the number of sides of
the Voronoi cell surrounding a lattice point is the number
of neighbors of the lattice point. The Voronoi analysis
then reflects directly the defect structure. The use of
different symbols in Fig. 1 is meant to show examples of
such Voronoi plots for the shifted lattice. We see that
from the point of view of the Voronoi construction there
is a contrast between the two cases shown, at the same
T = 17.8K where two phases are locally stable and have
approximately the same free energy. The state in the
top panel contains a considerable number of defects, as
can be seen by the adjacent site pairs with five or seven
neighbors, while the state in the bottom panel contains
none. Hence the first state can at least tentatively be
identified as a BoG state while the phase in the bottom
panel, which in the spatial scale of the computation looks
like a perfect crystal, can be identified as a BrG with a
more ordered structure than the BoG.

One can alternatively describe the structure and ver-
ify the above identifications by studying the density cor-
relation functions. It is straightforward to extract from
the vortex positions the in-plane angularly averaged two-
point correlation function g(r) of the vortex positions,
defined as

g(r) =
A

NLNv(Nv − 1)

∑
n

∑
i6=j m(n, i)m(n, j)fij(r,∆r)

2πr∆r
,

(3.1)
where m(n, i) = 1 if the computational lattice site i on
layer n corresponds to a vortex position (i.e. if the lo-
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FIG. 3: (Color online) Angularly averaged in-plane correla-
tion function g(r). Results for the same states and T as in
Fig. 1 are shown. The (black) line and circles are for the more
ordered (BrG) state and the (blue) line and triangles are for
the BoG.

cal density peaks at this computational lattice site), and
m(n, i) = 0 otherwise, A is the area of the sample in the
xy-plane, and fij(r,∆r) = 1 if the distance between the
lattice sites (n, i) and (n, j) lies between r and r+∆r (we
use ∆r = 0.2a0 in our calculation), and fij(r,∆r) = 0
otherwise. The normalization of g(r) is such that it
should approach unity in the large-r limit if there is no
long-range translation order in the planes. For a perfect
triangular lattice, the first 5 peaks of g(r) should occur
at r = 1.99a0, 3.44a0, 3.98a0, 5.26a0 and 5.97a0. This
g(r) is different from the more familiar pair distribution
function that measures the two-point correlation of the
local density. In particular, information about the degree
of localization of the local density peaks corresponding to
the vortex positions is not contained in g(r) because only
the positions of these peaks are used in its calculation.
Examples of g(r) are plotted in Fig. 3 for the same two
cases as in Fig. 1. Again, we see the contrast between
the two cases. Although the relatively small size of the
system precludes studying the very long r behavior, one
can see that the correlation function for the state which
in Fig. 1 exhibited no defects has a more ordered struc-
ture (higher and better defined peaks at the values of r
for which sharp peaks are expected for a triangular lat-
tice) than the one we tentatively identified as a BoG state
based on the Voronoi constructions of Fig. 1. Thus, this
analysis if g(r) confirms the identifications made based
on direct visualization and the Voronoi construction.

Next, in Figure 4 we consider a measure of the order as
a function of temperature. There are a number of ways
in which one can define an “order parameter” and here
we choose the value of g(r) at its first r > 0 peak. This
quantity, which we call gmax, is plotted as a function of
T for the same configuration presented in the previous
figures. We do this for both the BrG phase and the BoG

16 16.5 17 17.5 18 18.5 19
4

4.5

5

5.5

T(K)

g m
ax

FIG. 4: The quantity gmax (see text) used as a measure of the
order parameter, plotted as a function of T for both the BoG
and the BrG phases. Triangles: ordered (BrG) state, Circles:
BoG.

one. As we shall see below in the discussion associated
with Fig. 6, the BrG does not exist, even as a metastable,
state for T > 17.6 and the same holds for the BoG at
T < 17.0, hence the ranges plotted. We see that this
quantity decreases with T in either case but that it is
considerably larger in the BrG than in the BoG, as one
would expect. At T ≈ 17.5K where, as we shall see
below, the free energies of the two states cross, there is
a marked discontinuity in the equilibrium value of gmax.
The nearly constant value of gmax for the BoG phase
at temperatures higher than 17.8K is a reflection of the
above mentioned fact that the g(r) considered here does
not take into account the broadening of the local density
peaks with increasing temperature.

We end this section with a comparison of the structures
of the BoG and BrG minima obtained for the same in-
plane pin configuration, but for tilted pins in one case
and vertical pins in the other case. In Fig. 5, we show
vortex position plots similar to those in Fig.1 except that
no Voronoi analysis is performed. The top panel shows
the data for the BoG phase at T = 18.4K and the bottom
panel shows the results for the BrG phase at T = 17.8K.
It is clear from these plots that the in-plane structure for
tilted and vertical pins are very similar in both the BrG
and BoG phases. The degree of alignment with the pins
is also found to be very similar for tilted and vertical pins.
There are differences, however, between the vertical and
tilted cases, as we will see below.

B. Free energy and phase transitions

The minimization procedure yields, of course, the value
of the free energy at each local minimum. By consider-
ing the free energy values as a function of T the possible
phase transitions in the system can be studied. In Fig. 6
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FIG. 5: (Color online) Comparisons of the in-plane structures
of BoG and BrG minima obtained (see text) for tilted and
vertical pins at the same temperature and same in-plane pin
configuration. Top panel: BoG phase at T = 18.4K, (red)
circles: vertical pins, (blue) triangles: tilted pins. Bottom
panel: same for the BrG phase at T = 17.8K.

we show typical results at c = 1/9. The main plot is
for the tilted case with N = 96 in which case, as ex-
plained above, ψ = 0.41. The free energy per vortex is
plotted as a function of temperature. At high temper-
atures only one state is stable. The corresponding free
energy is plotted as the (red) crosses. By analyzing the
results at each T as explained in the previous subsection,
we find that this state is disordered, a BoG. It exists
down to T = 17.0K, where, as one can see in the fig-
ure, it becomes unstable to the other state. This other
state, the free energy of which is denoted by the (green)
× signs connected by dotted lines, is found in the same
way to be the BrG state. At temperatures in the range
17K ≤ T ≤ 18.2K both states can be found, one being of
course only metastable. The crossing of the free energies
occurs at T ≈ 17.6K where therefore a first order tran-
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FIG. 6: (Color online) Free energy vs temperature. The data
points are the results, the lines join the data points. The
(green) × symbols are for the BrG state and the (red) plusses
for the BoG. The main plot shows the free energy per vortex
for a tilted configuration at c = 1/9 (see text). The inset
shows the same data, in a restricted region, for the same con-
figuration but vertical pinning lines.

sition occurs, as seen by the difference in slopes of the
free energy and the discontinuity of the order parameter
in Fig. 4.

The insert shows, in a reduced temperature range, sim-
ilar results for the same pin configuration but at ψ = 0
(vertical pins). We see that in that case the first or-
der transition occurs near T = 18.6K, about one degree
higher than in the tilted case. This one degree shift oc-
curs for all pin configurations investigated at this value of
c: although the values of the individual transition tem-
peratures show some sample-to-sample variation, the one
degree shift always occurs. We see then that for c = 1/9
increasing the angle ψ leads to a notable decrease of the
temperature at which the BrG transforms to the BoG.

At higher temperatures the BoG crosses over to an
interstitial liquid phase. As we have seen in the vertical
pin case7–9 this transition coincides with the onset of per-
colation of the liquid phase. The determination of this
transition is shown in Fig. 7. The quantity plotted there
is the fraction f of the liquid-like local density peaks as a
function of temperature. A vortex lattice site is assumed
to be liquid-like if8 the local value of ρn,i does not exceed
3ρ0 (excluding of course the pinning sites). This fraction
of liquid-like sites is small at lower T and it rises rapidly
up to temperatures higher than the first order transition.
Then it flattens somewhat and it crosses the value of 1/2
(the threshold value for site percolation on a triangular
lattice) at a higher temperature T ≈ 18.4K. We take this
to be the temperature of crossing over from the BoG to
the IL region. In Fig. 7 results are also plotted for the
vertical pins case. The percolation crossover is found to
occur at a slightly higher temperature, T ≈ 19.0K, for
vertical pins.

There are some additional noteworthy differences be-
tween the tilted pin results and the results for vertical
pins. We have already seen that the transition temper-
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FIG. 7: Fraction f of liquid-like sites for BoG minima, plotted
as a function of T . The triangles are for the tilted pin system,
the circles for the same configuration but with vertical pins.

atures from BrG to BoG (Fig. 6) and from Bog to IL
(Fig. 7) are higher for vertical pins. In the Fig. 6 plots
one can also observe that the difference in the slopes at
the crossing, which is a measure of the latent heat per
vortex, is smaller in the vertical pin case, as compared to
the tilted situation. An additional difference is plotted
in Fig. 8. There we plot, in a semilog scale, the local
density peak height as a function of coordinate in the
x direction, for both the tilted case (plotted with lines
ending with dots) and the vertical one (triangles). This
is done in one panel at T = 18.4K in the BoG phase and
at T = 17.8K (BrG) in the other panel. It is striking
that in both cases the peak heights for vertical pins are
always higher.

The free energy per vortex is somewhat lower (at the
same T ) in the vertical case at lower values of T but the
difference becomes negligible at sufficiently high temper-
atures where the stable state is the BoG in both cases.
This occurs, we think, for the following reason: in Fig. 8
and similar data, the integrated vortex densities with val-
ues close to unity correspond to pin locations, indicat-
ing that the pins are almost fully occupied by vortices.
Therefore the portion of the free energy arising from
inter-plane electromagnetic interactions will tend to be
higher in the tilted case. However, Fig. 8 also shows that
the smaller peak densities away from the pinning columns
are also higher for vertical pinning columns. This means
that the density distribution in the vertical case is more
localized, which is consistent with the higher transition
temperature. At or above the melting temperature of the
pure vortex system without pins, a more localized den-
sity distribution will tend to have larger contributions to
the free energy arising from entropy and in-plane inter-
actions. At temperatures above 18.4K the free energy
gain arising from the lower localization in the tilted case
basically cancels the free energy cost from the inter-plane
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FIG. 8: (Color online) Peak height vs position for c = 1/9,
comparing vertical and tilted (tanψ = 0.437) cases. Results
at ψ = 0 are shown as the (red) triangles and those of the
tilted case by the (blue) dots and impulses. The top panel
is for T = 18.4K and BoG states while the bottom one is at
T = 17.8K (BrG).

vortex interaction.

C. Results at c = 1/8

We have also studied a somewhat higher concentration,
c = 1/8 at N = 128. This corresponds to a somewhat
larger tilt angle, tanψ = 0.583. Results for the obtained
equilibrium structure are given in Fig. 9. The top panel
of this figure shows the vortex lattice structure along with
the results of a Voronoi analysis (completely analogous
to Fig. 1). Despite the very low value of the tempera-
ture (T = 16.8K) we find that a good number of defects
remain and that the structure is the same as the BoG
one in the top panel of Fig. 1. This is confirmed in the
bottom panel of Fig. 9 where we plot, at the same T ,
the correlation function g(r) as in Fig. 3. We see (com-
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pare with Fig. 3) that the correlation function structure
is of the BoG type. This remains the situation down
to the lowest temperatures reached (T = 15.2K). The
free energy per vortex is not too different from that in the
c = 1/9 case (Fig. 5) but no instability to a more ordered
state is found, down to the lowest T attained. It is pos-
sible to obtain BrG like structures by quenching to low
temperatures with initial conditions corresponding to a
crystal: we have done so by quenching to T ≤ 16.0K but
the resulting free energy values are considerably higher
than those for the BoG at the same T . Thus in this case
only the BoG is found as an equilibrium state.

We conclude that at these values of c and ψ no tran-
sition to a BrG occurs except possibly at much lower
temperatures. We have also studied the same pin con-
figuration, at this value of N , for vertical pins. We have
again found no BoG to BrG transition upon cooling. We
conclude then that the change in c, not the different value
of ψ, is responsible for the different behavior found in
the two cases studied here. The high sensitivity of the
possible BoG to BrG transition to c should not come as
a surprise. In previous work (see in particular Fig. 1 of
Ref. 9) for vertical columns and a much larger value of N ,
where because the problem is quasi two-dimensional we
were able to map the phase diagram in the (T, c) plane
at constant field, we found that the line in the (T, c)
plane separating the BrG from the BoG, while nearly
vertical at small c, eventually curves sharply and then
becomes nearly horizontal, reflecting a very strong de-
pendence of the transition temperature on c and leading
in fact to the disappearance of this first order transition
at somewhat larger c. This is quite consistent with what
we find here. There are however small quantitative dif-
ferences with the results of Ref. 9. Here, we find that
the BrG phase is still present at low temperatures for
c = 1/9, whereas Ref. 9 reported this phase absent for
c > 1/32. The transition and crossover temperatures
found here are also slightly different from the values re-
ported in our earlier work. We believe that this is due to
the large difference between the sizes of the systems con-
sidered. Since the system with vertical columnar pins is
effectively two-dimensional, it was possible to study much
larger systems (with Nv = 4096, about 100 times larger
than those considered here) in our earlier studies. The
smallness of the system size in the present study makes
the results quantitatively less reliable: this is clear from
the observed sample-to-sample variations of the transi-
tion and crossover temperatures. Our earlier results ob-
tained for much larger samples, would be more reliable
for vertical pins. The purpose of considering vertical pins
in the present work was to make a direct comparison with
the behavior for tilted columnar pins without having to
worry about sample to sample variations or finite size
effects.
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FIG. 9: Analysis of the structure of a BoG minimum for a
tilted pin configuration at N = 128, c = 1/8, T = 16.8K. In
the top panel we have shown the results of a Voronoi analysis.
The symbols mean the same as in Fig. 1. In the bottom panel
we have g(r) plotted in the same way as in Fig. 3.

IV. SUMMARY AND DISCUSSIONS

Our detailed comparison of the results for the thermo-
dynamic behavior of the vortex system in the presence
of a dilute array of tilted columnar pinning centers re-
veals significant quantitative differences between this sys-
tem and a smilar system with vertical pinning columns,
normal to the layers, in the same in-plane configuration.
The thermodynamic behavior of the tilted pins system is
however qualitatively similar to that found in our earlier
studies7–9 of the vortex system with columnar pins per-
pendicular to the layers. In both cases, all the pins are
occupied by vortices if the relative concentration c of the
pinning centers is small. In the tilted case, we find that
the interstitial vortices are well-aligned in the tilt direc-
tion. If the relative pin concentration is low (c = 1/9),
the low-temperature phase exhibits the characteristics of
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a Bragg glass. As the temperature is increased, this phase
transforms, via a first order transition, to a more disor-
dered BoG phase which crosses over to an interstitial
liquid at a slightly higher temperature. For a higher pin
concentration (c = 1/8), the Bragg glass phase is absent
and the system exhibits only the crossover from the low-
temperature BoG to the interstitial liquid phase as the
temperature is increased. This is qualitatively similar to
what occurs in the vertical pins case.

Quantitatively, the temperatures at which the tran-
sition from the BrG phase to the BoG phase and the
crossover from the BoG to the interstitial liquid occur
are found to be appreciably higher (by about one degree,
or over 5%) in the vertical pin case. The degree of local-
ization of the vortices in the low temperature, solid-like
phases is also significantly higher for vertical pins. We at-
tribute these differences to the “frustration” in the tilted
case, arising from a competition between the interlayer
vortex interaction, which is minimized when the pancake
vortices on different layers are stacked in the vertical di-
rection, and the pinning energy which is minimized when
the vortices are aligned in the direction of the tilt. This
competition also makes the free energy in the tilted case
slightly higher than that for vertical pins at low temper-
atures, as we have seen. These physical effects of tilting
the columnar pins away from the layer normal should be
observable in experiments.

The differences we find between the results for verti-
cal and tilted pins seem to contradict some experimen-
tal14 studies which concluded that the thermodynamic
behavior of the vortex system is independent of the an-
gle between the magnetic field and the tilt direction if the
areal densities of pancake vortices and pinning centers on
each layer are held fixed. It is important to understand
the reasons for this apparent disagreement. In the ex-
periment of Ref. 14, the effects of changing the angle
between the magnetic field and the direction of colum-
nar pins were explored by changing the field direction for
a sample with columnar pins tilted by 45◦ from the layer
normal. This is not the same as the situation considered
in our study. In an isotropic superconductor, the indi-
vidual directions of the field and the columnar pins are
not important: the behavior of the vortex system is de-
termined by the angle between the two directions. But
for highly anisotropic layered materials such as high-Tc

superconductors, the directions of both the field and the
columnar pins are important. The experiment of Ref. 14
did not present any comparison between the results ob-
tained for the two cases considered in our study: one in
which the pins are tilted away from the layer normal,
and the other in which the pins are perpendicular to the
layers, but the areal densities of the pins and pancake
vortices on each layer are the same as those in the first
case. Since the measurements for different orientations
of the field were carried out for the same sample with the
columnar pins tilted away from the direction of the layer
normal, the frustration effects mentioned above, arising
from the competition between interlayer interactions and

pinning, were present in all the measurements. In con-
trast, these frustration effects are not present in one of
the cases (vertical pins) considered in our study. Thus
there is no real contradiction. In view of our results, an
experiment that makes a comparison between the ther-
modynamic behavior in the two cases considered in our
study would be very interesting.

It is more difficult to understand the reason for the
difference between our results and those of Langevin sim-
ulations14,15 performed on systems very similar to those
considered in our study. The simulations described in
these papers were carried out for both vertical and tilted
columnar pins, keeping the areal densities of pinning cen-
ters and pancake vortices fixed. Both electromagnetic
and Josephson interactions between pancake vortices on
different layers were included. Since both these interac-
tions prefer vortices on different layers to stack up in the
direction of the layer normal, the frustration arising from
the competition between these interactions and the pin-
ning potential for tilted columnar pins is expected to be
stronger in these simulations in comparison to that in our
study which considers only the electromagnetic interac-
tion. However, these simulations did not find any signifi-
cant difference between the results for vertical and tilted
pins. This disagreement with the results of our study
may be a consequence of differences in system parame-
ters. The values of c used in the simulations (c = 0.35
and 0.5) are substantially higher that those (1/9 and 1/8)
considered here. A large concentration of pinning centers
has the effect of reducing the relative importance of the
interlayer interactions by making the pinning energy the
dominant term in the total energy of the vortex system.
In fact, it is argued in Refs. 14,15 that the cost in Joseph-
son and electromagnetic energies due to the tilting of the
vortices is negligibly small compared to the gain in pin-
ning energy for the parameters used in the simulations.
If this is so, then it is not surprising that the simulations
did not find any difference between the thermodynamic
behavior for tilted and vertical pins. It is also possible
that the simulations are not sufficiently accurate to cap-
ture the fairly small differences between the results for
the two cases found in our study. The relatively small
size of the simulated systems (Nv = 36, and a number
of layers NL = 200, which is substantially smaller than
that considered in our study) implies that there would
be large fluctuations in the quantities measured in the
simulations. This would lead to substantial uncertainties
in the determination of transition temperatures – it is
well-known that it is very difficult to determine transi-
tion temperatures accurately from simulations of small
systems. The authors mention in Ref .15 that their sim-
ulation is not accurate enough to determine transition
temperatures with an accuracy of 1K. Since the differ-
ences between the transition and crossover temperatures
for tilted and vertical pins found in our study are of the
order of 1K, these differences would not be detected in
the simulation. Some of the detailed comparisons be-
tween the results for the two cases, shown in Fig. 8 of
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Ref. 15, are actually in agreement with our observations.
For example, it is shown in panel (c) of Fig. 8 of Ref. 15
that the mean-square displacement of the vortices from
their equilibrium positions is slightly higher in the tilted
case. This is very similar to the results shown in Fig. 8
above. We expect that the other differences between the
results for vertical and tilted columnar pins found in our
study will also be observed in simulations if the mea-
surements are done with sufficient accuracy at the same

values of c and other relevant parameters.
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