35,384 research outputs found

    Extensions of Lieb's concavity theorem

    Full text link
    The operator function (A,B)\to\tr f(A,B)(K^*)K, defined on pairs of bounded self-adjoint operators in the domain of a function f of two real variables, is convex for every Hilbert Schmidt operator K, if and only if f is operator convex. As a special case we obtain a new proof of Lieb's concavity theorem for the function (A,B)\to\tr A^pK^*B^{q}K, where p and q are non-negative numbers with sum p+q\le 1. In addition, we prove concavity of the operator function (A,B)\to \tr(A(A+\mu_1)^{-1}K^* B(B+\mu_2)^{-1}K) on its natural domain D_2(\mu_1,\mu_2), cf. Definition 4.1Comment: The format of one reference is changed such that CiteBase can identify i

    Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    Get PDF
    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements

    Failure properties of loaded fiber bundles having a lower cutoff in fiber threshold distribution

    Full text link
    Presence of lower cutoff in fiber threshold distribution may affect the failure properties of a bundle of fibers subjected to external load. We investigate this possibility both in a equal load sharing (ELS) fiber bundle model and in local load sharing (LLS) one. We show analytically that in ELS model, the critical strength gets modified due to the presence of lower cutoff and it becomes bounded by an upper limit. Although the dynamic exponents for the susceptibility and relaxation time remain unchanged, the avalanche size distribution shows a permanent deviation from the mean-fiels power law. In the LLS model, we analytically estimate the upper limit of the lower cutoff above which the bundle fails at one instant. Also the system size variation of bundle's strength and the avalanche statistics show strong dependence on the lower cutoff level.Comment: 7 pages and 7 figure

    Pulsational Analysis of the Cores of Massive Stars and its Relevance to Pulsar Kicks

    Full text link
    The mechanism responsible for the natal kicks of neutron stars continues to be a challenging problem. Indeed, many mechanisms have been suggested, and one hydrodynamic mechanism may require large initial asymmetries in the cores of supernova progenitor stars. Goldreich, Lai, & Sahrling (1997) suggested that unstable g-modes trapped in the iron (Fe) core by the convective burning layers and excited by the ϵ\epsilon-mechanism may provide the requisite asymmetries. We perform a modal analysis of the last minutes before collapse of published core structures and derive eigenfrequencies and eigenfunctions, including the nonadiabatic effects of growth by nuclear burning and decay by both neutrino and acoustic losses. In general, we find two types of g-modes: inner-core g-modes, which are stabilized by neutrino losses and outer-core g-modes which are trapped near the burning shells and can be unstable. Without exception, we find at least one unstable g-mode for each progenitor in the entire mass range we consider, 11 M_{\sun} to 40 M_{\sun}. More importantly, we find that the timescales for growth and decay are an order of magnitude or more longer than the time until the commencement of core collapse. We conclude that the ϵ\epsilon-mechanism may not have enough time to significantly amplify core g-modes prior to collapse.Comment: 32 pages including 12 color figures and 2 tables, submitted to Ap

    Specific Resistance of Pd/Ir Interfaces

    Full text link
    From measurements of the current-perpendicular-to-plane (CPP) total specific resistance (AR = area times resistance) of sputtered Pd/Ir multilayers, we derive the interface specific resistance, 2AR(Pd/Ir) = 1.02 +/- 0.06 fOhmm^2, for this metal pair with closely similar lattice parameters. Assuming a single fcc crystal structure with the average lattice parameter, no-free-parameter calculations, including only spd orbitals, give for perfect interfaces, 2AR(Pd/Ir)(Perf) = 1.21 +/-0.1 fOhmm^2, and for interfaces composed of two monolayers of a random 50%-50% alloy, 2AR(Pd/Ir)(50/50) = 1.22 +/- 0.1 fOhmm^2. Within mutual uncertainties, these values fall just outside the range of the experimental value. Updating to add f-orbitals gives 2AR(Pd/Ir)(Perf) = 1.10 +/- 0.1 fOhmm^2 and 2AR(Pd/Ir)(50-50) = 1.13 +/- 0.1 fOhmm^2, values now compatible with the experimental one. We also update, with f-orbitals, calculations for other pairsComment: 3 pages, 1 figure, in press in Applied Physics Letter

    Adsorption-Desorption Equilibrium Investigations of n-Butane on Nanocrystalline Sulfated Zirconia Thin Films

    Get PDF
    Nanocrystalline thin films of the alkane skeletal isomerisation catalyst sulfated zirconia were successfully deposited on a silicon substrate in order to allow the application of surface science techniques. Thermal treatment of the films was optimised to chemically mimic the powder preparation process, resulting in films possessing the essential features (including tetragonal phase, nanocrystallinity and sulfur content of not, vert, similar3 at.%) of active powder catalysts. The n-butane adsorption–desorption equilibrium under isobaric conditions (10−8–10−6 h Pa) over the temperature range 300–100 K was monitored by photoelectron spectroscopy. Analysis of the isobars revealed strong and weak n-butane chemisorption sites, releasing heats of between 59–40 and 47–34 kJ/mol, corresponding to 5 and 25% of a monolayer coverage, respectively. The total amount of chemisorbed n-butane coincides with the estimated number of surface sulfate groups. An increase in adsorption heat was observed between coverages of not, vert, similar5–8% of a monolayer, indicating adsorbate–adsorbate interactions. It follows that adjacent sites are present and isomerisation by a bimolecular surface reaction is feasible. Physisorption on the films generates heats of not, vert, similar28 kJ/mol, for coverages from 30% up to a complete monolayer. Multilayer adsorption results in the formation of an electrically insulating adsorbate structure. It is proposed that the strong chemisorption sites correspond to an interaction with a minority disulfate species

    Cofinement, entropy, and single-particle dynamics of equilibrium hard-sphere mixtures

    Full text link
    We use discontinuous molecular dynamics and grand-canonical transition-matrix Monte Carlo simulations to explore how confinement between parallel hard walls modifies the relationships between packing fraction, self-diffusivity, partial molar excess entropy, and total excess entropy for binary hard-sphere mixtures. To accomplish this, we introduce an efficient algorithm to calculate partial molar excess entropies from the transition-matrix Monte Carlo simulation data. We find that the species-dependent self-diffusivities of confined fluids are very similar to those of the bulk mixture if compared at the same, appropriately defined, packing fraction up to intermediate values, but then deviate negatively from the bulk behavior at higher packing fractions. On the other hand, the relationships between self-diffusivity and partial molar excess entropy (or total excess entropy) observed in the bulk fluid are preserved under confinement even at relatively high packing fractions and for different mixture compositions. This suggests that the partial molar excess entropy, calculable from classical density functional theories of inhomogeneous fluids, can be used to predict some of the nontrivial dynamical behaviors of fluid mixtures in confined environments.Comment: submitted to JC

    Glass transition and effective potential in the hypernetted chain approximation

    Full text link
    We study the glassy transition for simple liquids in the hypernetted chain (HNC) approximation by means of an effective potential recently introduced. Integrating the HNC equations for hard spheres, we find a transition scenario analogous to that of the long range disordered systems with ``one step replica symmetry breaking''. Our result agree qualitatively with Monte Carlo simulations of three dimensional hard spheres.Comment: 7 pages, 7 figures, Revtex fil

    Free Energy Landscape Of Simple Liquids Near The Glass Transition

    Get PDF
    Properties of the free energy landscape in phase space of a dense hard sphere system characterized by a discretized free energy functional of the Ramakrishnan-Yussouff form are investigated numerically. A considerable number of glassy local minima of the free energy are located and the distribution of an appropriately defined ``overlap'' between minima is calculated. The process of transition from the basin of attraction of a minimum to that of another one is studied using a new ``microcanonical'' Monte Carlo procedure, leading to a determination of the effective height of free energy barriers that separate different glassy minima. The general appearance of the free energy landscape resembles that of a putting green: deep minima separated by a fairly flat structure. The growth of the effective free-energy barriers with increasing density is consistent with the Vogel-Fulcher law, and this growth is primarily driven by an entropic mechanism.Comment: 10 pages, 6 postscript figures, uses iopart.cls and iopart10.clo (included). Invited talk at the ICTP Trieste Conference on "Unifying Concepts in Glass Physics", September 1999. To be published in J. Phys. Cond. Ma
    • …
    corecore