27 research outputs found

    A Spectroscopic and Cryo-Transmission Electron Microscopy Study

    Get PDF
    The aggregation behaviour of the cationic pinacyanol chloride in aqueous solution is investigated using absorption and linear dichroism spectroscopies, optical microscopy and cryogenic transmission electron microscopy (cryo-TEM). The investigations are focused on solutions in a concentration range from 50 μM up to 1 mM. At a concentration of 0.7 mM H-aggregates are detected that are characterized by a broad absorption band centred at [similar]511 nm. The aggregates possess a tubular architecture with a single-layer wall thickness of [similar]2.5 nm and an outer diameter of [similar]6.5 nm. Linear dichroism spectroscopy indicates that the molecules are packed with their long axis parallel to the tube axis. These H-aggregates are not stable, but transform into J-aggregates on the time scale of weeks. The kinetics of J-aggregation depends on the dye concentration and the route of sample preparation, but can also be enhanced by shear stress. J-aggregates possess a split absorption spectrum composed of two longitudinally polarized J-bands and one H-band that is polarized perpendicular to the aggregate axis. The J-aggregates are [similar]9 nm wide and several micrometer long fibrils consisting of stacked pairs of ribbons with a dumbbell-shaped density cross-section. Upon aging these ribbons laterally stack face-to-face to form tape-like aggregates

    Towards engineering of self-assembled nanostructures using non-ionic dendritic amphiphiles

    Get PDF
    Engineering nanostructures of defined size and morphology is a great challenge in the field of self-assembly. Herein we report on the formation of supramolecular nanostructures of defined morphologies with subtle structural changes for a new series of dendritic amphiphiles. Subsequently, we studied their application as nanocarriers for guest molecules

    Cyanine Dye Coupling Mediates Self-assembly of a pH Sensitive Peptide into Novel 3D Architectures

    Get PDF
    Synthetic multichromophore systems are of great importance in artificial light harvesting devices, organic optoelectronics, tumor imaging and therapy. Here, we introduce a promising strategy for the construction of self-assembled peptide templated dye stacks based on coupling of a de novo designed pH sensitive peptide with a cyanine dye Cy5 at its N-terminus. Microscopic techniques, in particular cryogenic TEM (cryo-TEM) and cryo-electron tomography technique (cryo-ET), reveal two types of highly ordered three-dimensional assembly structures on the micrometer scale. Unbranched compact layered rods are observed at pH 7.4 and two-dimensional membrane-like assemblies at pH 3.4, both species displaying spectral features of H-aggregates. Molecular dynamics simulations reveal that the coupling of Cy5 moieties promotes the formation of both ultrastructures, whereas the protonation states of acidic and basic amino acid side chains dictates their ultimate three-dimensional organization

    Ornithologische Notizen aus Kurhessen

    No full text

    Zur Ornithologie der Provinz Santa Catharina, Süd-Brasilien

    No full text

    Zur Ornithologie der Provinz Santa Catharina, S\ufcd-Brasilien

    No full text
    Volume: 21Start Page: 225End Page: 29
    corecore