477 research outputs found
Alternative method to find orbits in chaotic systems
We present here a new method which applies well ordered symbolic dynamics to
find unstable periodic and non-periodic orbits in a chaotic system. The method
is simple and efficient and has been successfully applied to a number of
different systems such as the H\'enon map, disk billiards, stadium billiard,
wedge billiard, diamagnetic Kepler problem, colinear Helium atom and systems
with attracting potentials. The method seems to be better than earlier applied
methods.Comment: 5 pages, uuencoded compressed tar PostScript fil
Kinetics of glucose oxidase catalyzed electron transfer mediated by sulfur and selenium compounds
AbstractUnusually high electron transfer rates in Aspergillus niger glucose oxidase catalyzed oxidation of glucose using 5,6:11,12-Bis(dithio)tetracene (TTT), 1,2-dimethyltetraselenafulvalene (DMTSF) and tetrathiafulvalene (TTF) were observed. At pH 7.0 oxidation rate constants (TN/Km) in the range from 1.0 · 107 to 8.7 · 107 M · sâ1 were deduced from experimental data. One of the investigated mediators, DMTSF, has been used for electrocatalytical glucose oxidation on graphite at a potential of 0.3 V vs. a standard calomel electrode (SCE). The prepared bioelectrodes have a sensitivity of 1.3 ÎŒA/(cm2 · mM), a pH optimum at 6.5-7.0, and a linear range which covers the relevant range for monitoring physiological levels of glucose. The bioelectrodes are stable for more than one month
Dynamic critical behavior of failure and plastic deformation in the random fiber bundle model
The random fiber bundle (RFB) model, with the strength of the fibers
distributed uniformly within a finite interval, is studied under the assumption
of global load sharing among all unbroken fibers of the bundle. At any fixed
value of the applied stress (load per fiber initially present in the bundle),
the fraction of fibers that remain unbroken at successive time steps is shown
to follow simple recurrence relations. The model is found to have stable fixed
point for applied stress in the range 0 and 1; beyond which total failure of
the bundle takes place discontinuously. The dynamic critical behavior near this
failure point has been studied for this model analysing the recurrence
relations. We also investigated the finite size scaling behavior. At the
critical point one finds strict power law decay (with time t) of the fraction
of unbroken fibers. The avalanche size distribution for this mean-field
dynamics of failure has been studied. The elastic response of the RFB model has
also been studied analytically for a specific probability distribution of fiber
strengths, where the bundle shows plastic behavior before complete failure,
following an initial linear response.Comment: 13 pages, 5 figures, extensively revised and accepted for publication
in Phys. Rev.
Density of states and magnetoconductance of disordered Au point contacts
We report the first low temperature magnetotransport measurements on
electrochemically fabricated atomic scale gold nanojunctions. As , the
junctions exhibit nonperturbatively large zero bias anomalies (ZBAs) in their
differential conductance. We consider several explanations and find that the
ZBAs are consistent with a reduced local density of states (LDOS) in the
disordered metal. We suggest that this is a result of Coulomb interactions in a
granular metal with moderate intergrain coupling. Magnetoconductance of atomic
scale junctions also differs significantly from that of less geometrically
constrained devices, and supports this explanation.Comment: 5 pages, 5 figures. Accepted to PRB as Brief Repor
Precursors of catastrophe in the BTW, Manna and random fiber bundle models of failure
We have studied precursors of the global failure in some self-organised
critical models of sand-pile (in BTW and Manna models) and in the random fiber
bundle model (RFB). In both BTW and Manna model, as one adds a small but fixed
number of sand grains (heights) to any central site of the stable pile, the
local dynamics starts and continues for an average relaxation time (\tau) and
an average number of topplings (\Delta) spread over a radial distance (\xi). We
find that these quantities all depend on the average height (h_{av}) of the
pile and they all diverge as (h_{av}) approaches the critical height (h_{c})
from below: (\Delta) (\sim (h_{c}-h_{av}))(^{-\delta}), (\tau \sim
(h_{c}-h_{av})^{-\gamma}) and (\xi) (\sim) ((h_{c}-h_{av})^{-\nu}). Numerically
we find (\delta \simeq 2.0), (\gamma \simeq 1.2) and (\nu \simeq 1.0) for both
BTW and Manna model in two dimensions. In the strained RFB model we find that
the breakdown susceptibility (\chi) (giving the differential increment of the
number of broken fibers due to increase in external load) and the relaxation
time (\tau), both diverge as the applied load or stress (\sigma) approaches the
network failure threshold (\sigma_{c}) from below: (\chi) (\sim) ((\sigma_{c})
(-)(\sigma)^{-1/2}) and (\tau) (\sim) ((\sigma_{c}) (-)(\sigma)^{-1/2}). These
self-organised dynamical models of failure therefore show some definite
precursors with robust power laws long before the failure point. Such
well-characterised precursors should help predicting the global failure point
of the systems in advance.Comment: 13 pages, 9 figures (eps
Corticosteroid delivery using oral mucosa equivalents for the treatment of inflammatory mucosal diseases
Oral lichen planus (OLP) is an immuneâmediated disease of the oral mucosa with idiopathic aetiology. It is frequently treated with topical corticosteroids (applied as gels, mouthwashes, or sprays); however, the mucosal exposure times of topical corticosteroids are short because of removal by the constant flow of saliva and mechanical forces. In this study we used cell monolayers, as well as oral mucosal equivalents (OMEs) containing activated Tâcells, to examine corticosteroid potency and delivery of clobetasolâ17âpropionate from a novel electrospun mucoadhesive patch. The OMEs displayed tight junctions, desmosomes, hemidesmosomes, and an efficient permeability barrier. Following application of corticosteroids to cells cultured as monolayers, the degree of cytotoxicity measured correlated to the level of potency recognized for each corticosteroid; by contrast, OMEs were largely unaffected by corticosteroid treatment. Permeation of clobetasolâ17âpropionate into and through the OMEs was timeâ and doseâdependent, regardless of whether this corticosteroid was delivered in liquid form or from a mucoadhesive patch, and both liquidâ and patchâdelivered clobetasolâ17âpropionate significantly reduced the secretion of interleukinâ2 by activated Tâcells. This study confirms that OMEs are more suitable models than cell monolayers for evaluating toxicity and drug delivery. After topical exposure, clobetasolâ17âpropionate accumulated in OMEs at a higher level than betamethasoneâ17âvalerate and hydrocortisoneâ17âvalerate, and exerted its immunosuppressive actions following application via the patch delivery system, highlighting the efficacy of this mode of drug delivery to treat OLP
Dislocation-Mediated Melting: The One-Component Plasma Limit
The melting parameter of a classical one-component plasma is
estimated using a relation between melting temperature, density, shear modulus,
and crystal coordination number that follows from our model of
dislocation-mediated melting. We obtain in good agreement
with the results of numerous Monte-Carlo calculations.Comment: 8 pages, LaTe
A Current Induced Transition in atomic-sized contacts of metallic Alloys
We have measured conductance histograms of atomic point contacts made from
the noble-transition metal alloys CuNi, AgPd, and AuPt for a concentration
ratio of 1:1. For all alloys these histograms at low bias voltage (below 300
mV) resemble those of the noble metals whereas at high bias (above 300 mV) they
resemble those of the transition metals. We interpret this effect as a change
in the composition of the point contact with bias voltage. We discuss possible
explanations in terms of electromigration and differential diffusion induced by
current heating.Comment: 5 pages, 6 figure
Fracture model with variable range of interaction
We introduce a fiber bundle model where the interaction among fibers is
modeled by an adjustable stress-transfer function which can interpolate between
the two limiting cases of load redistribution, the global and the local load
sharing schemes. By varying the range of interaction several features of the
model are numerically studied and a crossover from mean field to short range
behavior is obtained. The properties of the two regimes and the emergence of
the crossover in between are explored by numerically studying the dependence of
the ultimate strength of the material on the system size, the distribution of
avalanches of breakings, and of the cluster sizes of broken fibers. Finally, we
analyze the moments of the cluster size distributions to accurately determine
the value at which the crossover is observed.Comment: 8 pages, 8 figures. Two columns revtex format. Final version to be
published in Phys. Rev.
- âŠ