42 research outputs found

    Risk analysis of a distillation unit

    Get PDF
    A risk analysis of a batch distillation unit is de-scribed. The analysis has been carried out at several stages during plant design, construction, and operation. The costs, quality, and benefits is using the methods are described

    Pulsar kicks from a dark-matter sterile neutrino

    Full text link
    We show that a sterile neutrino with mass in the 1-20 keV range and a small mixing with the electron neutrino can simultaneously explain the origin of the pulsar motions and the dark matter in the universe. An asymmetric neutrino emission from a hot nascent neutron star can be the explanation of the observed pulsar velocities. In addition to the pulsar kick mechanism based on resonant neutrino transitions, we point out a new possibility: an asymmetric off-resonant emission of sterile neutrinos. The two cases correspond to different values of the masses and mixing angles. In both cases we identify the ranges of parameters consistent with the pulsar kick, as well as cosmological constraints.Comment: 5 pages, 2 figures; final version; discussion and references adde

    Percolating granular superconductors

    Full text link
    We investigate diamagnetic fluctuations in percolating granular superconductors. Granular superconductors are known to have a rich phase diagram including normal, superconducting and spin glass phases. Focusing on the normal-superconducting and the normal-spin glass transition at low temperatures, we study he diamagnetic susceptibility χ(1)\chi^{(1)} and the mean square fluctuations of the total magnetic moment χ(2)\chi^{(2)} of large clusters. Our work is based on a random Josephson network model that we analyze with the powerful methods of renormalized field theory. We investigate the structural properties of the Feynman diagrams contributing to the renormalization of χ(1)\chi^{(1)} and χ(2)\chi^{(2)}. This allows us to determine the critical behavior of χ(1)\chi^{(1)} and χ(2)\chi^{(2)} to arbitrary order in perturbation theory.Comment: 18 pages, 2 figure

    Density functional method for nonequilibrium electron transport

    Get PDF
    We describe an ab initio method for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested Siesta approach (which uses non-local norm-conserving pseudopotentials to describe the effect of the core electrons, and linear combination of finite-range numerical atomic orbitals to describe the valence states). We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme involving the scattering states. As an illustration, the method is applied to three systems where we are able to compare our results to earlier ab initio DFT calculations or experiments, and we point out differences between this method and existing schemes. The systems considered are: (1) single atom carbon wires connected to aluminum electrodes with extended or finite cross section, (2) single atom gold wires, and finally (3) large carbon nanotube systems with point defects.Comment: 18 pages, 23 figure
    corecore