2,618 research outputs found

    Sequence stratigraphy and architectural elements of the Giant Foresets Formation, northern Taranaki Basin, New Zealand

    Get PDF
    The modern continental margin in northern Taranaki Basin is underlain by a thick, mud-dominated, Pliocene and Pleistocene succession (Giant Foresets Formation, GFF) clearly imaged in seismic reflection datasets. A study focusing on the geometry and internal reflection character of the GFF has revealed structural, sedimentological, and eustatic controls on its accumulation. Isopach maps prepared for northern Taranaki Basin show shifts through time in the main loci of sediment accumulation of the Mangaa Formation and Giant Foresets Formation. During the Early Pliocene (Opoitian Stage) deposition was focused in the southern part of the Northern Graben. The prograda¬tional front moved into the vicinity of Arawa-1 and Taimana-on the Western Platform during the early-Late Pliocene (Waipipian and Mangapanian Stages), forming large mounded slope fans. Through the latest Pliocene (Mangapanian - lower Nukumaruan Stages) the progradational front moved rapidly to the north and west through and across the Northern Graben to form a distinct shelf-slope depositional front. During the Pleistocene (upper Nukumaruan Stage – Recent), the progradational front straightened out, reaching the present position of the shelf-slope break. Even during the Pleistocene, broad subsidence persisted in the Northern Graben, trapping a proportion of the sediment flux being delivered to this part of the basin. The Late Pliocene part of the GFF, particularly where it prograded on to the Western Platform, displays classic clinoform profiles, with over steepening having resulted in mass-failure of paleoslopes. Major degradation of the shelf edge and slope occurred during the Early Pleistocene, reflecting a change in the calibre and flux of sediment sourced to the continental margin. Detailed examination of part of the GFF not significantly affected by mass-failure indicates that small-scale channel levee and overbank deposits dominate slope deposition, while basin floor deposits are characterised by slope-disconnected muddy and silty basin floor fans, with little lateral continuity between systems. In a sequence stratigraphic context, many of the dominant components of each seismic unit (slumps, fans, and channel-levee complexes) were deposited during the falling (RST) and low (LST) sea level parts of a relative sea level cycle, resulting in highly asymmetric sequences. While the GFF is considered to have minor reservoir potential in terms of containing sandstone-dominated stratigraphic traps, it does afford the opportunity to study in detail how deep-water clastic systems evolved in response to the various factors that control depositional architectures, particularly in a rapidly prograding muddy continen¬tal margin system

    New insights into the condensed nature and stratigraphic significance of the Late Neogene Ariki Formation, Taranaki Basin

    Get PDF
    The Ariki Formation is a distinctive Late Miocene – Early Pliocene marl facies rich in planktic foraminifera, reaching thicknesses in the range 70 - 109 m in most exploration holes drilled into the Western Platform northwest of Taranaki Peninsula. In Awatea-1 and Mangaa-1 in the Northern Graben, however, there are two marl units separated by the Mangaa “B” Sands. The lower unit has the same upper Tongaporutuan and Kapitean age as the lower part of the marl on the Western Platform, and the upper marl has an Upper Opoitian - Waipipian age, similar to the upper part of the Ariki Formation on the platform. In other holes located on the margins of the graben there can be one thin marly horizon, which usually correlates with the upper marl unit in Awatea-1 and Mangaa-1. The presence of two marly units in the Northern Graben, which are probably amalgamated on the western Platform, suggests two periods of late Neogene condensed sedimentation in northern Taranaki Basin arising from siliciclastic sediment starvation, separated by a period of submarine fan accumulation (Mangaa ‘B’ sands) following subsidence of the Northern Graben. We attribute the initial interval of marl accumulation mainly to a marked landward shift in the position of coastal onlap in central and southern Taranaki and in the region east of the Taranaki Fault Zone (southern King Country and northern Wanganui regions), which effectively shut-off the supply of siliciclastic sediment to northern Taranaki Basin, thereby enabling marl to accumulate. The start of accumulation of the upper part of the Ariki Formation and its marly correlatives in and around the Northern Graben, is attributed to a younger (upper Opoitian) landward shift in the position of coastal onlap, this time involving the formation of the Wanganui Basin depocentre and Toru Trough, which trapped the contemporary siliciclastic sediment being supplied from the south. A lower Opoitian phase of progradation between these two phases of retrogradation led to accumulation of the lower part of the Mangaa Formation (Mangaa ’B’ sands), which was limited in its extent to the Northern Graben because bounding normal faults had by then developed sea floor relief precluding mass-emplaced siliciclastic sediment from being deposited on the higher standing Western Platform. The accumulation of Ariki Formation marl in northern Taranaki Basin ended during the mid-Pliocene due to progradation of a thick continental margin wedge (Giant Foresets Formation) across the Northern Graben and Western Platform

    Evolution of the Giant Foresets Formation, northern Taranaki Basin, New Zealand

    Get PDF
    Plio-Pleistocene aggradation and progradation has resulted in the rapid outbuilding of the continental shelf margin, northern Taranaki Basin. Seismic reflection profiles reveal that this outbuilding is characterised by bold clinoforms which offlap in a basinward direction. This stacked succession of clinoforms, collectively termed the Giant Foresets Formation, obtains thicknesses of over 2 km in places, and has had a significant effect on the thermal regime of the region. This integrated study was initiated to document the Late Neogene evolution of this formation, and thereby gain insights on sedimentary distribution patterns, timing of sedimentation, and controls on progradation and aggradation. Latest Miocene extension in the northern Taranaki Basin, related to rotation of the Hikurangi subduction zone, greatly influenced sedimentation patterns in the Pliocene. Palinspastic reconstruction shows that initial extension of the Northern Graben occurred before Giant Foresets Formation sedimentation began. Sediment, sourced from erosion to the east, was preferentially funneled into the newly created Northern Graben during the late Miocene and early Pliocene, while areas to the north and west underwent a period of sediment starvation. During the late Pliocene, and into the Pleistocene, sediment accumulation outpaced graben extension, and by the end of the Mangapanian, the graben was overtopped. During this period, the progradational front associated with the outbuilding of the continental shelf-slope margin advanced northwards. Throughout the Nukumaruan, continuing to the present day, shelf migration was extremely rapid. While at least seven cyclical sea level changes, with an approximate periodicity of 400 ka (fourth-order) have been identified, overall, depths shallowed from dominantly bathyal, to dominantly shelfal

    Rapid progradation of the Pliocene-Pleistocene continental margin, northern Taranaki Basin, New Zealand, and implications

    Get PDF
    Progradation and aggradation of the modern continental margin in northern Taranaki Basin has resulted in the deposition of a thick and rapidly accumulated Pliocene-Pleistocene sedimentary succession. It includes the predominantly muddy Giant Foresets Formation, and the underlying sandy Mangaa Formation. Investigation of the internal attributes and depositional systems associated with the Giant Foresets Formation suggests that it would provide very little effective reservoir for hydrocarbon accumulations, although it does provide essential seal and overburden properties. While the sand-dominated Mangaa Formation could be a hydrocarbon reservoir, drilling so far has yet to reveal any significant hydrocarbon shows. Undoubtedly the most significant contribution that the Giant Foresets and Mangaa Formations have had on petroleum systems in northern Taranaki Basin is the cumulative effect that rapid and substantial accumulation has had on maturation and migration of hydrocarbons in the underlying formations. Palinspastic restoration of a seismic reflection profile across the Northern Graben, together with isopach mapping of stratigraphic section for biostratigraphic stages, indicates that the thickest part of the Pliocene-Pleistocene succession is along the central axis of the Northern Graben. Deposition of this succession contributed substantially to subsidence within the graben, providing further accommodation for sediment accumulation. Isopach and structure contour maps also reveal the extent to which submarine volcanic massifs were exposed along the axis of the graben and the timing of movement on major faults

    A study of high-resolution x-ray scattering data evaluation by the maximum-entropy method

    Get PDF
    The ability of the maximum-entropy method (in the program MAXENT) to estimate the distance-distribution function from high-resolution X-ray scattering data is studied. It is demonstrated that a key element for the successful application of MAXENT is the use of a good prior estimate for the distance-distribution function. For simulated as well as experimental data, the effects of different priors, noise levels, smearing and measuring intervals are investigated. For practical applications of MAXENT, various methods for the calculation of priors are treated and a principle for the subsequent choice between the priors is suggested. It is demonstrated that, when the construction of the prior is given sufficient consideration, MAXENT provides a very useful method for estimating the distance distribution from the scattering data

    Proceedings of the congress of the South African nutrition society

    Get PDF
    The application of nutrltional knowledge to the nutritional health problems of South AfricaProgress report on production and utilization of NNRI food formulae (PVM

    Development of low and high birefringence optical fibres

    No full text
    The polarization properties of single-mode optical fibers are easily modified by environmental factors, While this can be exploited in a number of fiber sensor devices. it can be troublesome in applications where a stable output polarization-state is required. Fibers with both low and high birefringence have been developed to enhance or diminish their environmental sensitivity, and recent progress in each area is reviewed. Low-birefringence fibers are described which are made by spinning the preform during the draw. In addition. developments in high-birefringence fibers which maintain a polarization state over long lengths are summarized. The effect on performance of external factors such as bends, transverse pressure, and twists is analyzed. Consideration is also given to polarization mode-dispersion as a potential limiting factor in ultrahigh bandwidth systems

    PMS48 Cost-Effectiveness of Tocilizumab for The Management of Inadequately Responding Rheumatoid Arthritis Patients

    Get PDF
    Weiner, LawrencePrimer pla de l'obra. Tres grans paral¡lelepípedes de formigó, amb aparença de sarcòfags.Repartits al llarg de l'avinguda. Tots porten uns versos, escrits el 1845, quan tenia 15 anys, pel premi Nobel Frederic Mistral

    Effect of truncated glucagon-like peptide 1 on cAMP in rat gastric glands and HGT-1 human gastric cancer cells

    Get PDF
    AbstractWe tested the truncated 7–37 glucagon-like peptide 1 (TGLP-1), a naturally occurring porcine intestinal peptide, and other members of the glucagon family, including pancreatic glucagon (G-29), GLP-1 and GLP-2 for their ability to activate the cAMP generating system in rat gastric glands and HGT-1 human gastric cancer cells. In rat fundic glands, TGLP-1 was about 100 times more potent (EC50 = 2.8 × 10−9M) than GLP-1 of G-29, and 10 times more potent than G-29 in the HGT-1 cell line. Our results support the notion that TGLP-1 plays a direct role in the regulation of acid secretion in rat and human gastric mucosa

    Multimodal particle size distribution or fractal surface of acrylic acid copolymer nanoparticles: A small-angle X-ray scattering study using direct Fourier and indirect maximum entropy methods

    Get PDF
    Acrylic acid copolymers are potential carriers for drug delivery. The surface, surface rugosity and the absolute dimension of the particles are parameters that determine the binding of drugs or detergents, diffusion phenomena at the surface and the distribution of the carrier within the human body. The particle-size distribution and surface rugosity of the particles have been investigated by small-angle X-ray scattering and dynamic light scattering. Direct Fourier transform as well as a new strategy for the indirect maximum-entropy method MAXENT are used for data evaluation. Scattering equivalence of a pure multimodal distribution of hard spheres (five populations) and a mixed multimodal-surface-fractal model (four populations) was found. Model calculations and dynamic light-scattering experiments gave evidence of the multimodal particle-size distribution combined with the fractal surface of the carrier The main moiety consists of particles 90 nm in diameter which are surface fractals in the 10 nm region
    • …
    corecore