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Abstract 

Acrylic acid copolymers are potential carriers for drug 
delivery. The surface, surface rugosity and the absolute 
dimension of the particles are parameters that determine 
the binding of drugs or detergents, diffusion phenomena 
at the surface and the distribution of the carrier within the 
human body. The particle-size distribution and surface 
rugosity of the particles have been investigated by small- 
angle X-ray scattering and dynamic light scattering. 
Direct Fourier transform as well as a new strategy for the 
indirect maximum-entropy method MAXENTare used for 
data evaluation. Scattering equivalence of a pure multi- 
modal distribution of hard spheres (five populations) and 
a mixed multimodal-surface-fractal model (four popula- 
tions) was found. Model calculations and dynamic light- 
scattering experiments gave evidence of the multimodal 
particle-size distribution combined with the fractal sur- 
face of the carrier. The main moiety consists of particles 
90 nm in diameter which are surface fractals in the 
10 nm region. 

1. Introduction 

Acrylic acid copolymers with dimensions of about 
100 nm are potential carriers for drug delivery (Verdun, 
Couvreur, Vranckx, Lenaerts & Roland, 1986; Tarcha, 
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1991). The surface, surface rugosity and the absolute 
dimensions or the size distribution of the particles are 
parameters that determine the binding of drugs or 
detergents, diffusion phenomena at the surface, the 
recognition and clearance by the reticuloendothelial 
system and the distribution of the carrier within the 
body (Miiller, 1991, Kreuter, 1983; Pfeifer, 1987). 
Therefore, these structure parameters must be accurately 
known to permit a correct functional interpretation. The 
determination of the size distribution from small-angle 
X-ray scattering data is an underdetermined problem and 
consequently there are many possible solutions that can 
fit the experimental data adequately. 

When using indirect methods, some additional con- 
straints must be introduced for selection of a single 
solution from the set of possible solutions. Various 
constraints have been tried for the analogous problem of 
determination of the distance distribution function from 
small-angle scattering data: Glatter (1977) uses a 
smoothness constraint (choosing the 'smoothest' of the 
possible solutions), Moore (1980) prefers decomposition 
of the distribution into a special functional system with 
appropriate properties, Hansen & Pedersen (1991) 
propose the maximum-entropy method and Svergun 
(1992) uses a combination of more subjective criteria 
for selection of the 'best' distribution. Constraints can be 
taken into account in a similar way for the determination 
of the particle-size-distribution function (e.g. Glatter, 
1980; Potton, Daniell & Rainford, 1988; Svergun, 
Semenyuk & Feigin, 1988). However, it has to be noted 
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that the problem of the determination of the size- 
distribution function from small-angle scattering data is 
usually even more ill conditioned than the determination 
of the distance-distribution function (this will be apparent 
from a singular-value decomposition of the transforma- 
tion matrix which takes the distribution to be estimated 
from real space into reciprocal space). Which method of 
regularization should be applied depends on the prior 
knowledge of the scatterer and the data obtained. For 
example, for low-resolution data, a smoothness constraint 
is probably appropriate, whereas the maximum-entropy 
method might be appropriate for data of higher resolution 
or when some prior information about the shape of the 
scatterer (e.g. from other experiments) can be included in 
the analysis (Miiller & Hansen, 1994). 

In the present paper, we have used the program 
MAXENT (Miiller and Hansen, 1994) for the determina- 
tion of particle-size distributions. We will show by a 
simulation that a good prior estimate for the particle-size 
distribution has to be chosen to obtain reliable results and 
to avoid artefacts. 

For the data presented here, direct methods of data 
evaluation gave evidence of a multimodal particle-size 
distribution combined with a fratal surface of the 
particles. By MAXENT, an additional particle population 
is detected, but model calculations in combination with 
experimental results of dynamic light scattering and hints 
from electron microscopy give evidence that surface 
rugosity is more probable than an additional population 
of small particles or inner-electron-density fluctuations at 
the given structure resolution. 

2. Experimental 

2.1. Small-angle X-ray scattering (SAXS) 

The copolymer particles of 14.4% acrylic acid, 3% 
acrylamide, 26.6% acrylic butyl ester and 56% 
methacrylic methyl ester (CAA nanoparticles) were 
produced by emulsion polymerization (Lukowski, 
Miiller, Miiller & Dittgen, 1992). The samples were 
suspended in double-distilled water and investigated at 
room temperature in thin-walled glass capillaries 1 mm 
in diameter as described recently (Mfiller, Lukowski, 
Krrber, Damaschun & Dittgen, 1994). A second series 
was measured in a physiological sodium chloride 
solution (0.15 M NaCl) to compensate free charges at 
the nanoparticle surface. 

The measurement of the scattered intensity was done 
using a Kratky diffractometer (A. Paar, KG, Graz, 
Austria) with a slit system that guarantees an information 
loss-free registration for particle dimensions smaller than 
260 nm. The upper boundary of the scattering vector was 
Smax.exp=0.6 n m -  1, providing a resolution of about 
5 nm Is = 4rt sin(O)/2; )~ is the wavelength, 2 0  is the 
scattering angle]. The scattered Cu K~ radiation was 
monochromatized by pulse-height discrimination and a 

7 lam Ni filter and then registered by a proportional 
counter. Diffractometer distortion corrections (slit-length 
and slit-width desmearing) were done using direct 
methods (Miiller, 1992) as well as the indirect method 
MAXENT, using real experimental beam profiles. Data 
evaluation and extrapolations to infinite polymer dilution 
were carried out for two concentration series (1.36, 2.26, 
4.65, 8.9, 17.9 and 39.5 g 1-1 in double distilled water; 
4.41, 8.57, 17.27 and 34.5 g 1 - l  in 0.15 M NaCI). The 
procedures have been described recently for CAA 
nanoparticles (Miiller, Lukowski, Krrber, Damaschun 
& Dittgen, 1994). The desmeared scattering curves of the 
nanoparticles for infinite dilution, resulting from the two 
desmearing methods, are identical for both solvent 
conditions within the experimental errors. The scattering 
curve of particles in distilled water is used for further 
interpretation in this paper. 

2.2. Dynamic light scattering 

Dynamic light-scattering investigations were per- 
formed using a spectrometer that has been described 
previously (Gast, Damaschun, Misselwitz & Zirwer, 
1992). The measurements were carried out at 293 K, at 
a scattering angle of 90 ° and at the wavelength 632.8 nm 
of a helium neon laser operating at 35 mW output power. 
The suspensions were filtered through 0.4 ~m Nuclepore 
filters directly into 100 ~1 flow-through cells (Hellma, 
Germany). The homodyne time-autocorrelation functions 
of the scattered light intensity, G2(z), were calculated by a 
90-channel multibit multiple-z correlator and then fed 
into an on-line coupled PC equipped with a transputer 
board, ALV-800 (ALV Laser-Vertriebsgesellschatt mbH, 
Germany) for data evaluation using the program CON- 
TIN (Provencher, 1982). 

3. Theory 

3.1. Particle-size distribution function- direct method 
in X-ray scattering 

The calculation of the size-distribution function N(D) 
for spherical particles by a direct method has been 
described recently by Walter, Gerber & Kranold (1983) 
and Miiller, Lukowski, Kr6ber, Damaschun & Dittgen 
(1994). To determine N(D) from the scattered intensity 
equation (1) has to be inverted: 

tmax 
I(s) -- f N(D)ID(s,D) dD. (1) 

Lmm 

Lmax, Lmi n are the diameters of the largest and smallest 
particles, respectively, in a given sample and detectable 
with the given diffractometer slit configuration. Io(s, D) 
is the intensity scattered from a single particle with 
diameter D. For lo(0, D) (x V2(D), N(D) is a number 
distribution; V(D)N(D) is the volume-weighted distribu- 
tion, where V(D) is the volume of a sphere with diameter 
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D. N(D) can be calculated from the scattered intensity at 
discrete points kAs: 

M 
N(D) = AsZ/2rt 2 ~ kI(kAs){sin(KAsD) 

k=0 

× [8/D 5 - 4(kAs)2/D 3] 

+ cos(kAsO) [(kAs)3/D 2 

- 8kAs/O4]} + Ri. (2) 

R; are analytical correction terms for termination-error 
reduction when the scattering curve follows a constant/s 3 
or constant/s 4 law at large angles (MOiler et al., 1994). 
The scattered intensity is recalculated from the distribu- 
tion function by 

Lmax / A D 
Irec(S) = ~ N(iAD)I(s ,  iAx), 

i=Lm,n/ AD 

where AD is the step width used for diameters. 

3.2. Particle-size distribution function - indirect maxi- 
mum-entropy method 

The determination of the size distribution from small- 
angle scattering data is an underdetermined problem and 
consequently there are many possible solutions. 

In general, for problems where many different 
distributions can fit the data adequately, some principle 
for choosing a single one is necessary. For this purpose, 
the maximum-entropy method (MAXEND can be used 
(see e.g. Jaynes, 1983). Using MAXENTfor  selection of a 
single distribution from many distributions N =  
( N 1 , . . . ,  NN,~), which all fit the data, the one is 
chosen that maximizes the entropy S as given by Skilling 
(1988): 

Nmax 
S ( N , m ) =  y~. - N j  l n ( N j / m j ) +  N j - m j ,  

j=l  

The simultaneous curve fitting and maximization of 
the entropy are achieved by solution of the equation. 

V(~S -~- ,~2) = 0, (7) 

where ~ is a Lagrange multiplier allowing the g 2 to obtain 
a predetermined value. A simple algorithm for this 
purpose is described by Steenstrup (1985). 

In small-angle scattering, the maximum-entropy meth- 
od has previously been used for estimation of distance 
distribution functions (Hansen & Pedersen, 1991; MOiler 
& Hansen, 1994) and size distributions (e.g. Potton, 
Daniell & Rainford, 1988; Morrison, Corcoran & Lewis, 
1992; Jemian & Allen, 1994). 

3.3. Determination o f  a fractal dimension 

(3) The scattering of fractals has been described earlier by 
Pfeifer (1984), Schmidt (1991) and others. Schmidt 
(1991) has shown that surface fractals scatter as 

I(s) = constant/s 6-a (8) 

and mass fractals as 

l(s) = constant/s a, (9) 

assuming constant electron density in the particle matrix. 
The fractal dimension d has to be less than 3. 

Therefore, if the scattering curve declines more strongly 
than s - 3, the sample cannot be a mass fractal but only a 
surface fractal, d - - 2  characterizes a smooth surface, 
d =  3 a strong fractality. The self-similarity region of 
the fractal is restricted to a real-space dimension of 
7 Z / S m i n > r > 7 ~ / S m a  x with Smin and Smax being the 
boundaries of the power-law region in the scattering 
curve. Pfeifer (1984) defined the condition 

Sma x/Smi n > 2 l/a (1 O) 

that must be fulfilled to accept the value d as a well 
(4) defined dimension. 

where m = (ml . . . . .  mN,,~) is a prior estimate of N. 
For the present application, the maximization of the 

entropy is done subject to the constraint that the 
distribution fits the M data points l(sl) . . . .  , I(sM). The 
quality of the fit is given by the usual expression: 

M N,~ 
Z 2 =  Y~ I ( s i ) -  ~ Ai jNj  , (5) 

i= 1 j 

where a; is the standard deviation for the Gaussian noise 
at a data point i and the matrix A is given by 

A O. = 9V(Dj)({sin[si(Dj/2)] - si(Dj/2) 

x cos[si(Dj/2)]}/[si(Dy/2)]3) 2 AD, (6) 

where A D = D j + I -  Dj. By this definition of the 
transformation matrix A, the size distribution that is 
determined is a volume-weighted distribution. 

3.4. Dynamic light scattering (DLS) 

The program package CONTIN (Provencher, 1979, 
1982) was used to estimate either a distribution of 
translational diffusion coefficients Dr from which the 
corresponding hydrodynamic diameters can be calculated 
via the Einstein equation 

Dr = KT/(3rcqD) (11 ) 

or directly the distribution of diameters assuming the 
particles to be compact spheres (K is Boltzmann's 
constant, T is the absolute temperature, r/is the viscosity). 
While in the former case the ordinate of the distribution 
function is proportional to the scattered intensity per size 
interval cx V2(D)N(D), a weight concentration distribu- 
tion c~ V(D)N(D) is generated in the second case 
(identical with the volume-weighted diameter distribution 
in SAXS). Thus, the second procedure appears to be 
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Fig. 1. Influence o f  the prior on the diameter  distribution o f  spheres 
calculated by the max imum-en t ropy  method MAXENZ 
Theoretical  distribution calculated f rom equation (12); - - .  Gaussian 
prior; o o o MAXENTresuit using a uniform flat prior; • • • MAXENT 
result using the Gaussian prior. 
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Fig. 2. Scattering curve o f  a sys tem o f  spheres with a diameter  
distribution shown in Fig. I. • • • Theoretical  scattering curve, 5% 
constant  relative noise; - -  MAXENT fit using a Gaussian prior. 
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Fig. 3. Corfiparison o f  the experimental  scattering curve o f  C A A  
nanoparticles with model  scattering curves. Upper  two curves (m): 
o o o exper iment  data; - -  MAXENT fit using the modif ied particle- 
size distribution function (shown in Fig. 4) as prior. Lower two curves 
(d): o o o experimental  data; - -  reconstituted scattering curve 
using the modified distribution (shown in Fig. 4) in equauon (3). 
• marks the point of divergence between the experimental and the 
reconstituted curves. The upper  curves are shifted vertically by an 
arbitrary value. 

more useful but it has two disadvantages. Firstly, a proper 
assumption for the relation between the diameter and 
particle mass has to be made. Secondly, fast-decaying 
components in the autocorrelation function are some- 
times overestimated. Thus, spurious small-particle com- 
ponents may appear in the diameter-distribution function. 
We have applied both data-evaluating schemes in order to 
get reliable results. 

4. Results 

Previous estimates of size distributions using the 
maximum-entropy method have all used a uniform prior. 
However, the importance of the prior has been demon- 
strated for distance distributions in small-angle scattering 
(Miiller & Hansen, 1994), and similarly the choice of 
prior is also relevant for estimation of size distributions. 
A theoretical example demonstrating the importance of 
the prior is discussed here. The simulated size distribu- 
tion consists of three Gaussians (Fig. 1): 

N(D) = e x p [ - 0 . 5 ( D -  20) 2/22] 

+ 2exp[-0 .5(D - 60)2/32] 

+ 4exp[-0 .5(D - 80)2/102]. (12) 

The corresponding scattered intensity is shown in Fig. 2 
with 5% noise added. MAXENT has now been used to 
estimate the size distribution from the noisy data. Firstly 
using a uniform prior gives a result with artefacts, most 
importantly oscillations that give a splitting of the main 
peak. This splitting is to be expected as the MAXENT 
estimate is biased towards the uniform prior and the 
entropy of a solution with two smaller peaks is then 
higher than that of a solution with one larger peak. 
Secondly, using a Gaussian of free position, width and 
height as the prior gives an estimate much closer to the 
original size distribution. The position, width and height 
of the prior used for the estimate are chosen as those 
yielding the solution that has the maximum entropy. For 
estimation of size distributions, a Gaussian size distribu- 
tion will usually convey the expectation of the experi- 
ment better than a uniform prior as a flat size distribution 
is not a frequently encountered situation. The MAXENT 
fit shown in Fig. 2 is that corresponding to the Gaussian 
prior. 

The experimental slit-corrected scattering curve of the 
CAA nanoparticles at infinite dilution is shown in Fig. 3. 
Any model fitting with coated spheres or ellipsoids failed 
(MOiler, Lukowski, Krrber, Damaschun & Dittgen, 
1994) but a particle-size distribution function for spheres 
can be calculated by the direct method (Fig. 4). This 
distribution shows one main peak and spurious oscilla- 
tions resulting from the restriction of the measuring 
interval to Smax,exp -- 0.6 nm - l .  The true distribution 
cannot be negative and the mean of the envelopes of the 
oscillating curve is used as the more probable diameter 
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distribution. The contribution of particles with diameters 
smaller than 12 nm may also be an artefact from wrong 
curve extrapolation to larger angles not measured 
experimentally. This modified curve N(D)V(D) has been 
used to synthesize the scattering curve corresponding to 
(3) with zaD = 1 nm. The radii of gyration Re = 38.7 (9) 
and 37.8 nm, the weight-averaged volumes V= 
3.8(3) x I05 and 4.0 x 105 nm 3 and the largest diam- 
eters Lm==130(5)  and 126nm, respectively, are 
identical for experimental and reconstructed data. Both 
scattering curves are shown in Fig. 3. Up to 
s = 0.275 n m -  t, the agreement is complete within the 
error limits. For larger scattering vectors, the experi- 
mental scattered intensity is higher than the calculated 
intensity. 

The experimental data are drawn on a double- 
logarithmic scale in Fig. 5. Each power-law curve will 
be a straight line with the inclination of the negative 
power. An oscillation of the scattering curve around the 
straight line with an inclination o f - 3 . 6 5  is visible. This 
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Fig. 4. Diameter distribution functions of  CAA nanoparticles 
determined from X-ray scattering. - - -  Calculated with direct 
method; . . .  modified result of  the direct method and prior for 
MAXENT; MAXENT result using the modified distribution 
obtained by the direct method as prior; t~[] [] MAXENTresult, using a 
free Gaussian as prior. 
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Fig. 5. X-ray scattering curve of  CAA nanoparticles on a logarithmic 
scale for visualization of  surface fractality. • • • Experimental data; 
- -  straight line with an inclination of  -3 .65 (fractal dimension 
a=2.35). 

deviation from Porod's law (see Glatter & Kratky, 1982) 
can be caused by several structural features. Surface 
rugosity, inner-electron-density fluctuations or a combi- 
nation of both, or an additional particle moiety with 
diameter less than 12 nm, which cannot be excluded 
from the result of the direct data handling as discussed 
above, can produce the additional intensity detectable in 
this angular region. For the first possibility, the data 
evaluation follows (8)-(10) for a fractal sample. If there 
exists any fractality, it must be a surface fractal because 
the power has to be smaller than 3 for a mass fractal. The 
dimension of a surface fractal is then d=2 .35(10)  as 
follows from (8). This value characterizes a rather 
smooth surface. The boundaries of the self-similarity 
interval are ~/0.41 nm (7.7 nm) and rt/0.275 nm 
(11.4 nm), taking the point of divergence between the 
experimental curve and the reconstituted one and the end 
of the power-law interval, respectively. Formally, (10) is 
fulfilled with Smax/Smin = 1.49 being larger than 21/d= 
1.34, so that d=2 .35  can be accepted as a fractal 
dimension. At smaller angles, the experimental scattering 
curve oscillates around the s -4 curve showing that the 
particles have smooth surfaces at this resolution. 

We used the maximum-entropy method MAXENT to 
obtain more detailed information from the X-ray 
scattering. The result of the maximum-entropy search 
was shown in Fig. 4. If the directly determined modified 
diameter distribution is used as a prior, the same features 
as in the prior are visible for diameters > 6 0  nm 
(weighted mean diameter 90 nm) but an additional small 
population with diameters around 5 to 12 nm is also 
evident. The scattering curve is fitted on the basis of this 
distribution up to s = 0.45 nm-1 within the experimental 
error limits (Fig. 3). This means that no fractality would 
be necessary to explain the tail of the curve at larger 
scattering vectors, at least for dimensions larger than 
5 nm. Because the results of a maximum-entropy search 
can be biased in the wrong direction by an inadequate 
prior as shown above, we used a free Gaussian 
distribution as a much simpler prior. The MAXENT 
result is identical with the first one (Fig. 4), showing the 
independence of the determined particle-size distribution 
on the used special priors and confirming at least four 
particle subpopulations with diameters larger than 60 nm 
and one with about 10 nm. 

Contrast-variation experiments would be necessary to 
detect inner-electron-density fluctuations, which may 
also be the reason for the increased scattering at larger 
angles. Another way to confirm the surface rugosity is 
the use of additional biophysical methods, which deliver 
information about the particle structure which is not 
influenced by inner inhomogeneities. Therefore, dynamic 
light-scattering (DLS) experiments are suitable. The size- 
distribution functions calculated from DLS data are 
shown in Figs. 6 and 7. The distribution in Fig. 6 
[cx V2(D)N(D)] represents the relative scattered intensity 
per size interval and consists mainly of one peak with an 
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averaged diameter of 104 nm. A very small second peak 
contributing only about 1% to the total scattered intensity 
can be seen at 41 nm diameter. The weight distribution 
function in Fig. 7 [cx V(D)N(D)] shows two peaks, 
having average diameters of 36 and 98 nm, respectively. 
According to this distribution, the particles of the smaller 
peak would contribute about 8% to the total mass. The 
main result is that the predominant portion of the 
particles has diameters around 100 nm, which means 
about 10% larger than that determined by X-ray 
scattering. Because the smaller species contributes only 
very weakly to the total scattered intensity, we cannot 
unambiguously decide whether it really represents a 
distinct particle population or the main peak is only 
skewed towards smaller diameters. The smaller particle 
population is not well defined by DLS. Furthermore, 
there is no evidence for a population with diameters of 
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Fig. 6. Diameter distribution function ofCAA nanoparticles determined 
from DLS using the distribution of diffusion coefficients and the 
Einstein equation. Grey bars: experimental data calculated with 
CONTIN (Provencher, 1979, 1982); black bars: error levels. The 
distribution corresponds to the V'Z-weighted number distributions 
N(D) calculated from SAXS. 
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Fig. 7. Diameter distribution function of CAA nanoparticle determined 
from DLS using directly the distribution of diameters of hard spheres. 
Grey bars: experimental data calculated with CONTIN (Provencher, 
1979, 1982); black bars: error levels. The distribution corresponds to 
the V-weighted number distribution N(D) calculated from SAXS. 

about 10 nm, either from the V 2 or the V-weighted size 
distribution, the latter being much more sensitive for 
small particles. 

The enlarged nanoparticle dimensions of 70 to 130 nm 
in comparison with 60 to 120 nm, obtained from DLS 
and X-ray scattering, respectively, can be explained by a 
water shell surrounding the particles and moving together 
with the polymer. By a ffactality of the surface, where the 
notches act like paddle wheels, the relatively thick water 
shell of 10 nm is better explained than by polar groups 
(Miiller, Lukowski, Kr6ber, Damaschun & Dittgen, 
1994) alone. 

Former transmission-electron-microscopy data gave 
hints of a structured surface and a water-enriched surface 
zone of about I0 nm has been postulated (Zosel, 1989). 
No separate particles with about this diameter have been 
detected by Lukowski (1995). These results will be 
discussed in more detail elsewhere. 

These observations support the fractality of the surface 
of the copolymer nanoparticles rather than an additional 
population of small spheres or inner-electron inhomo- 
geneities. There seems to be a discrepancy concerning 
the 10 nm population between the results of direct 
interpretation of X-ray scattering curves, DLS and 
electron miscroscopy, on the one hand, and the results 
of the indirect maximum-entropy method on the other. A 
crude model for particles with a ffactal surface is used to 
resolve the ambiguity. A model with physical relevance 
has to be based on a real zero-order approximant of the 
ffactal. This is not known in the case of the copolymer 
nanoparticles. Therefore, we tried a simpler approach to 
simulate surface rugosity. One large sphere is covered by 
30 small spheres having a ninth of the radius of the large 
sphere (insert in Fig. 8). 10% of the accessible surface of 
the large sphere is occupied by the statistically distributed 
small spheres. For this basic model, a diameter distribu- 
tion 

N(D) = exp[-0.5(D - 81.08)2/102] (13) 

is used for calculation of the scattered intensity using (3). 
As expected, the contribution of the small spheres to the 
scattering increases the intensity at larger angles (Fig. 8) 
and the curve follows the power law constant/s 365. With 
the direct method, a particle population can be deter- 
mined with a weighted mean diameter of 84.4 nm from 
the theoretical scattering curve. An additional population 
of small, seemingly independent, spheres with diameters 
of about 8 nm is also visible. The diameter distribution 
calculated with MAXENT (Fig. 8) is also bimodal. It does 
not show spurious oscillations but clearly shows two 
moieties at 8-9 nm and 84.7 nm. A free Gaussian prior 
was taken here for the search. Both systems, a bimodal 
distribution consisting of large spheres with a smooth 
surface and small independently scattering spheres with 
radius a tenth of the radius of the large sphere, and a 
unimodal distribution of large spheres with surface-fixed 
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small beads of a radius a ninth of the radius of the large 
sphere, are equivalent in scattering. The interaction terms 
between small and large spheres do not play a significant 
role under the chosen experimental and simulation 
conditions. 

5. Concluding remarks 

By using X-ray scattering, only models and particle-size 
distribution functions equivalent in scattering to a real 
object can be deduced. Direct and indirect data-handling 
methods are used in a complementary way. For selection 
of a model with high reliability, the indirect maximum- 
entropy method MAXENT is used. As recently shown for 
the distance distribution, the importance of a good 
estimate of a prior for the particle-size distribution too 
has been demonstrated here by simulation. Two models 
for CAA nanoparticles, a pure five-population distribu- 
tion of smooth hard spheres and a mixed model of a four- 
population distribution of spheres with fractal surface 
were deduced from the small-angle scattering. To our 
knowledge, no such clearly different models have been 
discussed up to now that fit the experimental data within 
the error limits and within a restricted resolution interval. 
By using additional information from DLS and hints 
from electron microscopy, the pure multipopulation 
model has been called in question. Unfortunately, it 
was not possible to calculate directly the scattering curve 
for the mixed model because of lack of knowledge about 
the fractal geometry. But, by crude modelling of the 
surface rugosity by partial coveting of a unimodal 
distribution of large spheres by smaller ones, a bimodal 
diameter distribution can be calculated with maximum 
entropy as well as with direct methods, which shows the 
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Fig. 8. Diameter distribution calculated for a Gaussian distribution of  
large spheres covered with small spheres of  a ninth of  the large 
radius. 10% of  the accessible surface is statistically occupied by small 

3 2 spheres. - - -  Theoretical distribution (x/6)D exp[ -0 .5(D - 81.1) 
/102]; o o o result of  the direct method; • • • MAXENTresult. Left 
insert: - -  scattering curve of  the model; • • • fit by MAXENT, 

straight line with an inclination of  -3 .65  (fractal dimension 
d =  2.35). The line is shit~ed vertically for clarity. Right insert: model 
with diameters D =  81.1 and 9.01 nm for the large and small spheres, 
respectively. 

small spheres as seemingly independent particle moiety. 
This simulation together with the experimental results 
from dynamic light scattering and electron microscopy 
renders possible a rejection of the pure multipopulation 
model. In reality, of course, the surface rugosity will most 
probably not be represented by ideally spherical beads 
but the irregularities will look rather like notches or 
bulges. Inner small inhomogeneities or a mixed model of 
inner fluctuations and outer rugosity cannot be excluded 
definitively by the applied methods but they should not 
play any important role because of the scattering 
equivalence found for model and sample and the 
additional information about surface rugosity from other 
methods. For the drug-carrier function, the detected 
surface fractality is relevant for further interpretation of 
interactions of the cartier with macromolecules, like 
immunoglobulins, and small surfactants or drugs, 
because the accessible surface is enlarged compared 
with smooth hard spheres corresponding to the fractal 
dimension. 

The authors thank Udo Heinemann for helpful 
discussions and kind support. 
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