1,961 research outputs found

    Phase-field modelling of interface failure in brittle materials

    Get PDF
    A phase-field approach is proposed for interface failure between two possibly dissimilar materials. The discrete adhesive interface is regularised over a finite width. Due to the use of a regularised crack model for the bulk material, an interaction between the length scales of the crack and the interface can occur. An analytic one-dimensional analysis has been carried out to quantify this effect and a correction is proposed, which compensates influences due to the regularisation in the bulk material. For multi-dimensional analyses this approach cannot be used straightforwardly, as is shown, and a study has been undertaken to numerically quantify the compensation factor due to the interaction. The aim is to obtain reliable and universally applicable results for crack propagation along interfaces between dissimilar materials, such that they are independent from the regularisation width of the interface. The method has been tested and validated on three benchmark problems. The compensation is particularly relevant for phase-field analyses in heterogeneous materials, where cohesive failure in the constituent materials as well as adhesive failure at interfaces play a role

    A conservative control strategy for variable-speed stall-regulated wind turbines

    Full text link
    Simulation models of a variable-speed, fixed-pitch wind turbine were investigated to evaluate the feasibility of constraining rotor speed and power output without the benefit of active aerodynamic control devices. A strategy was postulated to control rotational speed by specifying the demanded generator torque. By controlling rotor speed in relation to wind speed, the aerodynamic power extracted by the blades from the wind was manipulated. Specifically, the blades were caused to stall in high winds. In low and moderate winds, the demanded generator torque and the resulting rotor speed were controlled to cause the wind turbine to operate near maximum efficiency. Using the developed models, simulations were conducted of operation in turbulent winds. Results indicated that rotor speed and power output were well regulated. Preliminary investigations of system dynamics showed that, compared to fixed-speed operation, variable-speed operation caused cyclic loading amplitude to be reduced for the turbine blades and low-speed shaft and slightly increased for the tower loads. This result suggests a favorable impact on fatigue life from implementation of the proposed control strategy

    Redefining hypoglycemia in clinical trials: validation of definitions recently adopted by the American Diabetes Association/European Association for the study of diabetes

    Get PDF
    OBJECTIVE The purpose of this study was to determine if the International Hypoglycemia Study Group (IHSG) level 2 low glucose definition could identify clinically relevant hypoglycemia in clinical trials and offer value as an end point for future trials. RESEARCH DESIGN AND METHODS A post hoc analysis of the SWITCH (SWITCH 1: n = 501, type 1 diabetes; SWITCH 2: n = 721, type 2 diabetes) and the Trial Comparing Cardiovascular Safety of Insulin Degludec versus Insulin Glargine in Patients with Type 2 Diabetes at High Risk of Cardiovascular Events (DEVOTE; n = 7,637, type 2 diabetes) using the IHSG low glucose definitions. Patients in all trials were randomized to either insulin degludec or insulin glargine 100 units/mL. In the main analysis, the following definitions were compared: 1) American Diabetes Association (ADA) 2005 (plasma glucose [PG] confirmed ≤3.9 mmol/L with symptoms); and 2) IHSG level 2 (glucose confirmed <3.0 mmol/L). RESULTS In SWITCH 2, the estimated rate ratios of hypoglycemic events indicated increasing differences between treatments with decreasing PG levels until 3.0 mmol/L, following which no additional treatment differences were observed. In SWITCH 2, the IHSG level 2 definition produced a rate ratio that was lower than the ADA 2005 definition. Similar results were observed for the SWITCH 1 trial. CONCLUSIONS The IHSG level 2 definition was validated in a series of clinical trials, demonstrating its ability to discriminate between basal insulins. This definition is therefore recommended to be uniformly adopted by regulatory bodies and used in future clinical trials

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    Phase-field modeling of crack branching and deflection in heterogeneous media

    Get PDF
    This contribution presents a diffuse framework for modeling cracks in heterogeneous media. Interfaces are depicted by static phase-fields. This concept allows the use of non-conforming meshes. Another phase-field is used to describe the crack evolution in a regularized manner. The interface modeling implements two combined approaches. Firstly, a method from the literature is extended where the interface is incorporated by a local reduction of the fracture toughness. Secondly, variations of the elastic properties across the interface are enabled by approximating the abrupt change between two adjacent subdomains using a hyperbolic tangent function, which alters the elastic material parameters accordingly. The approach is validated qualitatively by means of crack patterns and quantitatively with respect to critical energy release rates with fundamental analytical results from Linear Elastic Fracture Mechanics, where a crack impinges an arbitrarily oriented interface and either branches, gets deflected or experiences no interfacial influence. The model is particularly relevant for phase-field analyses in heterogeneous, possibly complex-shaped solids, where cohesive failure in the constituent materials as well as adhesive failure at interfaces and its quantification play a role

    Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping

    Full text link
    Explicit and semi-explicit geometric integration schemes for dissipative perturbations of Hamiltonian systems are analyzed. The dissipation is characterized by a small parameter ϵ\epsilon, and the schemes under study preserve the symplectic structure in the case ϵ=0\epsilon=0. In the case 0<ϵ10<\epsilon\ll 1 the energy dissipation rate is shown to be asymptotically correct by backward error analysis. Theoretical results on monotone decrease of the modified Hamiltonian function for small enough step sizes are given. Further, an analysis proving near conservation of relative equilibria for small enough step sizes is conducted. Numerical examples, verifying the analyses, are given for a planar pendulum and an elastic 3--D pendulum. The results are superior in comparison with a conventional explicit Runge-Kutta method of the same order

    A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis

    Get PDF
    Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequ

    Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization

    Get PDF
    We present a practical implementation of an optimal first-order method, due to Nesterov, for large-scale total variation regularization in tomographic reconstruction, image deblurring, etc. The algorithm applies to μ\mu-strongly convex objective functions with LL-Lipschitz continuous gradient. In the framework of Nesterov both μ\mu and LL are assumed known -- an assumption that is seldom satisfied in practice. We propose to incorporate mechanisms to estimate locally sufficient μ\mu and LL during the iterations. The mechanisms also allow for the application to non-strongly convex functions. We discuss the iteration complexity of several first-order methods, including the proposed algorithm, and we use a 3D tomography problem to compare the performance of these methods. The results show that for ill-conditioned problems solved to high accuracy, the proposed method significantly outperforms state-of-the-art first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure

    Long range absorption in the scattering of 6He on 208Pb and 197Au at 27 MeV

    Get PDF
    Quasi-elastic scattering of 6He at E_lab=27 MeV from 197Au has been measured in the angular range of 6-72 degrees in the laboratory system employing LEDA and LAMP detection systems. These data, along with previously analysed data of 6He + 208Pb at the same energy, are analyzed using Optical Model calculations. The role of Coulomb dipole polarizability has been investigated. Large imaginary diffuseness parameters are required to fit the data. This result is an evidence for long range absorption mechanisms in 6He induced reactions.Comment: 10 pages, 10 figures, minor corrections. To appear in Nucl. Phys.

    Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes

    Full text link
    Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure
    corecore