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ABSTRACT

There is growing interest in assessing the role of climate change in observed extreme weather events. Recent

work in this area has focused on estimating a measure called attributable risk. A statistical formulation of this

problem is described and used to construct a confidence interval for attributable risk. The resulting confidence is

shown to be surprisinglywide even in the casewhere the event of interest is unprecedented in the historical record.

1. Introduction

Climate change is predicted to increase the frequency of

extreme weather events like intense hurricanes (Webster

et al. 2005) and heat waves (Meehl and Tebaldi 2004). It is

natural, therefore, to ask when an event such as the Eu-

ropean heat wave in 2003 or Hurricane Sandy in 2012 oc-

curs if it can be attributed to climate change. This

attribution question has gained some prominence with ef-

forts to assess liability for weather-related damages due to

climate change (Allen 2003). Recent work on single-event

attribution has focused either implicitly or explicitly on

a quantity known as attributable risk (Bindoff et al. 2014;

Rahmstorf and Coumou 2011; Stott et al. 2004). The pur-

pose of this note is to present a statistical formulation for

attributable risk and to discuss its estimation with a partic-

ular emphasis on the construction of a confidence interval.

2. A statistical formulation

A natural statistical formulation of single-event at-

tribution is in terms of a stochastic point process (Cox

and Isham 1980). A stochastic point process is the clas-

sical model of a series of events occurring in some way

randomly through time. Such models have been used to

describe a variety of extreme weather events including

heat waves (e.g., Furrer et al. 2010) and hurricanes (e.g.,

Jagger and Elsner 2006). We note that the definition of

the events of interest can include features such as in-

tensity, location, and seasonality: for example, wintertime

exceedances of a temperature threshold or category

5 hurricanes above a certain latitude.

A point process is partially characterized by a rate

function that gives the instantaneous frequency of events.

When this rate function is constant, the point process is

said to be stationary. For a stationary point process with

constant rate m, the expected number of events in a pe-

riod of length T is mT . For simplicity, we will focus here

on the case where climate change causes a shift from one

stationary point process to another stationary point pro-

cess. As discussed below, however, the results presented

in this paper also apply to the nonstationary case.

Single-event attribution asks the following: Given that

an event has occurred after the climate has changed, was

it or was it not caused by climate change? This question

implies that, once climate has changed, the point process

of events represents the superposition of a point process

of events that would have occurred in the absence of
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climate change and a point process of events that would

not have occurred in the absence of climate change and

are, therefore, attributable to climate change. More-

over, these point processes must be independent; oth-

erwise, the former would inherit a climate change effect

through the latter.

Suppose that the rate before climate change is m.

Following climate change, this rate increases to bm with

b$ 1. It is straightforward to show that, conditional on

an event occurring after the climate has changed, the

probability that it was caused by climate change is

p5 12 1/b . (1)

It is this probability that most recent papers on single-

event attribution seek to assess. Borrowing from epi-

demiology, the probability in (1) is referred to as the risk

attributable to climate change or simply the attributable

risk (Walter 1976). The definition of attributable risk

only makes sense if b$ 1: that is, if climate change in-

creases the rate of events. In cases where climate change

decreases this rate, the quantity 12b is the risk attrib-

utable to the absence of climate change for an event that

occurred prior to climate change.

For convenience, we refer to a comparison of event

rates before and after climate change. In practice, it is

common to compare the rate in an earlier period to the

rate in a later period without assuming that the former is

completely free from the effect of climate change. In

that case, the issue is one of attribution to a change in

climate that has occurred between the two periods.

3. Estimation of attributable risk

In practical applications, attributable risk is not

known and has to be estimated. In this section, we dis-

cuss this estimation with a particular focus on the con-

struction of a confidence interval.

Let the random variableX be the number of events in

a pre–climate change period of length T1 and the ran-

dom variable Y be the number of events in a post–

climate change period of length T2. The counts X and Y

can be based either on historical records or on simula-

tions from a climate model. In the former case, it is

important that the event of interest not be selected be-

cause of its rarity in the pre–climate change record. We

will assume that both pre– and post–climate change

events follow stationary Poisson processes. For a sta-

tionary Poisson process, the numbers of events in non-

overlapping periods are independent Poisson random

variables with means proportional to the lengths of the

periods (Cox and Isham 1980). As noted below, the

Poisson model can be extended to allow for a non-

stationary rate function. Although not all point

processes are Poisson processes, there is theoretical

support for their use in modeling rare events

(Barbour 1988).

Let x and y be the observed values of X and Y, re-

spectively. Przyborowski and Wilenski (1940) gave an

expression for the joint distribution of independent Pois-

son random variables. For the model outlined here, the

probability of observing x and y can be decomposed as

prob(X5x,Y5y)5
[m(T11bT2)]

x1yexp[2m(T11bT2)]

(x1y)!

3
(x1y)!

x!y!
[t/(t1b)]x[b/(t1b)]y ,

(2)

where t5T1/T2. The first term is the Poisson probability

of observing a total of x1 y events and the second term

is the conditional probability that x of these events oc-

curred in the pre–climate change period and y occurred

in the post–climate change period. This latter proba-

bility is given by the binomial distribution with x1 y

trials and success probability t/(t1b). The maximum

likelihood (ML) estimates of m and b are the natural

ones,

m̂5 x/T1 and (3)

b̂5 ty/x , (4)

where x and y are the observed values ofX andY and the

ML estimate of attributable risk p is

p̂5 12 x/ty . (5)

Because there is positive probability that Y 5 0, this

estimate has neither finite mean nor variance. This can be

avoided by conditioning on the event that Y. 0 so that Y

has a so-called zero-truncated Poisson distribution. This

conditioning seems reasonable as at least one post–climate

change event must have occurred to trigger the attribution

exercise. Rather than pursue this here, we will instead

focus on the construction of a confidence interval for p.

We will proceed as follows: If the lower and upper

bounds of a 12a confidence interval forb arebL andbU ,

respectively, then the lower and upper bounds of a 12a

confidence interval for p are 12 1/bL and 12 1/bU , re-

spectively, so that a confidence interval for p can be

constructed from a confidence interval for b. Under the

model outlined above, b is the ratio of Poisson means.

The literature on constructing a confidence interval for

the ratio of Poissonmeans dates back at least toChapman

(1952) and several approaches are described in Price and

Bonett (2000).Here, wewill adopt the common approach
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of eliminating the nuisance parameter m by conditioning

on the observed value n5 x1 y ofX1 Y. As noted, the

conditional distribution ofX andY given that their sum is

x1 y is binomial with x1 y trials and success probability

t/(t1b). If L and U are the lower and upper bounds,

respectively, of a 12a confidence interval for this

probability, then the corresponding lower and upper

bounds of a 12a confidence interval for b are

bL5 t(12U)/U and (6)

bU 5 t(12L)/L , (7)

respectively. In this step, we will use the approximate

confidence interval originally proposed by Wilson (1927)

and recommended by Brown et al. (2001) for a binomial

probability with

L5
x1 z2/2

n1 z2
2

z
ffiffiffi
n

p
n1 z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂(12 q̂)1 z2/(4n)

q
and (8)

U5
x1 z2/2

n1 z2
1

z
ffiffiffi
n

p
n1 z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂(12 q̂)1 z2/(4n)

q
, (9)

where z is the upper a/2 quantile of the standard normal

distribution and q̂5 x/n. Finally, the corresponding

lower and upper bounds of an approximate 12a con-

fidence interval for p are

pL5 12 1/bL and (10)

pU 5 12 1/bU , (11)

respectively.

The actual coverage of the Wilson confidence interval

is close to its nominal level unless x is close to 0. For x

small but positive, Brown et al. (2001) described a modi-

fication that improves coverage. Although we will not

consider this here, we will consider the important case

where x 5 0 (i.e., the events of interest are without pre-

cedent prior to climate change). In this case, the upper

bound of an exact 12a confidence interval for t/(t1b)

is 12a1/n (Jovanovic and Levy 1997). It follows that the

lower bound of an exact 12a confidence interval for p

when x5 0 is

p0L5 12 (12a1/n)/(ta1/n) . (12)

As noted, although we have focused on the case where

both the pre– and post–climate change Poisson processes

are stationary, the results of this section extend to the case

where either or both is nonstationary. Briefly, for a non-

stationary Poisson process with time-varying rate func-

tion m(t), the number of events in the interval (u, y) has

a Poisson distribution with mean m(y2 u), where

m5

ðy
u
m(t) dt/(y2 u) (13)

is the mean rate during this interval. It follows that bL

and bU in (6) and (7) are the bounds of a 12a confi-

dence interval for the ratio of the mean rate in the post–

climate change period to the mean rate in the pre–

climate change period and consequently that pL and pU
in (10) and (11) are the bounds of a 12a confidence

interval for attributable risk based on these mean rates.

Of course, if the rate function increases continuously

during the post–climate change period, the attributable

risk for events late in this period is greater than that for

events earlier in the period. It is possible to develop

a continuous measure of attributable risk, by modeling

the rate function, but the construction of a confidence

interval would be more challenging.

4. Results

To illustrate the calculations outlined in the previous

section, Table 1 presents the ML estimate p̂ and the

bounds of the approximate 0.95 confidence interval for p

for selected positive values of x and y and selected values

of t. A negative lower confidence bound in Table 1 in-

dicates that the confidence interval for b contains values

less than 1 (i.e., a decrease in the rate of events cannot be

ruled out). Table 2 presents the lower bound of a 0.95

confidence interval for p for selected values of y with

x5 0 and selected values of t. In all cases in Table 2, the

point estimate of p is equal to 1 as is the upper bound

of the confidence interval. Again, a negative lower

TABLE 1. Maximum likelihood estimate p̂ of attributable risk

and lower pL and upper pU bounds of an approximate 0.95 confi-

dence interval for p for selected values of t, x, and y.

t x y p̂ pL pU

0.5 1 4 0.5 22.33 0.93

10 40 0.01 0.75

25 100 0.23 0.68

1 10 0.8 20.21 0.97

5 50 0.51 0.92

25 250 0.70 0.87

1.0 2 4 0.5 21.33 0.89

20 40 0.15 0.71

50 100 0.30 0.64

2 10 0.8 0.19 0.95

10 50 0.61 0.90

50 250 0.73 0.85

2.0 4 4 0.5 20.82 0.86

40 40 0.23 0.68

100 100 0.34 0.62

4 10 0.8 0.40 0.93

20 50 0.67 0.88

100 250 0.75 0.84
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confidence bound indicates that a decrease in the rate of

events cannot be ruled out. It is clear that even estab-

lishing that the rate of events has increased with climate

change (i.e., p. 0) may not be possible when the events

are rare. This is true even if the events are without

precedent in the pre–climate change record. Even if this

basic fact can be established, a surprisingly large number

of events may be needed before attributable risk can be

estimated with high confidence.

As a further illustration, we applied the methods of

the previous section to data documenting intense (cat-

egories 4 and 5) hurricanes in the North Atlantic over

the period 1950–2012. These data were extracted from

the Atlantic hurricane best-track dataset maintained

at the U.S. National Hurricane Center (NOAA 2014).

The effect of climate change on the frequency of such

hurricanes and the quality of the historical data remain

unsettled (Knutson et al. 2010), and we stress that this is

intended as an illustration. Over the 30-yr period 1950–79,

there were a total of 39 intense North Atlantic hurri-

canes while over the following 33-yr period, 1980–2012,

there were 53 such hurricanes. If we assume that the

effect of climate change over the entire 63-yr period was

to increase the rate of these hurricanes, then the ML

estimate of the estimated probability that a hurricane in

the later period is attributable to climate change is 0.19

and an approximate 0.95 confidence interval for this

probability is (20.17, 0.44). The negative lower bound of

this confidence interval indicates that a decline in the

rate of intense hurricanes between these periods cannot

be ruled out. At the same time, the upper bound of 0.44

indicates that neither can a near doubling of this rate be

ruled out. It is worth noting that the rate of intense

hurricanes varies over both the seasonal time scale and

the interannual time scale (e.g., due to ENSO variabil-

ity), so this is an example of an application to a non-

stationary process.

5. Discussion

This note has outlined a statistical formulation of the

attribution of a single event to climate change and has

used this formulation to provide a confidence interval

for attributable risk. Formulating single-event attribu-

tion in this way raises two fundamental issues. First, as

noted, underlying the concept of attributable risk is

a dichotomy between events that would have occurred

in the absence of climate change and events that would

not. This dichotomy makes sense in epidemiology (and

in other contexts). For example, some cases of lung

cancer are caused by smoking, others are not, and it is

natural to ask about the risk of lung cancer attributable

to smoking. It is not so clear, however, that attributable

risk makes sense in the context of climate change. While

the effects of smoking are confined to the smoker (and

perhaps those around him), the effect of climate change

is pervasive and the notion that, once the climate has

changed, some weather events would have occurred

exactly as they did in its absence may not be tenable. To

be clear, this is not at all to say that a change in the rate

of events cannot be attributed to climate change, only

that the superposition argument on which attributable

risk is based may not be tenable.

Second, even if the notion of attributable risk makes

sense in the context of climate change, the quantity p is

simply a function of the rates of events before and after

climate change and not particularized to an individual

event. To put it another way, the attributable risk is the

same for all post–climate change events. In this sense, it

is not really single-event attribution.

Turning to the results of the previous section, it is clear

that uncertainty about attributable risk can remain high

unless both the number of observed events and the ef-

fect of climate change are large.
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