42,483 research outputs found

    Maximum Likelihood-based Online Adaptation of Hyper-parameters in CMA-ES

    Get PDF
    The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is widely accepted as a robust derivative-free continuous optimization algorithm for non-linear and non-convex optimization problems. CMA-ES is well known to be almost parameterless, meaning that only one hyper-parameter, the population size, is proposed to be tuned by the user. In this paper, we propose a principled approach called self-CMA-ES to achieve the online adaptation of CMA-ES hyper-parameters in order to improve its overall performance. Experimental results show that for larger-than-default population size, the default settings of hyper-parameters of CMA-ES are far from being optimal, and that self-CMA-ES allows for dynamically approaching optimal settings.Comment: 13th International Conference on Parallel Problem Solving from Nature (PPSN 2014) (2014

    Quasi-Optimal Filtering in Inverse Problems

    Full text link
    A way of constructing a nonlinear filter close to the optimal Kolmogorov - Wiener filter is proposed within the framework of the statistical approach to inverse problems. Quasi-optimal filtering, which has no Bayesian assumptions, produces stable and efficient solutions by relying solely on the internal resources of the inverse theory. The exact representation is given of the Feasible Region for inverse solutions that follows from the statistical consideration.Comment: 9 pages, 240 K

    Structure, phase behavior and inhomogeneous fluid properties of binary dendrimer mixtures

    Get PDF
    The effective pair potentials between different kinds of dendrimers in solution can be well approximated by appropriate Gaussian functions. We find that in binary dendrimer mixtures the range and strength of the effective interactions depend strongly upon the specific dendrimer architecture. We consider two different types of dendrimer mixtures, employing the Gaussian effective pair potentials, to determine the bulk fluid structure and phase behavior. Using a simple mean field density functional theory (DFT) we find good agreement between theory and simulation results for the bulk fluid structure. Depending on the mixture, we find bulk fluid-fluid phase separation (macro-phase separation) or micro-phase separation, i.e., a transition to a state characterized by undamped periodic concentration fluctuations. We also determine the inhomogeneous fluid structure for confinement in spherical cavities. Again, we find good agreement between the DFT and simulation results. For the dendrimer mixture exhibiting micro-phase separation, we observe rather striking pattern formation under confinement.Comment: 8 pages, 10 figure

    Parametric vision simulation study, part 2 Final report

    Get PDF
    Effects of landing site redesignation on visibility during manned lunar landin

    Density functional theory for the freezing of soft-core fluids

    Get PDF
    We present a simple density functional theory for the solid phases of systems of particles interacting via soft-core potentials. In particular, we apply the theory to particles interacting via repulsive point Yukawa and Gaussian pair potentials. We find qualitative agreement with the established phase diagrams for these systems. The theory is able to account for the bcc-fcc solid transitions of both systems and the re-entrant melting that the Gaussian system exhibits.Comment: 7 pages, 4 figure
    corecore