4,070 research outputs found
On the attribution of a single event to climate change
Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 8297–8301, doi:10.1175/JCLI-D-14-00399.1.There is growing interest in assessing the role of climate change in observed extreme weather events. Recent work in this area has focused on estimating a measure called attributable risk. A statistical formulation of this problem is described and used to construct a confidence interval for attributable risk. The resulting confidence is shown to be surprisingly wide even in the case where the event of interest is unprecedented in the historical record.GH acknowledges
funding from the Federal Ministry for Education
and Research. MA acknowledges partial support from
the Giannini Foundation.2015-05-1
Two-dimensional colloidal fluids exhibiting pattern formation
Fluids with competing short range attraction and long range repulsive
interactions between the particles can exhibit a variety of microphase
separated structures. We develop a lattice-gas (generalised Ising) model and
analyse the phase diagram using Monte Carlo computer simulations and also with
density functional theory (DFT). The DFT predictions for the structures formed
are in good agreement with the results from the simulations, which occur in the
portion of the phase diagram where the theory predicts the uniform fluid to be
linearly unstable. However, the mean-field DFT does not correctly describe the
transitions between the different morphologies, which the simulations show to
be analogous to micelle formation. We determine how the heat capacity varies as
the model parameters are changed. There are peaks in the heat capacity at state
points where the morphology changes occur. We also map the lattice model onto a
continuum DFT that facilitates a simplification of the stability analysis of
the uniform fluid.Comment: 13 pages, 15 figure
Dynamics in inhomogeneous liquids and glasses via the test particle limit
We show that one may view the self and the distinct part of the van Hove
dynamic correlation function of a simple fluid as the one-body density
distributions of a binary mixture that evolve in time according to dynamical
density functional theory. For a test case of soft core Brownian particles the
theory yields results for the van Hove function that agree quantitatively with
those of our Brownian dynamics computer simulations. At sufficiently high
densities the free energy landscape underlying the dynamics exhibits a barrier
as a function of the mean particle displacement, shedding new light on the
nature of glass formation. For hard spheres confined between parallel planar
walls the barrier height oscillates in-phase with the local density, implying
that the mobility is maximal between layers, which should be experimentally
observable in confined colloidal dispersions.Comment: 4 pages, 3 figure
The van Hove distribution function for Brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics
We describe a test particle approach based on dynamical density functional
theory (DDFT) for studying the correlated time evolution of the particles that
constitute a fluid. Our theory provides a means of calculating the van Hove
distribution function by treating its self and distinct parts as the two
components of a binary fluid mixture, with the `self' component having only one
particle, the `distinct' component consisting of all the other particles, and
using DDFT to calculate the time evolution of the density profiles for the two
components. We apply this approach to a bulk fluid of Brownian hard spheres and
compare to results for the van Hove function and the intermediate scattering
function from Brownian dynamics computer simulations. We find good agreement at
low and intermediate densities using the very simple Ramakrishnan-Yussouff
[Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy
functional. Since the DDFT is based on the equilibrium Helmholtz free energy
functional, we can probe a free energy landscape that underlies the dynamics.
Within the mean-field approximation we find that as the particle density
increases, this landscape develops a minimum, while an exact treatment of a
model confined situation shows that for an ergodic fluid this landscape should
be monotonic. We discuss possible implications for slow, glassy and arrested
dynamics at high densities.Comment: Submitted to Journal of Chemical Physic
Support for faster and more adaptive Z chromosome evolution in two divergent lepidopteran lineages<sup>*</sup>
The rateof divergence for Z or X chromosomes is usually observed to be greater than autosomes, but the proposed evolutionary causes for this pattern vary, as do empirical results from diverse taxa. Even among moths and butterflies (Lepidoptera), which generally share a single‐origin Z chromosome, the handful of available studies give mixed support for faster or more adaptive evolution of the Z chromosome, depending on the species assayed. Here, we examine the molecular evolution of Z chromosomes in two additional lepidopteran species: the Carolina sphinx moth and the monarch butterfly, the latter of which possesses a recent chromosomal fusion yielding a segment of newly Z‐linked DNA. We find evidence for both faster and more adaptive Z chromosome evolution in both species, although this effect is strongest in the neo‐Z portion of the monarch sex chromosome. The neo‐Z is less male‐biased than expected of a Z chromosome, and unbiased and female‐biased genes drive the signal for adaptive evolution here. Together these results suggest that male‐biased gene accumulation and haploid selection have opposing effects on long‐term rates of adaptation and may help explain the discrepancies in previous findings as well as the repeated evolution of neo‐sex chromosomes in Lepidoptera
On the interplay between sedimentation and phase separation phenomena in two-dimensional colloidal fluids
Colloidal particles that are confined to an interface effectively form a
two-dimensional fluid. We examine the dynamics of such colloids when they are
subject to a constant external force, which drives them in a particular
direction over the surface. Such a situation occurs, for example, for colloidal
particles that have settled to the bottom of their container, when the
container is tilted at an angle, so that they `sediment' to the lower edge of
the surface. We focus in particular on the case when there are attractive
forces between the colloids which causes them to phase separate into regions of
high density and low density and we study the influence of this phase
separation on the sedimentation process. We model the colloids as Brownian
particles and use both Brownian dynamics computer simulations and dynamical
density functional theory (DDFT) to obtain the time evolution of the ensemble
average one-body density profiles of the colloids. We consider situations where
the external potential varies only in one direction so that the ensemble
average density profiles vary only in this direction. We solve the DDFT in
one-dimension, by assuming that the density profile only varies in one
direction. However, we also solve the DDFT in two-dimensions, allowing the
fluid density profile to vary in both the - and -directions. We find that
in certain situations the two-dimensional DDFT is clearly superior to its
one-dimensional counterpart when compared with the simulations and we discuss
this issue.Comment: 17 pages, 10 figures, submitted to Molecular Physic
Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling
The contribution to the free energy for a film of liquid of thickness on
a solid surface, due to the interactions between the solid-liquid and
liquid-gas interfaces is given by the binding potential, . The precise
form of determines whether or not the liquid wets the surface. Note that
differentiating gives the Derjaguin or disjoining pressure. We develop a
microscopic density functional theory (DFT) based method for calculating
, allowing us to relate the form of to the nature of the molecular
interactions in the system. We present results based on using a simple lattice
gas model, to demonstrate the procedure. In order to describe the static and
dynamic behaviour of non-uniform liquid films and drops on surfaces, a
mesoscopic free energy based on is often used. We calculate such
equilibrium film height profiles and also directly calculate using DFT the
corresponding density profiles for liquid drops on surfaces. Comparing
quantities such as the contact angle and also the shape of the drops, we find
good agreement between the two methods. We also study in detail the effect on
of truncating the range of the dispersion forces, both those between the
fluid molecules and those between the fluid and wall. We find that truncating
can have a significant effect on and the associated wetting behaviour of
the fluid.Comment: 16 pages, 13 fig
Solvent mediated interactions between model colloids and interfaces: A microscopic approach
We determine the solvent mediated contribution to the effective potentials
for model colloidal or nano- particles dispersed in a binary solvent that
exhibits fluid-fluid phase separation. Using a simple density functional theory
we calculate the density profiles of both solvent species in the presence of
the `colloids', which are treated as external potentials, and determine the
solvent mediated (SM) potentials. Specifically, we calculate SM potentials
between (i) two colloids, (ii) a colloid and a planar fluid-fluid interface,
and (iii) a colloid and a planar wall with an adsorbed wetting film. We
consider three different types of colloidal particles: colloid A which prefers
the bulk solvent phase rich in species 2, colloid C which prefers the solvent
phase rich in species 1, and `neutral' colloid B which has no strong preference
for either phase, i.e. the free energies to insert the colloid into either of
the coexisting bulk phases are almost equal. When a colloid which has a
preference for one of the two solvent phases is inserted into the disfavored
phase at statepoints close to coexistence a thick adsorbed `wetting' film of
the preferred phase may form around the colloids. The presence of the adsorbed
film has a profound influence on the form of the SM potentials.Comment: 17 Pages, 13 Figures. Accepted for publication in Journal of Chemical
Physic
A phylogenetic assessment of breeding systems and floral morphology of North American Ipomoea (Convolvulaceae)
A phylogenetic investigation of 68 species and two varieties of tropical and temperate North American Ipomoea (Convolvulaceae) using sequence data from the internal transcribed spacer region (ITS) with parsimony and Bayesian analyses revealed multiple origins of autogamy. By assessing breeding systems and floral morphological characters in the context of this phylogeny, we estimate 16 independent origins of autogamy and 4 subsequent reversions to xenogamy. Transitions to autogamy are associated with reduced pollen-ovule ratios, decreased anther-stigma distance, and small flower size. Although the relationship between floral traits and breeding systems has been described in previous studies, this is the first investigation to examine this association in Ipomoea.
-
Una investigación filogenética sobre 68 especies y dos variedades de Ipomoea (Convolvulaceae) en las zonas tropicales y templadas de Norteamérica, empleando datos de secuencias de ADN (ITS) con análisis de parsimonia y Bayesianos, demuestran orígenes múltiples de la autogamia. Basándose en la evaluación de los sistemas reproductivos y las características florales en el contexto de los resultados filogenéticos, estimamos 16 derivaciones independientes de la autogamia y cuatro reversiones a la xenogamia. Las transiciones a la autogamia se asocian con relaciones bajas de polen/óvulo, la disminución de la distancia entre las anteras y el estigma, y corolas pequeñas. Aunque estudios previos han tratado de las relaciones entre los sistemas reproductivos y los rasgos florales en las angiospermas, el presente estudio representa el primero que investigua estas relaciones en Ipomoea
Association between the Health Belief Model, Exercise, and Nutrition Behaviors during the COVID-19 Pandemic
Introduction: The COVID-19 pandemic has affected our nation’s health further than the infection it causes. Physical activity levels and dietary intake have suffered while individuals grapple with the changes in behavior to reduce viral transmission. With unique nuances regarding the access to physical activity and nutrition during the pandemic, the constructs of Health Belief Model (HBM) may present themselves differently in nutrition and exercise behaviors compared to precautions implemented to reduce viral transmission studied in previous research. The purpose of this study was to investigate the extent of exercise and nutritional behavior change during the COVID-19 pandemic and explain the reason for and extent of this change using HBM constructs (perceived susceptibility, severity, benefit of action, and barriers to action). Methods: This study used a cross-sectional design to collect 206 surveys. This survey collected information on self-reported exercise and nutrition changes during the pandemic and self-reported levels of the HBM constructs. Results: Findings showed individuals with medium or high exercise behavior change had greater odds of increased HBM score than individuals with little to no exercise behavior change (OR = 1.117, 95% CI: 1.020–1.223, SE: 0.0464, p = 0.0175). There was no association between nutritional behavior change and HBM score (OR = 1.011, 95% CI: 0.895–1.142, p = 08646). Conclusion: Individuals who reported a more drastic change in either exercise had greater odds of increased feelings of perceived susceptibility and severity related to COVID-19 and decreased perceived benefits and increased barriers to exercise. This relationship was not found regarding nutrition behavior change. These results encourage public health practitioners to understand how an individual’s perceived feelings about a threat may affect exercise and nutritional behaviors
- …