5 research outputs found

    Revisiting Secondary Structures in NCA Polymerization: Influences on the Analysis of Protected Polylysines

    No full text
    Two series (degree of polymerization: 20–200) of polylysines with Z and TFA protecting groups were synthesized, and their behavior in a range of analytical methods was investigated. Gel permeation chromatography of the smaller polypeptides reveals a bimodal distribution, which is lost in larger polymers. With the help of GPC, NMR, circular dichroism (CD), and MALDI-TOF, it was demonstrated that the bimodal distribution is not due to terminated chains or other side reactions. Our results indicate that the bimodality is caused by a change in secondary structure of the growing peptide chain that occurs around a degree of polymerization of about 15. This change in secondary structure interferes strongly with the most used analysis method for polymersGPCby producing a bimodal distribution as an artifact. After deprotection, the polypeptides were found to exhibit exclusively random coil conformation, and thus a monomodal GPC elugram was obtained. The effect can be explained by a 1.6-fold increase in the hydrodynamic volume at the coil–helix transition. This work demostrates that secondary structures need to be carefully considered when performing standard analysis on polypeptidic systems

    Monitoring the On-Surface Synthesis of Graphene Nanoribbons by Mass Spectrometry

    No full text
    We present a mass spectrometric approach to characterize and monitor the intermediates of graphene nanoribbon (GNR) formation by chemical vapor deposition (CVD) on top of Au(111) surfaces. Information regarding the repeating units, lengths, and termini can be obtained directly from the surface sample by a modified matrix-assisted laser desorption/ionization (MALDI) method. The mass spectrometric results reveal ample oxidative side reactions under CVD conditions that can be drastically diminished by the introduction of protective H<sub>2</sub> gas at ambient pressure. Simultaneously, the addition of hydrogen extends the lengths of the oligophenylenes and thus the final GNRs. Moreover, the prematurely formed cyclodehydrogenation products during the oligomer growth can be assigned by the mass spectrometric technique. The obtained mechanistic insights provide valuable information for optimizing and upscaling the bottom-up fabrication of GNRs. Given the important role of GNRs as semiconductors, the mass spectrometric analysis provides a readily available tool to characterize and improve their structural perfection

    Vapor-Phase Transport Deposition, Characterization, and Applications of Large Nanographenes

    Get PDF
    Recently, chemical synthesis of a range of large nanographene molecules with various shapes and sizes opened a new path to utilize them in various applications and devices. However, due to their extended aromatic cores and high molecular weight, film formation of large nanographene molecules, bearing more than 90 sp<sup>2</sup> carbon atoms in aromatic cores, is very challenging, which has prevented their applications such as in thin-film transistors. Here, we developed an effective approach to prepare films of such large nanographene molecules using a vapor-phase transport (VPT) technique based on molecule sublimation. The VPT of these molecules was made possible by combining the molecules and the target substrate in a small confinement of vacuum-sealed glass tube, so that a small amount of sublimation can be utilized to create films. Surprisingly, such heavy and large molecules can be deposited on any substrate by this method to create films of assembled large nanographene molecules while maintaining their aromatic cores intact, which was confirmed using mass spectrometry measurements. Moreover, field-effect transistors based on these films are depleted and show significantly improved current on/off ratio compared to previous large nanographene-based transistors fabricated using liquid-phase-based process. Our work shows that VPT deposition can be a viable technique to prepare films based on large nanographene molecules and potentially other high molecular weight compounds, which may find exciting applications in electronics and optoelectronics

    Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap <i>N</i> = 9 Armchair Graphene Nanoribbons

    No full text
    Recent advances in bottom-up synthesis of atomically defined graphene nanoribbons (GNRs) with various microstructures and properties have demonstrated their promise in electronic and optoelectronic devices. Here we synthesized <i>N</i> = 9 armchair graphene nanoribbons (9-AGNRs) with a low optical band gap of ∼1.0 eV and extended absorption into the infrared range by an efficient chemical vapor deposition process. Time-resolved terahertz spectroscopy was employed to characterize the photoconductivity in 9-AGNRs and revealed their high intrinsic charge-carrier mobility of approximately 350 cm<sup>2</sup>·V<sup>–1</sup>·s<sup>–1</sup>

    Photoinduced C–C Reactions on Insulators toward Photolithography of Graphene Nanoarchitectures

    No full text
    On-surface chemistry for atomically precise sp<sup>2</sup> macromolecules requires top-down lithographic methods on insulating surfaces in order to pattern the long-range complex architectures needed by the semiconductor industry. Here, we fabricate sp<sup>2</sup>-carbon nanometer-thin films on insulators and under ultrahigh vacuum (UHV) conditions from photocoupled brominated precursors. We reveal that covalent coupling is initiated by C–Br bond cleavage through photon energies exceeding 4.4 eV, as monitored by laser desorption ionization (LDI) mass spectrometry (MS) and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) gives insight into the mechanisms of C–Br scission and C–C coupling processes. Further, unreacted material can be sublimed and the coupled sp<sup>2</sup>-carbon precursors can be graphitized by e-beam treatment at 500 °C, demonstrating promising applications in photolithography of graphene nanoarchitectures. Our results present UV-induced reactions on insulators for the formation of all sp<sup>2</sup>-carbon architectures, thereby converging top-down lithography and bottom-up on-surface chemistry into technology
    corecore