4,070 research outputs found

    On the attribution of a single event to climate change

    Get PDF
    Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 8297–8301, doi:10.1175/JCLI-D-14-00399.1.There is growing interest in assessing the role of climate change in observed extreme weather events. Recent work in this area has focused on estimating a measure called attributable risk. A statistical formulation of this problem is described and used to construct a confidence interval for attributable risk. The resulting confidence is shown to be surprisingly wide even in the case where the event of interest is unprecedented in the historical record.GH acknowledges funding from the Federal Ministry for Education and Research. MA acknowledges partial support from the Giannini Foundation.2015-05-1

    Two-dimensional colloidal fluids exhibiting pattern formation

    Get PDF
    Fluids with competing short range attraction and long range repulsive interactions between the particles can exhibit a variety of microphase separated structures. We develop a lattice-gas (generalised Ising) model and analyse the phase diagram using Monte Carlo computer simulations and also with density functional theory (DFT). The DFT predictions for the structures formed are in good agreement with the results from the simulations, which occur in the portion of the phase diagram where the theory predicts the uniform fluid to be linearly unstable. However, the mean-field DFT does not correctly describe the transitions between the different morphologies, which the simulations show to be analogous to micelle formation. We determine how the heat capacity varies as the model parameters are changed. There are peaks in the heat capacity at state points where the morphology changes occur. We also map the lattice model onto a continuum DFT that facilitates a simplification of the stability analysis of the uniform fluid.Comment: 13 pages, 15 figure

    Dynamics in inhomogeneous liquids and glasses via the test particle limit

    Get PDF
    We show that one may view the self and the distinct part of the van Hove dynamic correlation function of a simple fluid as the one-body density distributions of a binary mixture that evolve in time according to dynamical density functional theory. For a test case of soft core Brownian particles the theory yields results for the van Hove function that agree quantitatively with those of our Brownian dynamics computer simulations. At sufficiently high densities the free energy landscape underlying the dynamics exhibits a barrier as a function of the mean particle displacement, shedding new light on the nature of glass formation. For hard spheres confined between parallel planar walls the barrier height oscillates in-phase with the local density, implying that the mobility is maximal between layers, which should be experimentally observable in confined colloidal dispersions.Comment: 4 pages, 3 figure

    The van Hove distribution function for Brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics

    Get PDF
    We describe a test particle approach based on dynamical density functional theory (DDFT) for studying the correlated time evolution of the particles that constitute a fluid. Our theory provides a means of calculating the van Hove distribution function by treating its self and distinct parts as the two components of a binary fluid mixture, with the `self' component having only one particle, the `distinct' component consisting of all the other particles, and using DDFT to calculate the time evolution of the density profiles for the two components. We apply this approach to a bulk fluid of Brownian hard spheres and compare to results for the van Hove function and the intermediate scattering function from Brownian dynamics computer simulations. We find good agreement at low and intermediate densities using the very simple Ramakrishnan-Yussouff [Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy functional. Since the DDFT is based on the equilibrium Helmholtz free energy functional, we can probe a free energy landscape that underlies the dynamics. Within the mean-field approximation we find that as the particle density increases, this landscape develops a minimum, while an exact treatment of a model confined situation shows that for an ergodic fluid this landscape should be monotonic. We discuss possible implications for slow, glassy and arrested dynamics at high densities.Comment: Submitted to Journal of Chemical Physic

    Support for faster and more adaptive Z chromosome evolution in two divergent lepidopteran lineages<sup>*</sup>

    Get PDF
    The rateof divergence for Z or X chromosomes is usually observed to be greater than autosomes, but the proposed evolutionary causes for this pattern vary, as do empirical results from diverse taxa. Even among moths and butterflies (Lepidoptera), which generally share a single‐origin Z chromosome, the handful of available studies give mixed support for faster or more adaptive evolution of the Z chromosome, depending on the species assayed. Here, we examine the molecular evolution of Z chromosomes in two additional lepidopteran species: the Carolina sphinx moth and the monarch butterfly, the latter of which possesses a recent chromosomal fusion yielding a segment of newly Z‐linked DNA. We find evidence for both faster and more adaptive Z chromosome evolution in both species, although this effect is strongest in the neo‐Z portion of the monarch sex chromosome. The neo‐Z is less male‐biased than expected of a Z chromosome, and unbiased and female‐biased genes drive the signal for adaptive evolution here. Together these results suggest that male‐biased gene accumulation and haploid selection have opposing effects on long‐term rates of adaptation and may help explain the discrepancies in previous findings as well as the repeated evolution of neo‐sex chromosomes in Lepidoptera

    On the interplay between sedimentation and phase separation phenomena in two-dimensional colloidal fluids

    Get PDF
    Colloidal particles that are confined to an interface effectively form a two-dimensional fluid. We examine the dynamics of such colloids when they are subject to a constant external force, which drives them in a particular direction over the surface. Such a situation occurs, for example, for colloidal particles that have settled to the bottom of their container, when the container is tilted at an angle, so that they `sediment' to the lower edge of the surface. We focus in particular on the case when there are attractive forces between the colloids which causes them to phase separate into regions of high density and low density and we study the influence of this phase separation on the sedimentation process. We model the colloids as Brownian particles and use both Brownian dynamics computer simulations and dynamical density functional theory (DDFT) to obtain the time evolution of the ensemble average one-body density profiles of the colloids. We consider situations where the external potential varies only in one direction so that the ensemble average density profiles vary only in this direction. We solve the DDFT in one-dimension, by assuming that the density profile only varies in one direction. However, we also solve the DDFT in two-dimensions, allowing the fluid density profile to vary in both the xx- and yy-directions. We find that in certain situations the two-dimensional DDFT is clearly superior to its one-dimensional counterpart when compared with the simulations and we discuss this issue.Comment: 17 pages, 10 figures, submitted to Molecular Physic

    Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling

    Get PDF
    The contribution to the free energy for a film of liquid of thickness hh on a solid surface, due to the interactions between the solid-liquid and liquid-gas interfaces is given by the binding potential, g(h)g(h). The precise form of g(h)g(h) determines whether or not the liquid wets the surface. Note that differentiating g(h)g(h) gives the Derjaguin or disjoining pressure. We develop a microscopic density functional theory (DFT) based method for calculating g(h)g(h), allowing us to relate the form of g(h)g(h) to the nature of the molecular interactions in the system. We present results based on using a simple lattice gas model, to demonstrate the procedure. In order to describe the static and dynamic behaviour of non-uniform liquid films and drops on surfaces, a mesoscopic free energy based on g(h)g(h) is often used. We calculate such equilibrium film height profiles and also directly calculate using DFT the corresponding density profiles for liquid drops on surfaces. Comparing quantities such as the contact angle and also the shape of the drops, we find good agreement between the two methods. We also study in detail the effect on g(h)g(h) of truncating the range of the dispersion forces, both those between the fluid molecules and those between the fluid and wall. We find that truncating can have a significant effect on g(h)g(h) and the associated wetting behaviour of the fluid.Comment: 16 pages, 13 fig

    Solvent mediated interactions between model colloids and interfaces: A microscopic approach

    Get PDF
    We determine the solvent mediated contribution to the effective potentials for model colloidal or nano- particles dispersed in a binary solvent that exhibits fluid-fluid phase separation. Using a simple density functional theory we calculate the density profiles of both solvent species in the presence of the `colloids', which are treated as external potentials, and determine the solvent mediated (SM) potentials. Specifically, we calculate SM potentials between (i) two colloids, (ii) a colloid and a planar fluid-fluid interface, and (iii) a colloid and a planar wall with an adsorbed wetting film. We consider three different types of colloidal particles: colloid A which prefers the bulk solvent phase rich in species 2, colloid C which prefers the solvent phase rich in species 1, and `neutral' colloid B which has no strong preference for either phase, i.e. the free energies to insert the colloid into either of the coexisting bulk phases are almost equal. When a colloid which has a preference for one of the two solvent phases is inserted into the disfavored phase at statepoints close to coexistence a thick adsorbed `wetting' film of the preferred phase may form around the colloids. The presence of the adsorbed film has a profound influence on the form of the SM potentials.Comment: 17 Pages, 13 Figures. Accepted for publication in Journal of Chemical Physic

    A phylogenetic assessment of breeding systems and floral morphology of North American Ipomoea (Convolvulaceae)

    Get PDF
    A phylogenetic investigation of 68 species and two varieties of tropical and temperate North American Ipomoea (Convolvulaceae) using sequence data from the internal transcribed spacer region (ITS) with parsimony and Bayesian analyses revealed multiple origins of autogamy. By assessing breeding systems and floral morphological characters in the context of this phylogeny, we estimate 16 independent origins of autogamy and 4 subsequent reversions to xenogamy. Transitions to autogamy are associated with reduced pollen-ovule ratios, decreased anther-stigma distance, and small flower size. Although the relationship between floral traits and breeding systems has been described in previous studies, this is the first investigation to examine this association in Ipomoea. - Una investigación filogenética sobre 68 especies y dos variedades de Ipomoea (Convolvulaceae) en las zonas tropicales y templadas de Norteamérica, empleando datos de secuencias de ADN (ITS) con análisis de parsimonia y Bayesianos, demuestran orígenes múltiples de la autogamia. Basándose en la evaluación de los sistemas reproductivos y las características florales en el contexto de los resultados filogenéticos, estimamos 16 derivaciones independientes de la autogamia y cuatro reversiones a la xenogamia. Las transiciones a la autogamia se asocian con relaciones bajas de polen/óvulo, la disminución de la distancia entre las anteras y el estigma, y corolas pequeñas. Aunque estudios previos han tratado de las relaciones entre los sistemas reproductivos y los rasgos florales en las angiospermas, el presente estudio representa el primero que investigua estas relaciones en Ipomoea

    Association between the Health Belief Model, Exercise, and Nutrition Behaviors during the COVID-19 Pandemic

    Get PDF
    Introduction: The COVID-19 pandemic has affected our nation’s health further than the infection it causes. Physical activity levels and dietary intake have suffered while individuals grapple with the changes in behavior to reduce viral transmission. With unique nuances regarding the access to physical activity and nutrition during the pandemic, the constructs of Health Belief Model (HBM) may present themselves differently in nutrition and exercise behaviors compared to precautions implemented to reduce viral transmission studied in previous research. The purpose of this study was to investigate the extent of exercise and nutritional behavior change during the COVID-19 pandemic and explain the reason for and extent of this change using HBM constructs (perceived susceptibility, severity, benefit of action, and barriers to action). Methods: This study used a cross-sectional design to collect 206 surveys. This survey collected information on self-reported exercise and nutrition changes during the pandemic and self-reported levels of the HBM constructs. Results: Findings showed individuals with medium or high exercise behavior change had greater odds of increased HBM score than individuals with little to no exercise behavior change (OR = 1.117, 95% CI: 1.020–1.223, SE: 0.0464, p = 0.0175). There was no association between nutritional behavior change and HBM score (OR = 1.011, 95% CI: 0.895–1.142, p = 08646). Conclusion: Individuals who reported a more drastic change in either exercise had greater odds of increased feelings of perceived susceptibility and severity related to COVID-19 and decreased perceived benefits and increased barriers to exercise. This relationship was not found regarding nutrition behavior change. These results encourage public health practitioners to understand how an individual’s perceived feelings about a threat may affect exercise and nutritional behaviors
    corecore