49 research outputs found

    Boltzmann-Gibbs entropy is sufficient but not necessary for the likelihood factorization required by Einstein

    Full text link
    In 1910 Einstein published a crucial aspect of his understanding of Boltzmann entropy. He essentially argued that the likelihood function of any system composed by two probabilistically independent subsystems {\it ought} to be factorizable into the likelihood functions of each of the subsystems. Consistently he was satisfied by the fact that Boltzmann (additive) entropy fulfills this epistemologically fundamental requirement. We show here that entropies (e.g., the qq-entropy on which nonextensive statistical mechanics is based) which generalize the BG one through violation of its well known additivity can {\it also} fulfill the same requirement. This fact sheds light on the very foundations of the connection between the micro- and macro-scopic worlds.Comment: 5 pages including 2 figure

    Developing Basic Space Science World Wide: Progress Report

    Full text link
    The UN/ESA Workshops on Basic Space Science is a long-term effort for the development of astronomy and regional and international co-operation in this field on a world wide basis, particularly in developing nations. The first four workshops in this series (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, and Egypt 1994) addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia, respectively. One major recommendation that emanated from the first four workshops was that small astronomical facilities should be established in developing nations for research and education programmes at the university level and that such facilities should be networked. Subsequently, material for teaching and observing programmes for small optical telescopes were developed or recommended and astronomical telescope facilities have been inaugurated at UN/ESA Workshops on Basic Space Science in Sri Lanka (1995), Honduras (1997), and Jordan (1999). UN/ESA Workshops on Basic Space Science in Germany (1996), France (2000), Mauritius (2001), Argentina (2002), and P.R. China (2004) emphasised the particular importance of astrophysical data systems and the virtual observatory concept for the development of astronomy on a world wide basis. Since 1996, the workshops are contributing to the development of the World Space Observatory concept. Achievements of the series of workshops are briefly summarised in this report.Comment: 3 page

    On extended thermonuclear functions through pathway model

    Full text link
    The major problem in the cosmological nucleosynthesis is the evaluation of the reaction rate. The present scenario is that the standard thermonuclear function in the Maxwell-Boltzmann form is evaluated by using various techniques. The Maxwell-Boltzmannian approach to nuclear reaction rate theory is extended to cover Tsallis statistics (Tsallis, 1988) and more general cases of distribution functions. The main purpose of this paper is to investigate in some more detail the extended reaction probability integral in the equilibrium thermodynamic argument and in the cut-off case. The extended reaction probability integrals will be evaluated in closed form for all convenient values of the parameter by means of residue calculus. A comparison of the standard reaction probability integrals with the extended reaction probability integrals is also done.Comment: 21 pages, LaTe

    Special Functions: Fractional Calculus and the Pathway for Entropy

    Get PDF
    Historically, the notion of entropy emerged in conceptually very distinct contexts. This book deals with the connection between entropy, probability, and fractional dynamics as they appeared, for example, in solar neutrino astrophysics since the 1970's (Mathai and Rathie 1975, Mathai and Pederzoli 1977, Mathai and Saxena 1978, Mathai, Saxena, and Haubold 2010). The original solar neutrino problem, experimentally and theoretically, was resolved through the discovery of neutrino oscillations and was recently enriched by neutrino entanglement entropy. To reconsider possible new physics of solar neutrinos, diffusion entropy analysis, utilizing Boltzmann entropy, and standard deviation analysis was undertaken with Super-Kamiokande solar neutrino data. This analysis revealed a non-Gaussian signal with harmonic content. The Hurst exponent is different from the scaling exponent of the probability density function and both Hurst exponent and scaling exponent of the Super-Kamiokande data deviate considerably from the value of ½, which indicates that the statistics of the underlying phenomenon is anomalous. Here experiment may provide guidance about the generalization of theory of Boltzmann statistical mechanics. Arguments in the so-called Boltzmann-Planck-Einstein discussion related to Planck's discovery of the black-body radiation law are recapitulated mathematically and statistically and emphasize from this discussion is pursued that a meaningful implementation of the complex ‘entropy-probability-dynamics’ may offer two ways for explaining the results of diffusion entropy analysis and standard deviation analysis. One way is to consider an anomalous diffusion process that needs to use the fractional space-time diffusion equation (Gorenflo and Mainardi) and the other way is to consider a generalized Boltzmann entropy by assuming a power law probability density function. Here new mathematical framework, invented by sheer thought, may provide guidance for the generalization of Boltzmann statistical mechanics. In this book Boltzmann entropy, generalized by Tsallis and Mathai, is considered. The second one contains a varying parameter that is used to construct an entropic pathway covering generalized type-1 beta, type-2 beta, and gamma families of densities. Similarly, pathways for respective distributions and differential equations can be developed. Mathai's entropy is optimized under various conditions reproducing the well-known Boltzmann distribution, Raleigh distribution, and other distributions used in physics. Properties of the entropy measure for the generalized entropy are examined. In this process the role of special functions of mathematical physics, particularly the H-function, is highlighted

    Linear Algebra

    Get PDF
    In order not to intimidate students by a too abstract approach, this textbook on linear algebra is written to be easy to digest by non-mathematicians. It is also designed such that no other material is required for an understanding of the topics covered. As the basis for courses on space and atmospheric science, remote sensing, and satellite communications, applications of the formal theory in physics and engineering are discussed as well

    Probability and Statistics

    Get PDF
    This textbook offers an introduction to concepts of probability theory, probability distributions relevant in the applied sciences, as well as basics of sampling distributions, estimation and hypothesis testing. As a companion for classes for engineers and scientists, the book also covers applied topics such as model building and experiment design

    Potential of Interplanetary Torques and Solar Modulation for Triggering Terrestrial Atmospheric and Lithospheric Events

    Get PDF
    The Sun is forced into an orbit around the barycenter of the solar system because of the changing mass distribution of the planets. Solar-planetary-lunar dynamic relationships may form a new basis for understanding and predicting cyclic solar forcing functions on the Earth's climate.Comment: Invited Paper at the Fourth UN/ESA Workshop on Basic Space Science, Cairo, Egypt, July 1994. 7 pages LaTeX. Accepted for publication in the journal Earth, Moon, and Planet
    corecore