49,643 research outputs found
Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals
A single crystal plasticity theory for insertion into finite element simulation is formulated using sequential laminates to model subgrain dislocation structures. It is known that local models do not adequately account for latent hardening, as latent hardening is not only a material property, but a nonlocal property (e.g. grain size and shape). The addition of the nonlocal energy from the formation of subgrain structure dislocation walls and the boundary layer misfits provide both latent and self-hardening of a crystal slip. Latent hardening occurs as the formation of new dislocation walls limits motion of new mobile dislocations, thus hardening future slip systems. Self-hardening is accomplished by an evolution of the subgrain structure length scale. The substructure length scale is computed by minimizing the nonlocal energy. The minimization of the nonlocal energy is a competition between the dislocation wall energy and the boundary layer energies. The nonlocal terms are also directly minimized within the subgrain model as they affect deformation response. The geometrical relationship between the dislocation walls and slip planes affecting the dislocation mean free path is taken into account, giving a first-order approximation to shape effects. A coplanar slip model is developed due to requirements while modeling the subgrain structure. This subgrain structure plasticity model is noteworthy as all material parameters are experimentally determined rather than fit. The model also has an inherit path dependence due to the formation of the subgrain structures. Validation is accomplished by comparison with single crystal tension test results
Infall near clusters of galaxies: comparing gas and dark matter velocity profiles
We consider the dynamics in and near galaxy clusters. Gas, dark matter and
galaxies are presently falling into the clusters between approximately 1 and 5
virial radii. At very large distances, beyond 10 virial radii, all matter is
following the Hubble flow, and inside the virial radius the matter particles
have on average zero radial velocity. The cosmological parameters are imprinted
on the infall profile of the gas, however, no method exists, which allows a
measurement of it. We consider the results of two cosmological simulations
(using the numerical codes RAMSES and Gadget) and find that the gas and dark
matter radial velocities are very similar. We derive the relevant dynamical
equations, in particular the generalized hydrostatic equilibrium equation,
including both the expansion of the Universe and the cosmological background.
This generalized gas equation is the main new contribution of this paper. We
combine these generalized equations with the results of the numerical
simulations to estimate the contribution to the measured cluster masses from
the radial velocity: inside the virial radius it is negligible, and inside two
virial radii the effect is below 40%, in agreement the earlier analyses for DM.
We point out how the infall velocity in principle may be observable, by
measuring the gas properties to distance of about two virial radii, however,
this is practically not possible today.Comment: 7 pages, 3 figures, to appear in MNRA
Self-Affinity in the Gradient Percolation Problem
We study the scaling properties of the solid-on-solid front of the infinite
cluster in two-dimensional gradient percolation. We show that such an object is
self affine with a Hurst exponent equal to 2/3 up to a cutoff-length
proportional to the gradient to the power (-4/7). Beyond this length scale, the
front position has the character of uncorrelated noise. Importantly, the
self-affine behavior is robust even after removing local jumps of the front.
The previously observed multi affinity, is due to the dominance of overhangs at
small distances in the structure function. This is a crossover effect.Comment: 4 pages, 4 figure
An Iterative Receiver for OFDM With Sparsity-Based Parametric Channel Estimation
In this work we design a receiver that iteratively passes soft information
between the channel estimation and data decoding stages. The receiver
incorporates sparsity-based parametric channel estimation. State-of-the-art
sparsity-based iterative receivers simplify the channel estimation problem by
restricting the multipath delays to a grid. Our receiver does not impose such a
restriction. As a result it does not suffer from the leakage effect, which
destroys sparsity. Communication at near capacity rates in high SNR requires a
large modulation order. Due to the close proximity of modulation symbols in
such systems, the grid-based approximation is of insufficient accuracy. We show
numerically that a state-of-the-art iterative receiver with grid-based sparse
channel estimation exhibits a bit-error-rate floor in the high SNR regime. On
the contrary, our receiver performs very close to the perfect channel state
information bound for all SNR values. We also demonstrate both theoretically
and numerically that parametric channel estimation works well in dense
channels, i.e., when the number of multipath components is large and each
individual component cannot be resolved.Comment: Major revision, accepted for IEEE Transactions on Signal Processin
Fracture in Three-Dimensional Fuse Networks
We report on large scale numerical simulations of fracture surfaces using
random fuse networks for two very different disorders. There are some
properties and exponents that are different for the two distributions, but
others, notably the roughness exponents, seem universal. For the universal
roughness exponent we found a value of zeta = 0.62 +/- 0.05. In contrast to
what is observed in two dimensions, this value is lower than that reported in
experimental studies of brittle fractures, and rules out the minimal energy
surface exponent, 0.41 +/- 0.01.Comment: 4 pages, RevTeX, 5 figures, Postscrip
The Chemical Composition of an Extrasolar Minor Planet
We report the relative abundances of 17 elements in the atmosphere of the
white dwarf star GD 362, material that, very probably, was contained previously
in a large asteroid or asteroids with composition similar to the Earth/Moon
system. The asteroid may have once been part of a larger parent body not unlike
one of the terrestrial planets of our solar system.Comment: ApJ, in pres
Helicopter simulation validation using flight data
A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator
Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona
S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements
- …