258 research outputs found
Non-conservative Behavior of Dissolved Organic Matter and Trace Metals (Mn, Fe, Ba) Driven by Porewater Exchange in a Subtropical Mangrove-Estuary
Estuaries play a key role in controlling the land-ocean fluxes of dissolved organic matter (DOM), nutrients and trace metals. Here, we study how mangrove-fringed areas affect the molecular DOM and trace metal composition in a subtropical estuary. We combined molecular analysis of solid-phase extractable (SPE) DOM using ultrahigh-resolution mass spectrometry with organic and inorganic bulk parameter analyses in surface and porewater along the estuarine gradient of a mangrove-fringed estuary in Australia (Coffs Creek). Statistical analysis and mixing models demonstrate that the fluvial and mangrove-porewater derived DOM and inorganic chemical species were altered and/or removed by the estuarine filter before reaching the coastal ocean. The mangrove-fringed central estuary was a net source for dissolved Mn and Ba as well as total dissolved nitrogen (TDN) and dissolved organic carbon (DOC) to the tidal creek, likely due to the exchange of mangrove-porewater strongly enriched in these constituents. Dissolved Fe was removed from the water column, probably during the tidally driven circulation of creek water through the sulfidic mangrove sediments. In the mangrove-porewater dominated tidal creek, sulfur- and nitrogen-containing as well as aromatic DOM compounds were relatively enriched, whereas phosphorous-containing DOM was relatively depleted compared to non-mangrove fringed areas. In areas with intense mixing of estuarine and marine water masses we observed a strong decrease of these DOM compounds relative to values expected from conservative mixing, suggesting their removal by photodegradation and co-precipitation with particles such as Mn(hydr)oxides and/or as organometallic complexes, leading to more aliphatic DOM signatures at the creek-mouth. Tidally driven porewater exchange and surface water runoff from the mangroves had a stronger effect on the biogeochemical cycling in the estuary than the fluvial input during a dry compared to a wet season. Our study confirms that mangroves can significantly contribute to biogeochemical budgets of (sub)tropical estuaries
Microbial hitchhikers on intercontinental dust: high-throughput sequencing to catalogue microbes in small sand samples
Microbiological studies on the intercontinental transport of dust are confounded by the difficulty of obtaining sufficient material for analysis. Axenic samples of dust collected at high altitudes or historic specimens in museums are often so small and precious that the material can only be sacrificed when positive results are assured. With this in mind, we evaluated current methods and developed new ones in an attempt to catalogue all microbes present in small dust or sand samples. The methods used included classical microbiological approaches in which sand extracts were plated out on a variety of different media, polymerase chain reaction (PCR)-based amplification of 16S/18S rRNA sequences followed by construction of clone libraries, PCR amplification of 16S rRNA sequences followed by high-throughput sequencing (HtS) of the products and direct HtS of DNA extracted from the sand. A representative sand sample collected at Bahaï Wadi in the desert of the Republic of Chad was used. HtS with or without amplification showed the most promise and can be performed on ≤100ng DNA. Since living microbes are often required, current best practices would involve geochemical and microscopic characterisation of the sample, followed by DNA isolation and direct HtS. Once the microbial content of the sample has been deciphered, growth conditions (including media) can be tailored to isolate the micro-organisms of interes
The drivers of biogeochemistry in beach ecosystems: A cross-shore transect from the dunes to the low water line
This study addresses key processes in high-energy beach systems using an interdisciplinary approach. We assess spatial variations in subsurface pore water residence times, salinity, organic matter (OM) availability, and redox conditions and their effects on nutrient cycles as well as on microbial community patterns and microphytobenthos growth. At the study site on Spiekeroog Island, southern North Sea, beach hydrology is characterized by the classical zonation with an upper saline plume (USP), a saltwater wedge, and a freshwater discharge tube in between. Sediment and pore water samples were taken along a cross-shore transect from the dunes to the low water line reaching sediment depths down to 5 m below sediment surface. Spatial variations in pore water residence time, salinity, and organic matter availability lead to steep redox and nutrient gradients. Vertical and horizontal differences in the microbial community indicate the influence of these gradients and salinity on the community structure. Modeled seawater flux through the USP and freshwater flux through the tube are on average 2.8 and 0.75 m3 per day and meter of shoreline, respectively. Furthermore, ridge sediments at the lower beach discharge seawater at rates of 0.5 and 1.0 m3 per day and meter of shoreline towards the runnel and seaside, respectively. Applying seawater and freshwater fluxes and representative nutrient concentrations for the discharge zones, nutrient fluxes to adjacent nearshore waters are 117 mmol NH4+, 55 mmol PO43 − and 575 mmol Si(OH)4 per day and meter of shoreline. We propose that this nutrient efflux triggers growth of microphytobenthos on sediment surfaces of the discharge zone. A first comparison of nutrient discharge rates of the beach site with a nearby sandy backbarrier tidal flat margin indicates that the beach system might be of less importance in supplying recycled nutrients to nearshore waters than the backbarrier tidal flat area
- …