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Due to great interest shown by students, a proposal was made to the Department of
Science and Technology, Government of India, New Delhi, India (DST), for conduct-
ing a sequence of 10-day mathematics camps for undergraduates during holidays so
that in one sequence of four camps the essential basic mathematics could be covered.
DST approved this project with full financial support for 30 candidates in each camp.
Principals of colleges in Kerala, India, were asked to select up to 5 motivated students
from each college. The camp is run at CMSS from 08:30 am until 6:00 pm, contin-
uously for 10 days of nearly 40 hours of lectures and 40 hours of problem-solving
sessions. In one camp, Modules 1, 2, 3, on basic linear algebra for all disciplines, are
covered. In a second camp, Modules 4 and 5, covering the topics of sequences, limits,
continuity and differential calculus and the basic integral calculus, are covered. In a
third camp, Module 6, covering the topics of sample space, probability, random vari-
ables, expected values, statistical distributions and their applications, are covered.
In the fourth camp, Modules 7 and 9, covering the topics of sampling distributions,
statistical inference, prediction and model building, design of experiments and some
non-parametric tests, are covered.

The basic sequence of four camps, covering basic mathematics, probability and
statistics, were repeated over the years from 2007 to 2014. There were also a four to
six weeks course every year at the research level, meant for MSc and PhD students,
and young faculty, known as SERC (Science and Engineering Research Council of the
Department of Science andTechnology,Government of India,NewDelhi) Schools. The
notes from these schools were brought out by CMSS in book form every year. Selected
notes from the SERC schools of 1995 to 2006 was brought out as Special Functions
for Applied Scientists by Springer, New York in 2008, authored by A.M. Mathai and
Hans J. Haubold. Selected notes from the SERC Schools of 2007 to 2012 appeared in
2017 as a research level book by Springer, New York. Selected notes from the SERC
Schools of 2013 to 2015 will appear as a research level book on Matrix Methods and
Fractional Calculus by World Scientific Publishing, all by the same authors.

The present book on probability and statistics consists of 16 chapters. Chapters 1
to 9 cover the topics of random experiments, sample space, probability, how to assign
probabilities to individual events, random variables, expected values, statistical dis-
tributions, collections of random variables and the central limit theorem. The statis-
tics part consists of Chapters 10 to 16 covering the topic of sampling distributions,
point estimation, interval estimation, tests of hypotheses, prediction, regression and
model building problems, design of experiments and analysis of variance, some non-
parametric tests, questions and answers.

All concepts in probability and statistics are explained properly and illustrated
with real-life examples. Thematerial is developed slowly so that the book can be used
as a self-study material also. Proper interpretations of the concepts of variance, co-
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VI |

variance, correlation, multiple correlation, a statistical hypothesis, meaning of tests
of a statistical hypothesis, difference between regression and correlation analysis, dif-
ference between prediction and model building, etc. are given. An introduction to
matrix-variate distributions such as matrix-variate Gaussian, matrix-variate gamma
and matrix-variate beta are also given.

Since 2004, thematerial in this bookwasmade available to UN-affiliated Regional
Centres for Space Science and Technology Education, located in India, China, Mo-
rocco, Nigeria, Jordan, Brazil andMexico (http://www.unoosa.org/oosa/en/ourwork/
psa/regional-centres/index.html).

Since 1988, the material was taken into account for the development of educa-
tion curricula in the fields of remote sensing and geographic information systems,
satellite meteorology and global climate, satellite communications, space and at-
mospheric science and global navigation satellite systems (http://www.unoosa.org/
oosa/en/ourwork/psa/regional-centres/study_curricula.html).

As such, the material was considered to be a prerequisite for applications, teach-
ing and research in space science and technology. It was also a prerequisite for the
nine-months post-graduate courses in the five disciplines of space science and tech-
nology, offered by the Regional Centres on an annual basis to participants from all 194
Member States of the United Nations.

Since 1991, whenever suitable at the research level, the material in this book was
utilized in lectures in a series of annual workshops and follow-up projects of the so-
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called Basic Space Science Initiative of the United Nations (http://www.unoosa.org/
oosa/en/ourwork/psa/bssi/index.html).

As such, the material was considered a prerequisite for teaching and research
in astronomy and physics. Astronomy has a long history of exploiting observational
data to estimate parameters and quantify uncertainty in physical models. Problems in
astronomy propelled the development of many statistical techniques, from classical
least squares estimation to contemporarymethods such as diffusion entropy analysis.
Late twentieth century advances in data collection, such as automation of telescopes
and use of CCD cameras, resulted in a dramatic increase in data size and complexity,
producing a surge in use and development of statistical methodology. Astronomers
use these data sets for a diverse range of science goals, including modeling formation
of galaxies, finding earth-like planets, estimating the metric expansion of space and
classifying transients. This book reviews common data types and statistical method-
ology currently in use in space science, with the goal of making applications more
accessible to methodological and applied statisticians. Naturally, the courses focused
on the analysis and modeling of observational data (image data, spectral data, func-
tional data, time series) emanating from amain sequence star, the Sun (figure below),
utilizing solar particle, photon and neutrino radiation. Exercises went even that far to
analyze solar neutrino data coming to the convincing conclusion that the solar neu-
trino flux is varying over time but not discovering a conclusive result of the physics
that may drive such variation.

The Space and Atmospheric Sciences education curricula provides opportunities
to teach basic space science. The development of the education curricula (illustrated
above) started in 1988 at UN Headquarters in New York, the specific GNSS curriculum
emanated only in 1999 after the UNISPACE III Conference, held at and hosted by the
United Nations at Vienna.

CMSS A.M. Mathai and Hans J. Haubold
15 June 2017 Peechi, Kerala, India





Preface
Upon requests from colleges in Kerala, India, the Centre for Mathematical and Statis-
tical Sciences (CMSS) had decided to conduct a series of remedial courses on selected
topics. These topics were suggested by the college teachers themselves so that by par-
ticipating in these courses they could be better prepared to teach the material in their
classes. A series of such courses were conducted by CMSS from 1985 to 2002 at its
Trivandrum Campus, Kerala, India. The notes written up for such courses and then
class-tested at the University of Texas at El Paso, USA, formed Modules 1, 2, 3.

Modules Series of CMSS aremeant for self-study. On selected basic topics inmath-
ematical sciences, materials are developed with a lot of illustrative examples, starting
from the fundamentals. Examples are taken from real-life situations so that the stu-
dents can see the relevance of mathematics in solving real-life problems. The subject
matter is developed very slowly so that there is time for absorbing the materials.

Modules 1, 2, 3 are on vectors,matrices, determinants and their applications.Mod-
ule 4 is on limits, continuity, differentiability and differential calculus. Module 5 is on
integrals and integration. Module 6 is on basic probability and random variables. This
is Chapters 1 to 9 of the materials on basic probability and statistics. Module 7 is on
statistics. Module 8 is on stochastic processes. Module 9 is about questions and an-
swers, mainly the questions asked by the students over past years and their answers.
Modules 1 to 9 are expected to cover the basic materials needed for a proper study of
their own subjects for students from statistics, physics, engineering areas and other
applied areas. This present material is a combined version of Modules 6, 7 and 9.

CMSS A.M. Mathai and Hans J. Haubold
15 June 2017 Peechi, Kerala, India
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1 Random phenomena

1.1 Introduction

In day-to-day life, we come across several situations, some of which are deterministic
in nature but most of them are non-deterministic in nature. We will give some general
ideas of deterministic and non-deterministic situations first, and then we will intro-
duce a formal definition to define random quantities.

You got up in the morning and went for a morning walk for one hour. You had
this routine and you had decided to go for a walk. The event that you went for a walk
did not just happen but it was predetermined. You got ready and went to college as
predetermined. If a normal humanbeing consumespotassiumcyanideor catcheshold
of a high voltage live electric wire, then the result is predetermined; the person dies
or it is a sure event. Such situations or events are predetermined events. But there are
several events which cannot be determined beforehand.

1.1.1 Waiting time

For going to college, you had to wait for a bus, which was scheduled to arrive at 8 a.m.
The bus usually does not leave until after 8 a.m. if it arrives to the stop earlier because
the bus has to cater to the regular passengers from that stop. But the actual amount of
time that you had to wait on a particular day for that bus was not under your control,
which could not be predetermined because due to traffic congestion on theway or due
to many other reasons the bus could be late. The waiting time on that day might be
5minutes or even 20minutes. The waiting time then is a non-deterministic or random
quantity.

Suppose that you went to a hospital for a routine medical check-up. Suppose that
the check-up consists of taking your weight and measuring height, checking your
blood pressure, taking blood samples, waiting for the doctor’s physical examination,
waiting for the result of the blood test, waiting for a chest x-ray, etc. Thus the totalwait-
ing time T consists of several waiting times for the individual items which are all non-
deterministic or random in nature or these are variableswith some sort of randomness
associated with them, where T is of the form T = t1 + t2 +⋯+ tk if tj is the waiting time
for the j-th item, such as a blood test, and if there are k such items. If tj, j = 1, 2,… ,k are
all random quantities, then T itself is a random quantity or these variables (durations
of waiting) are not of predetermined durations. If the check-up consisted of only three
items, then the total waiting timewould be of the form T = t1 + t2 + t3, where tj, j = 1, 2,3
are the individual waiting times.

Suppose you take your car for service. Suppose that the service consists of an oil
and filter change, checking and correcting fluid levels, etc. Here also, each component
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2 | 1 Random phenomena

of the waiting time is of non-deterministic durations. The waiting time for the first
child birth for a fertile woman from the time of co-habitation until child birth is a
random quantity or of non-deterministic duration. The waiting time for a farmer for
the first rainfall after the beginning of the dry season is a random quantity since it
cannot be predetermined for sure.

1.1.2 Random events

Consider the event of occurrence of the first flood in the local river during a rainy sea-
son, flood is taken as thewater level being above a threshold level. It is a randomevent
because it cannot be predetermined. The event of a lightning strike or thunderbolt at a
particular locality is a random event, and may be a rare event, but random in nature.
The event of a snake bite in a particular village is a random event. If you are tying to
swim across a river and if you have done this several times and if you are sure that you
can successfully complete the swim, then your next attempt to swim across is a sure
event and it is not a random event because there is no element of uncertainty about
the success. If you tried this before and if you had a few occasions of failures and a
few occasions of successes, then you will not be sure about your next attempt to swim
across. Then the event of successful completion of the next attempt has become a ran-
dom event. If you throw a stone into a pond of water and if your aim is to see whether
the stone sinks in water, then it is deterministic in nature because you know about
the physical laws and you know that the stone will sink in water. The outcome or the
event is not random. Suppose that your aim is to see at which location on the pond
where the stone will hit the water surface, then the location cannot be predetermined
and the outcome or the event is a random event. If you throw a cricket ball upward,
then the event that it comes down to Earth is not a random event because you know
for sure that the ball has to come down due to the pull of gravity, but how high the ball
will go, before starting to come down, is not predetermined, and hence it is a random
quantity.

With the above general ideas in mind, we will give a systematic definition for a
randomevent and then define the chance of occurrence of a randomevent or the prob-
ability of occurrence of a random event. To this end, we will start with the definition
of a “random experiment”, then we will proceed to define events of various types.

Note 1.1. It is assumed that the students are familiar with the notations for a set and
operations such as union, intersection and complementation on sets. Those who are
familiar with these items may skip this note and proceed to the next section. For the
sake of those who are not familiar or forgotten, a brief description is given here.

(i) A set. It is awell-defined collection of objects. The objects could be anything. For ex-
ample, if the objects are the numbers 2, −1,0 in a setA, then it iswritten asA = {2, −1,0},
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that is, the objects are put within curly brackets. The order in which the objects are
written is not important. We could have written the same set in different forms such
as

A = {2, −1,0} = {0, −1, 2} = {−1,0, 2} (N1.1)

and so on, in fact the 6 different ways in which the same set A of 3 objects can be
written here. The objects are called “elements” of the set and written as

2 ∈ A, −1 ∈ A, 0 ∈ A, 5 ∉ A, 10 ∉ A (N1.2)

and they are read as 2 in A or 2 is an element of A, −1 in A, 0 in A, whereas 5 not in A
or 5 is not an element of A, 10 not in A, etc. The symbol ∈ indicates “element of”. If B
is another set, say,

B = {m,θ,8, ∗}, m ∈ B, θ ∈ B, 8 ∈ B, ∗ ∈ B (N1.3)

then B contains the elements, the Latin letter m, the Greek letter θ (theta), number
8 and the symbol ∗. Thus the objects or the elements of a set need not be numbers
always. Some frequently used sets are the following:

N = {1, 2,3,…} = the set of natural numbers or positive integers;
N0 = {0, 1, 2,…} = the set of non-negative integers;
R = {x ∣ −∞ < x < ∞} = the set of all real numbers, where the vertical bar “|” indi-

cates “such that” or “given that”. It is read as “all values of x such that minus infinity
less than x less than infinity”;

A1 = {x ∣ −10 ≤ x ≤ 5} = [−10,5] = the closed interval from −10 to 5, closed means
that both end points are included;

A2 = {x ∣ −10 < x ≤ 5} = (−10,5] = the semi-open (semi-closed) interval from −10 to
5, open on the left and closed on the right. Usually we use a square bracket “[” or “]”
to show where it is closed, and open bracket “(” or “)” to show where it is open. In
this example, the left side is open or the point −10 is not included and the right side
is closed or the point 5 is included;

A3 = {x ∣ −10 ≤ x < 5} = [−10,5) = interval from −10 to 5, closed on the left and open
on the right;

A4 = {x ∣ −10 < x < 5} = (−10,5) = open interval from −10 to 5;
C = {a + ib ∣ −∞ < a < ∞,−∞ < b < ∞, i = √−1} = the set of all complex numbers.

(ii) Equality of sets. Two sets are equal if they contain the same elements.
For example, if A = {2,7} and B = {x,7}, then A = B if and only if x = 2.

(iii) Null set or vacuous set or empty set. If a set has no elements, then it is called a
null set, and it is denoted by ϕ (Greek letter phi) or by a big O.

For example, consider the set of all real solutions of the equation x2 = −1.We know
that this equation has no real solution but it has two imaginary solutions i and −iwith



4 | 1 Random phenomena

i2 = (−i)2 = −1. Thus the set of real solutions here is ϕ or it is an empty set. If the set
contains a single element zero, that is, {0}, it is not an empty set. It has one element.

(iv) Union of two sets. The set of all elements which belong to a set A1 or to the set
A2 is called the union of the sets A1 and A2 and it is written as A1 ∪A2. The notation ∪
stands for “union”.

For example, let A = {2, −1,8} and B = {θ,8,0,x} then

A ∪ B = {2, −1,8,θ,0,x}.

Here, 8 is common to both A and B, and hence it is an element of the union of A and
B but it is not written twice. Thus all elements which are in A or in B (or in both) will
be in A ∪ B. Some examples are the following:

For the sets N and N0 above, N ∪N0 = N0;

A = {x ∣ −2 ≤ x ≤ 8}, B = {x ∣ 3 ≤ x ≤ 10} ⇒ A ∪ B = {x ∣ −2 ≤ x ≤ 10}

where the symbol ⇒ means “implies”;

A = {x ∣ 1 ≤ x ≤ 3}, B = {x ∣ 5 ≤ x ≤ 9}
⇒ A ∪ B = {x ∣ 1 ≤ x ≤ 3 or 5 ≤ x ≤ 9}.

(v) Intersection of two sets. The set of all elements, which is common to two sets A
and B, is called the intersection of A and B and it is written as A∩B, where the symbol
∩ stands for “intersection”.

Thus, for the same sets A = {2, −1,8} and B = {θ,8,0, ∗} above, A∩B = {8} or the set
containing only one element 8 because this is the only element common to bothA and
B here. Some examples are the following:

For the sets N and N0 above, N ∩N0 = N = the set of all natural numbers:

A = {x ∣ 0 ≤ x ≤ 7}, B = {x ∣ 5 ≤ x ≤ 8} ⇒ A ∩ B = {x ∣ 5 ≤ x ≤ 7};
A = {x ∣ −1 < x < 2}, B = {x ∣ 4 < x < 12} ⇒ A ∩ B = ϕ

which is an empty set because there is no element common to A and B.

(vi) Subset of a set.A set C is said to be a subset of the setA if all elements of C are also
elements of A and it is written as C ⊂ A and read as C is a subset of A or C is contained
in A or A contains C.

From this definition, it is clear that for any set B, B ⊂ B. Let A = {2, −1,8} and let
C = {8, −1}, then C ⊂ A. Let D = {8, −1,5}, then D is not a subset of A because D contains
the element 5 which is not in A. Consider the empty set ϕ, then from the definition it
follows that

ϕ is a subset of every set; ϕ ⊂ A, ϕ ⊂ C, ϕ ⊂ D.
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Consider the sets

A = {x ∣ 2 ≤ x ≤ 8}, B = {x ∣ 3 ≤ x ≤ 5} ⇒ B ⊂ A.

Observe that the set of all real numbers is a subset of the set of all complex numbers.
The set of all purely imaginary numbers, {a+ ibwith a = 0}, is a subset of the set of all
complex numbers. The set of all positive integers greater than 10 is a subset of the set
of all positive integers.

(vii) Complement of a set. Let D be a subset of a set A then the complement of D in
A or that part which completes D in A is the set of all elements in A but not in D when
D is a subset of A, and it is usually denoted by Dc or D̄. We will use the notation Dc .

Let A = {−3,0,6,8, −11} and let D = {0,6, −11} then Dc = {−3,8}. Note that D ⊂ A and
D ∪Dc = A and D ∩Dc = ϕ. In general,

B ⊂ A ⇒ Bc ⊂ A, B ∪ Bc = A and B ∩ Bc = ϕ.

As another example,

A = {x ∣ 0 ≤ x ≤ 8}, B = {x ∣ 0 ≤ x ≤ 3} ⇒ Bc = {x ∣ 3 < x ≤ 8}

which is the complement of B in A. Consider another subset here, D = {x ∣ 3 < x < 5},
then what is the complement of D in A? Observe that D is a subset of A. Hence Dc

consists of all points in A which are not in D. That is,

Dc = {x ∣ 0 ≤ x ≤ 3,5 ≤ x ≤ 8}

or the union of the pieces 0 ≤ x ≤ 3 and 5 ≤ x ≤ 8.
The above are some basic details about sets and basic operations on sets. We will

be concerned about sets which are called “events”, which will be discussed next.

Exercises 1.1
Classify the following experiments/events as random or non-random, giving justifica-
tions for your statements.

1.1.1. A fruits and vegetable vendor at Palai is weighing a pumpkin, selected by a cus-
tomer, to see:
(a) the exact weight;
(b) whether the weight is more than 5 kg;
(c) whether the weight is between 3 and 4 kg.

1.1.2. For the same vendor in Exercise 1.1.1, a pumpkin is picked from the pile blind-
folded and weighed to see (a), (b), (c) in Exercise 1.1.1.
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1.1.3. A one kilometer stretch of a road in Kerala is preselected and a reporter is check-
ing to see:
(a) the total number of potholes on this stretch;
(b) the total number of water-logged potholes on this stretch;
(c) the maximum width of the potholes on this stretch;
(d) the maximum depth of the potholes in this stretch.

1.1.4. For the same experiment in Exercise 1.1.3, a one kilometer stretch is selected by
some random device and not predetermined.

1.1.5. A child is trying to jump across a puddle of water to see whether she can suc-
cessfully do it.

1.1.6. Abhirami is writing a multiple choice examination consisting of 10 ques-
tions where each question is supplied with four possible answers of which one is
the correct answer to the question. She wrote the answers for all the 10 questions,
where:
(a) she knew all the correct answers;
(b) she knew five of the correct answers;
(c) she did not know any of the correct answers.

1.1.7. A secretary in an office is doing bulk-mailing. The experiment is to check and
see how many pieces of mail are sent:
(a) without putting stamps;
(b) with an insufficient value of stamps;
(c) with wrong address labels.

1.1.8. A secretary is typing up a manuscript. The event of interest is to see on average
that the number of mistakes per page is
(a) zero;
(b) less than 2;
(c) greater than 10.

1.1.9. A dandelion seed is flying around in the air with its fluffy attachment. The event
of interest is to see:
(a) how high the seed will fly;
(b) when the seed will enter over your land;
(c) where on the your land the seed will settle down.

1.1.10. Sunlight hitting at a particular spot in our courtyard is suddenly interrupted
by a cloud passing through. The event of interest is to see:
(a) at what time the interruption occurred;
(b) at which location on the light beam the interruption occurred.
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1.1.11. You are looking through the binoculars to see the palm-lined beautiful shore of
the other side of Vembanad Lake. Your view is interrupted by a bird flying across your
line of view. The event of interest is:
(a) at which point the view is interrupted (distance from the binocular to the starting

position of the bird);
(b) at what time the interruption occurred;
(c) the duration of interruption.

1.1.12. A student leader in Kerala is pelting stones at a passenger bus. The event of
interest is to see:
(a) how many of his fellow students join him in pelting stones;
(b) extent of the money value of destruction of public property;
(c) how many passengers are hit by stones;
(d) how many passengers lose their eyes by the stones hitting the eyes.

1.2 A random experiment

Randomness is associated with the possible outcomes in a random experiment, not
in the conduct of the experiment itself. Suppose that you consulted a soothsayer or
“kaniyan” and conducted an experiment as per the auspicious time predicted by the
kaniyan; the experiment does not become a random experiment. Suppose that you
threw a coin. If the head (one of the sides of the coin) comes up, then you will con-
duct the experiment, otherwise not. Still the experiment is not a random experiment.
Randomness is associated with the possible outcomes in your experiment.

Definition 1.1 (Random experiment). A random experiment is such that the possi-
ble outcomes of interest, or the items that you are looking for, are not deterministic
in nature or cannot be predetermined.

(i) Suppose that the experiment is that you jump off of a cliff to see whether you
fly out in the north, east, west, south, up or down directions. In this experiment, we
know the physical laws governing the outcome. There are not six possible directions in
which youfly, but for sure there is only onedirection, that is, goingdown. The outcome
is predetermined and the experiment is not a random experiment.

(ii) If you put a 5-rupee coin into a bucket of water to see whether it sinks or not,
there are not two possibilities that either it sinks or it does not sink. From the physi-
cal laws, we know that the coin sinks in water and it is a sure event. The outcome is
predetermined.

(iii) If you throw a coin upward to see whether one side (call it heads) or the other
side (call it tails) will turn up when the coin falls to the floor, assuming that the coin
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will not stay on its edge when it falls to the floor, then the outcome is not predeter-
mined. You do not know for sure whether heads = {H} will turn up or tails = {T} will
turn up. These are the only possible outcomes here, heads or tails, and these outcomes
are not predetermined. This is a random experiment.

(iv) A child played with a pair of scissors and cut a string of length 20 cm. If the
experiment is to see whether the child cut the string, then it is not a random experi-
ment because the child has already cut the string. If the experiment is to see at which
point on the string the cut is made, then it is a random experiment because the point
is not determined beforehand.

The set of possible outcomes in throwing a coin once, or the outcome set, denoted
by S, is then given by S = {H ,T} = {T ,H}.

Definition 1.2 (A sample space or outcome set). The set of all possible outcomes
in a randomexperiment, when no outcome there allows a subdivision in any sense,
is called the sample space S or the outcome set S for that experiment.

The sample space for the random experiment of throwing a coin once is given by

S = {H ,T} = {T ,H}.

If the coin is tossed twice, then the possible outcomes are H or T in the first trial and
H or T in the second trial. Then

S = {(H ,H), (H ,T), (T ,H), (T ,T)} (1.1)

where, for example, the point (H ,T) indicates heads in the first trial and tails in the
second trial. In this experiment of throwing a coin twice, suppose someone says that
the sample space is

S1 = {two heads, one head, zero head} = {zero tail, one tail, two tails},

is S or S1 the sample space here? Note that one tail or one head means that there are
two possibilities of heads first and tails next or tails in the first trial and heads in the
second trial. Thus the point “one head” or “one tail” allows a subdivision into two
points (H ,T) and (T ,H) and in both of these points there is only exactly one head or
exactly one tail. Hence S1 allows one of its elements to be subdivided into two possible
elements. Therefore, we will not take S1 as the sample space here but S in (1.1) is the
sample space here.

Example 1.1. Construct the sample space of rolling a die once [A die is a cube with
the facesmarkedwith the natural numbers 1, 2,3,4,5,6] andmark the subsets A1 = the
number is even, A2 = the number is greater than or equal to 3.

Solution 1.1. The possibilities are that one of the numbers 1, 2,3,4,5,6 will turn up.
Hence
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S = {1, 2,3,4,5,6}

and the subsets are A1 = {2,4,6} and A2 = {3,4,5,6}.

Note 1.2. In S, the numbers need not be taken in the natural order. They could have
beenwritten in any order, for example, S = {4,3, 1, 2,5,6} = {6,5, 2, 1,3,4}. Similarly,A1 =
{4, 2,6} = {6, 2,4}. In fact, S can be represented in 6! = (1)(2)(3)(4)(5)(6) = 720 ways.
Similarly, A2 can be written in 4! = 24 ways and A1 in 3! = 6 ways, because in a set, the
order in which the elements appear is unimportant.

Definition 1.3 (An event or a random event). Any subset A of the sample space S
of a random experiment is called an event or a random event. Hereafter, when we
refer to an event, we mean a random event defined in a sample space or a subset of
a sample space.

Definition 1.4 (Elementary events). If a sample space consists of n individual ele-
ments, such as the example of throwing a coin twicewhere there are 4 elements or 4
points in the sample space S, the singleton elements in S are called the elementary
events.

Let A be an event in the sample space S, then A ⊂ S, that is, A is a subset of S or
all elements in A are also elements of S. If A and B are two subsets in S, that is,

A ⊂ S and B ⊂ S then A ∪ B ⊂ S

is called the event of occurrence of either A or B (or both) or the occurrence of at least
one of A and B. A ∪Bmeans the set of all elements in A or in B (or in both). Also A ∩B
is called the simultaneous occurrence of A and B. Intersection of A and B means the
set of all elements common to A and B. Here, ∪ stands for “union” and ∩ stands for
“intersection”, A ⊂ S stands for A is contained in S or S contains A:

A ∪ B = occurrence of at least A or B.
A ∩ B = simultaneous occurrence of A and B.

Thus, symbolically, ∪ stands for “either, or” and ∩ stands for “and”.

Example 1.2. In a random experiment of rolling a die twice, construct:
(1) the sample space S, and identify the events;
(2) A = event of rolling 8 (sum of the face numbers is 8);
(3) B = event of getting the sum greater than 10.

Solution 1.2. Here, in the first trial, one of the six numbers can come, and in the sec-
ond trial also, one of the six numbers can come. Hence the sample space consists of
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all ordered pairs of numbers from 1 to 6. That is,

S = {(1, 1), (1, 2),… , (1,6), (2, 1),… , (6,6)}.

There are 36 points in S. A is the event of rolling 8. This can come by having 2 in the
first trial and 6 in the second trial or 3 in the first trial and 5 in the second trial and so
on. That is,

A = {(2,6), (3,5), (4,4), (5,3), (6, 2)}.

The event of getting the sum greater than 10 means the sum is 11 or 12. Therefore,

B = {(5,6), (6,5), (6,6)}.

Example 1.3. In the experiment of throwing a coin twice, construct the events of get-
ting:
(1) exactly two heads;
(2) at least one head;
(3) at least one tail, and interpret their unions and intersections.

Solution 1.3. Let A = event of getting exactly two heads, B = event of getting at least
one head, and C = event of getting at least one tail. Here, the sample space

S = {(H ,H), (H ,T), (T ,H), (T ,T)}.

Then

A = {(H ,H)}, B = {(H ,T), (T ,H), (H ,H)},

C = {(T ,H), (H ,T), (T ,T)}.

At least one head means exactly one head or exactly two heads (one or more heads),
and similar interpretation for C also. [The phrase “at most” means that number or
less, that is, at most 1 head means 1 head or zero head.] A ∪B = B since A is contained
in B here. Thus occurrence of A or B or both here means the occurrence of B itself
because occurrence of exactly 2 heads or at least one head implies the occurrence of
at least one head. A ∪ C = {(H ,H), (H ,T), (T ,H), (T ,T)} = occurrence of exactly 2 heads
or at least one tail (or both), which covers the whole sample space or which is sure to
occur, and hence S can be called the sure event. A ∩ B = {(H ,H)} because this is the
common element between A and B. The simultaneous occurrence of exactly 2 heads
and at least one head is the same as saying the occurrence of exactly 2 heads. A ∩ C =
null set. There is no element common to A and C. A null set is usually denoted by a
big O or by the Greek letter ϕ (phi). Here, A ∩ C = ϕ. Also observe that it is impossible
to have the simultaneous occurrence of exactly 2 heads and at least one tail because
there is nothing commonhere. Thus the null setϕ can be interpreted as the impossible
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event. Note that, by definition,

A ∪ B = B ∪ A, A ∩ B = B ∩ A, A ∪ C = C ∪ A, A ∩ C = C ∩ A.

Now,

B ∪ C = B or C(or both) = {(H ,T), (T ,H), (H ,H), (T ,T)} = S

which is sure to happen because the event of getting at least one head or at least one
tail (or both) will cover the whole sample space:

B ∩ C = {(H ,T), (T ,H)} =

event of getting exactly one head = event of getting exactly one tail, since the com-
mon part is the occurrence of exactly one head or exactly one tail, which then is the
intersection of B and C.

Also singleton elements are called elementary events in a sample space. Thus in
Example 1.3, there are 4 elementary events in S. Also, the non-occurrence of an event
A is denoted by Ā orAc . Wewill use the notationAc to denote the non-occurrence ofA.
In Example 1.3, if A is the event of getting exactly 2 heads, then Ac will be the event of
the non-occurrence of A, which means the occurrence of exactly one head or exactly
zero heads (or exactly 2 tails). Thus Ac = {(H ,T), (T ,H), (T ,T)} where A = {(H ,H)}.

Notation 1.1. Ac = non-occurrence of the event Awhen A and Ac are in the same sam-
ple space S.

Note that if A and B are two events in the same sample space S, then if A ∩ B = ϕ,
this means that they cannot occur simultaneously or the occurrence of A excludes the
occurrence of B and vice versa. Then A and B will be calledmutually exclusive events.

A ∩ B = ϕ ⇒ A and B are mutually exclusive or the occurrence of A excludes the
occurrence of B and vice versa.

In the light of the above discussion, we have the following general results and
interpretations for events in the same sample space:

S = sample space = sure event (i)
ϕ = null set = impossible event (ii)

[Note that by assumption a null set is a subset of every set.]

A ∪ B = occurrence of at least A or B or both (iii)
A ∩ B = simultaneous occurrence of A and B (iv)
A ∩ B = ϕmeans A and B are mutually exclusive (v)
A ∪ B = Smeans that A and B are totally exhaustive events (vi)

Ac = complement of A in S = non-occurrence of the event A. (vii)
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Single elements in S are called elementary events if S consists of distinct finite number
of elements.

Note 1.3. In the example of throwing a coin once, suppose that a physicist is capable
of computing the position of the coin and the amount of pressure applied when it was
thrown, all the forces acting on the coin while it is in the air, etc., then the physicist
may be able to tell exactly whether that throw will result in a head or tail for sure.
In that case, the outcome is predetermined. Hence one can argue that an experiment
becomes randomonly due to our lack of knowledge about the various factors affecting
the outcome. Also note that we do not have to really throw a coin for the description of
our random experiment to hold. We are only looking at the possible outcomes “if” a
coin is thrown. After it is thrown, we already know the outcome. In the past, a farmer
used towatch thenature of the cloud formation, the coolness in thewind, thedirection
of the wind, etc. to predict whether a rain is going to come on that day. His prediction
might be wrong 70% of the times. Nowadays, a meteorologist can predict, at least in
the temperate zones, the arrival of rain including the exact time and the amount of
rainfall, very accurately at least one to twodays beforehand. Themeteorologistmay be
wrong in less than 1% of the time. Thus, as we knowmore and more about the factors
affecting an event, we are able to predict its occurrencemore andmore accurately, and
eventually possibly exactly. In the light of the above details, is there anything called a
random experiment?

Before concluding this section, let us examine one more point. The impossible
event ϕ is often misinterpreted. Suppose that a monkey is given a computer to play
with. Assume that it does not knowany typingbut only playingwith the keyboardwith
the English alphabet. Consider the event that the monkey’s final creation is one of the
speeches of President Bushword-by-word. This is not a logically impossible event and
wewill not denote this event byϕ. We useϕ for logically impossible events. The event
that the monkey created one of the speeches is almost surely impossible. Such events
are calledalmost surely impossible events. Consider the event of the best student in this
class passing the next test. We are almost sure that she will pass but only due to some
unpredicted mishap she may not pass. This is almost surely a sure event but not logi-
cally a sure event, and hence this cannot be denoted by our symbol S for a sure event.

Exercises 1.2
1.2.1. Write down the outcome set or the sample space in the following experiments:
(a) A coin is tossed 2 times (assume that only head = H or tail = T can turn up);
(b) Two coins together are tossed once;
(c) Two coins together are tossed two times.

1.2.2. Write down the outcome set or sample space in the following experiment:
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(a) A die is rolled two times;
(b) Two dies are rolled together once;
(c) Two dies together are rolled two times.

1.2.3. Count the number of elementary events or sample points in the sample spaces
of the following experiments, if possible:
(a) A coin is tossed 20 times;
(b) Two coins together are tossed 15 times;
(c) A die is rolled 3 times;
(d) Two dies together are rolled 5 times.

1.2.4. Write down the sample space in the following experiments and count the num-
ber of sample points, if possible:
(a) A random cut is made on a string of a length of 20 cm (one end is marked zero and

the other end 20 and let x be the distance from zero to the point of cut);
(b) Two random cuts are made on a string of a length of 20 cm and let x and y be the

distances from zero to the points of cut, respectively.

1.2.5. There are 4 identical tags numbered 1, 2,3,4. These are put in a box and well
shuffled and tags are taken blind-folded. Write down the sample spaces in the follow-
ing situations, and count the number of sample points in each case, if possible:
(a) One tag is taken from the box;
(b) One tag is taken. Its number is noted and then returned to the box, again shuffled

and a second tag is taken (this is called sampling with replacement);
(c) In (b) above, the first tag is kept aside, not returned to the box, then a second tag

is taken after shuffling (this is called sampling without replacement);
(d) Two tags are taken together in one draw.

1.2.6. Write down the sample space in the following cases when cards are taken,
blind-folded, from a well-shuffled deck of 52 playing cards, and count the number of
sample points in each case, if possible:
(a) One card is taken;
(b) Two cards are taken at random with replacement;
(c) Two cards are taken at random without replacement;
(d) Two cards together are taken in one draw.

1.2.7. Construct the sample spaces in the following experiments:
(a) Checking the life-time x of one electric bulb;
(b) Checking the life-times x and y of two electric bulbs.

1.2.8. In Exercise 1.2.1 (b), write down the following events, that is, write down the
corresponding subsets of the sample space:
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(a) A = the event of getting at most one tail;
(b) B = the event of getting exactly 3 tails;
(c) C = the event of getting at most one head;
(d) Interpret the events (i):A∩B, (ii):A∪B, (iii):A∩C, (iv):A∪C, (v):Ac , (vi): (A∪C)c ,

(vii): (A ∩ C)c .

1.2.9. In Exercise 1.2.2 (b), write down the following events:
(a) A = the number in the first trial is bigger than or equal to the number in the second

trial;
(b) B = the sum of the numbers in the two trials is (i): bigger than 12, (ii): between 8

and 10 (both inclusive), (iii): less than 2.

1.2.10. In Exercise 1.2.4 (a), write down the following events and give graphical rep-
resentations:
(a) A = event that the smaller portion is less than 5 cm;
(b) B = event that the smaller portion is between 5 and 10 cm;
(c) C = the event that the smaller portion is less than 1

2 of the larger portion.

1.2.11. In Exercise 1.2.4 (b), write down the following events and give graphical repre-
sentations:
(a) x < y;
(b) x + y < 10;
(c) x2 ≤ y2;
(d) xy ≤ 5.

1.2.12. In Exercise 1.2.5 (b), write down the following events:
(a) A = event that the first number is less than or equal to the second number;
(b) B = event that the first number is less than or equal to 1

2 of the second number.

1.2.13. In Exercise 1.2.5 (c), write down the same events A and B in Exercise 1.2.12.

1.3 Venn diagrams

Wewill borrow the graphical representation of sets as Venn diagrams from set theory.
In a Venn diagrammatic representation, a set is represented by a closed curve, usually
a rectangle or circle or ellipse, and subsets are represented by closed curves within
the set or by points within the set or by regions within the set, see Figures 1.1, 1.2, 1.3.
Examples are the following: A ⊂ S, B ⊂ S, C ⊂ S, D ⊂ S, E ⊂ S all are events in the same
sample space S. In theVenndiagram in Figure 1.2,A andB intersect,A and C intersect,
B and C intersect, A,B,C all intersect and D and E do not intersect. A∩B is the shaded
region, also A∩B∩C is the shaded region. D∩E = ϕ or they aremutually exclusive. By
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Figure 1.1: Venn diagrams for sample space.

Figure 1.2: Representations of events.

Figure 1.3: Union, intersection, complement of events.

looking at the Venn diagram, we can see the following general properties. A ∪ B can
be split into three mutually exclusive regions A ∩ Bc , A ∩ B, Ac ∩ B. That is,

A ∪ B = (A ∩ Bc) ∪ (A ∩ B) ∪ (Ac ∩ B)
= A ∪ (Ac ∩ B) = B ∪ (Bc ∩ A) (1.2)

where

(A ∩ Bc) ∩ (A ∩ B) = ϕ, (A ∩ Bc) ∩ (Ac ∩ B) = ϕ,

(A ∩ B) ∩ (Ac ∩ B) = ϕ, (1.3)
A ∩ (Ac ∩ B) = ϕ,

B ∩ (Bc ∩ A) = ϕ (1.4)

or they are all mutually exclusive events. Also note that for any event A,

A ∪ϕ = A, A ∩ϕ = ϕ (1.5)

which also means that the sure event S and the impossible event ϕ are mutually ex-
clusive events as well as totally exhaustive events.
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Consider the set of events A1,… ,Ak in the same sample space S, that is, Aj ⊂ S,
j = 1, 2,… ,k where k could be infinity also or there may be countably infinite number
of events. Let these events be mutually exclusive and totally exhaustive. That is,

A1 ∩ A2 = ϕ, A1 ∩ A3 = ϕ, … , A1 ∩ Ak = ϕ
A2 ∩ A3 = ϕ, … , A2 ∩ Ak = ϕ, … , Ak−1 ∩ Ak = ϕ and

S = A1 ∪ A2 ∪ ⋯ ∪ Ak .

This can also be written as follows:

Ai ∩ Aj = ϕ, for all i ≠ j, i, j = 1, 2,… ,k, A1 ∪ A2 ∪ ⋯ ∪ Ak = S.

Thenwe say that the sample space S is partitioned into kmutually exclusive and totally
exhaustive events. Wemay represent this as the following Venn diagram in Figure 1.4.

Figure 1.4: Partitioning of a sample space.

If B is any other event in S where S is partitioned into mutually exclusive events
A1,A2,… ,Ak , then note from the Venn diagram that B can be written as the union of
mutually exclusive portions B∩A1,B∩A2,… ,B∩Ak , some of the portionsmay be null,
that is,

B = (B ∩ A1) ∪ (B ∩ A2) ∪ ⋯ ∪ (B ∩ Ak)

with

(B ∩ A1) ∩ (B ∩ A2) = ϕ, … , (B ∩ Ak−1) ∩ (B ∩ Ak) = ϕ. (1.6)

Exercises 1.3
1.3.1. Consider the sample space S when a coin is tossed twice:

S = {(H ,H), (H ,T), (T ,H), (T ,T)}.

Indicate the correct statements from the following list of statements:
(a) (H ,H) ∈ S;
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(b) {(H ,H)} ∈ S;
(c) {(H ,H)} ⊂ S;
(d) {(H ,T), (T ,H)} ⊂ S;
(e) {(H ,T), (T ,H)} ∈ S.

1.3.2. Let S = {x ∣ 0 ≤ x ≤ 10}. List the correct statements from the following list of state-
ments:
(a) 2 ∈ S;
(b) {2} ∈ S;
(c) A = {x ∣ 2 ≤ x < 5} ∈ S;
(d) A = {x ∣ 2 ≤ x < 5} ⊂ S.

1.3.3. For the same sample space S in Exercise 1.3.1, letA = {(H ,H)}, B = {(H ,H), (H ,T),
(T ,H)}, C = {(T ,T)}. Draw one Venn diagram each to illustrate the following: (1) A and
Ac; (2) A ∪ B, A ∩ B, A ∪ B ∪ C, A ∩ B ∩ C.

1.3.4. By using the definition of sets, prove that the following statements hold with
reference to a sample space S where A,B,C are events in S:
(a) A ∪ B ∪ C = (A ∪ B) ∪ C = A ∪ (B ∪ C);
(b) A ∩ B ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C).

1.3.5. For the same sample space S and events A,B,C in Exercise 1.3.3, verify the fol-
lowing results with the help of Venn diagrams and interpret each of the events:
(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);
(b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);
(c) (B ∪ C)c = Bc ∩ Cc;
(d) (A ∩ B)c = Ac ∪ Bc .

1.3.6. By constructing an example of your own, verify the fact that for three events in
the same sample space S:
(a) A ∪ B = A ∪ C need not imply that B = C;
(b) A ∩ B = A ∩ C need not imply that B = C.

1.3.7. For events A,B,C in the same sample space S, prove the following results:
(a) (A ∪ B)c = Ac ∩ Bc;
(b) (A ∩ B)c = Ac ∪ Bc;
(c) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);
(d) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

1.3.8. For events A1,A2,… in the same sample space S, prove the following results:
(a) (A1 ∪ A2 ∪ ⋯)c = Ac1 ∩ Ac2 ∩ ⋯;
(b) (A1 ∩ A2 ∩ ⋯)c = Ac1 ∪ Ac2 ∪ ⋯.
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1.4 Probability or chance of occurrence of a random event

Now,we shall try to assign a numerical value for the chance of occurrence of a random
event in a well-defined sample space S. Let P(A) denote the probability or chance of
occurrence of the event A ⊂ S.

Notation 1.2. P(A) = the probability of the event A.
We are trying to give a meaning to the following types of statements that you hear

every day:
(1) There is a 95% chance of rain today⇒ P(A) = 0.95 where the symbol⇒ stands for

“implies”, and A is the event of having rain.
(2) The chance of winning a certain lottery is one in a million ⇒ P(A) = 1

10000000 .
(3) The chance of a flood on campus today is nearly zero ⇒ P(A) ≈ 0.
(4) The chance that Miss Cute will win the beauty contest is more than Miss Wise

wins ⇒ P(A) > P(B) where A is the event that Miss Cute wins and B is the event
that Miss Wise wins.

We can define this probability by using some postulates or axioms. Postulates or
axioms are logically consistent and non-overlapping types of basic assumptions that
we make to define something. Usually such postulates are taken by taking into con-
sideration plausible properties that we would like to have for the item to be defined.
There is no question of proving or disproving these basic assumptions. The following
three postulates will be used to define P(A) the probability or chance of occurrence of
the event A.

1.4.1 Postulates for probability

(i) 0 ≤ P(A) ≤ 1 or the probability of an event is a number between 0 and 1, both
inclusive;

(ii) P(S) = 1 or the probability of the sure event is 1;
(iii) P(A1 ∪ A2 ∪ ⋯) = P(A1) + P(A2) + ⋯ whenever A1,A2,… are mutually exclusive

[The events may be finite or countably infinite in number].

Thus P(⋅) coming out of the above three axioms will be called the probability of the
event (⋅). Let us see what will be that quantity in the simple example of throwing a
coin once.

Example 1.4. Compute the probability of getting a head when a coin is tossed once.

Solution 1.4. We have already computed the sample space for this experiment:

S = {H ,T}.
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For convenience, let A be the event of getting a head, then A = {H} and let B be the
event of getting a tail, that is, B = {T}. When we get a head, we cannot get a tail at the
same time, and hence A and B are mutually exclusive events or A ∩ B = ϕ. In a trial,
one of the events A or Bmust occur, that is, either a head or a tail will turn up because
we have ruled out the possibility that the coinwill fall on its edge. ThusA∪B = S. Thus
we have

A ∩ B = ϕ and A ∪ B = S.

From postulate (ii),

1 = P(S) = P(A ∪ B).

Now from postulate (iii),

P(A ∪ B) = P(A) + P(B)

since A ∩ B = ϕ. Therefore,

1 = P(A) + P(B) ⇒ P(A) = 1 − P(B).

We can only come up to this line and cannot proceed further. The above statement
does not imply that P(A) = 1

2 . There are infinitely many values P(A) can take so that
the equation 1 = P(A) + P(B) is satisfied. In other words, by using the postulates we
cannot compute P(A) even for this simple example of throwing a coin once.

Example 1.5. Compute the probability of getting a sum bigger than 10 when a die is
rolled twice.

Solution 1.5. Here, the sample space consists of 36 elementary events as seen before.
Let A be the event of getting a sum bigger than 10, which means a sum 11 or 12. Then
A = {(5,6), (6,5), (6,6)} and let B be the event of getting a sum less than or equal to 10 or
the complement of A or B = Ac . But for any event A, A ∪Ac = S and A ∩Ac = ϕ or these
two are mutually exclusive and totally exhaustive events. Therefore, by postulates (ii)
and (iii) we can come up to the stage:

1 = P(A) + P(B).

We know that the event A has 3 of the 36 elementary events in the sample space S.
But we cannot jump into the conclusion that therefore P(A) = 3

36 because from the
definition of probability, as given by the postulates, does not dependupon the number
of sample points or elementary events favorable to the event. If someone makes such
a conclusion andwrites the probability as 3

36 in the above case, it will bewrong, which
may be seen from the following considerations:
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(i) A housewife is drying clothes on the terrace of a high-rise apartment building.
What is the probability that she will jump off the building? There are only two possi-
bilities: either she jumps off or she does not jump off. Therefore, if you say that the
probability is 1

2 obviously, you are wrong. The chance is practically nil that she will
jump off the building.

(ii) What is the probability that there will be a flash flood on this campus in the
next 5minutes? There are two possibilities: either there will be flash flood or there will
not be aflashflood. If you conclude that the probability is therefore 1

2 youare definitely
wrong because we know that the chance of a flash flood here in the next 5 minutes is
practically nil.

(iii) At this place, tomorrow can be a sunny day, or a cloudy day or a mixed sunny
and cloudy day, or a rainy day. What is the probability that tomorrow will be rainy
day? If you say that the probability is 1

4 since we have identified four possibilities,
you can be obviously wrong because these four possibilities need not have the same
probabilities. Since today is sunny and since it is not a rainy season, most probably
tomorrow will also be a sunny day.

(iv) A child cuts a string of 40 cm in length into two pieces while playing with a
pair of scissors. Let one end of the string be marked as 0 and the other end as 40.
What is the probability that the point of the cut is in the sector from 0 to 8 cm? Here,
thenumber of sample points is infinite, not even countable.Henceby themisuse of the
idea that the probability may be the number of sample points favorable to the event to
the total number of sample points, we cannot come up with an answer, even though
wrong, as in the previous examples. The total number as well as the number of points
favorable to the event cannot be counted. Then how do we calculate this probability?

(v) A person is throwing a dart at a square board of 100 cm in length and width.
What is the probability that the dart will hit in a particular 10cm× 10cm region on the
board? Here, also we cannot count the number of sample points even if to misuse the
numbers to come up with an answer. Then how do we compute this probability?

(vi) A floor is paved with square tiles of length m units. A circular coin of diame-
ter d units is thrown upward, where d < m. What is the probability that the coin will
fall clean within a tile, not cutting its edges or corners? This is the famous Buffon’s
“clean tile problem” from where the theory of probability has its beginning. How do
we answer these types of questions (definitely not by counting the sample points)?

From the above examples, it is clear that the probability of an event does not de-
pend upon the number of elementary events in the sample space and the number of
elementary events favorable to the event. It depends uponmany factors. Also we have
seen that our definition of probability, through the three axioms, does not help us to
evaluate the probability of a given event. In other words, the theory is useless, when
it comes to the problem of computing the probability of a given event or the theory
is not applicable to a practical situation, unless we introduce more assumptions or
extraneous considerations.
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Before we introduce some rules, we can establish some general results by using
the axioms for a probability.

Result 1.1. Probability of an impossible event is zero, that is, P(ϕ) = 0.

Proof 1.1. Consider the sure event S and the impossible event ϕ. From the definitions

S ∪ϕ = S and S ∩ϕ = ϕ.

Hence from postulates (ii) and (iii):

1 = P(S) = P(S ∪ϕ) = P(S) + P(ϕ) = 1 + P(ϕ)

since S ∩ϕ = ϕ. But probability is a real number. Therefore,

1 = 1 + P(ϕ) ⇒ P(ϕ) = 0.

Result 1.2. Probability of non-occurrence = 1-probability of occurrence or P(Ac) =
1 − P(A).

Proof 1.2. Wenote thatA andAc aremutually exclusive and totally exhaustive events,
and hence from axioms (ii) and (iii) we have

S = A ∪ Ac and A ∩ Ac = ϕ ⇒ 1 = P(A) + P(Ac) ⇒ P(Ac) = 1 − P(A).

For example, if 0.8 is the probability that Abhirami will pass the next class test then
0.2 is the probability that she may not pass the next class test. If 0.6 is the probability
that Abhirami may be the top scorer in the next class test, then 0.4 is the probability
that she may not be the top scorer in the next class test.

Result 1.3. For any two events A and B in the same sample space S,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Proof 1.3. Fromequation (1.2) or from the correspondingVenn diagram,we have seen
that A ∪B can be written as the union of three mutually exclusive events A ∩Bc , A ∩B
and Ac ∩ B. Hence from axiom (iii),

P(A ∪ B) = P(A ∩ Bc) + P(A ∩ B) + P(Ac ∩ B) (a)
P(A) = P(A ∩ Bc) + P(A ∩ B)

since

(A ∩ Bc) ∩ (A ∩ B) = ϕ ⇒ P(A ∩ Bc) = P(A) − P(A ∩ B). (b)
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Similarly,

P(B) = P(B ∩ Ac) + P(A ∩ B) ⇒ P(B ∩ Ac) = P(B) − P(A ∩ B). (c)

Substituting (b) and (c) in (a), we have

P(A ∪ B) = P(A) − P(A ∩ B) + P(B) − P(A ∩ B) + P(A ∩ B)
= P(A) + P(B) − P(A ∩ B).

This completes the proof. This can also be guessed from the Venn diagrammatic repre-
sentation, taking probability as some sort of measure over the regions. The samemea-
sure over the region A plus over the region B will count twice over the region A ∩ B,
and hence once it should be subtracted. But this is not a proof but the results can be
guessed from the Venn diagram. The above results can be extended for a set of three
events or to a set of k events, k = 2,3,….

Result 1.4. Let A,B and C be three events in the same sample space S. Then

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C)

− P(B ∩ C) + P(A ∩ B ∩ C).

Proof 1.4. The proof follows parallel to the steps in the proof for the Result 1.3, and
hence it is left to the students. Also as an exercise, write down the formula for the
probability of the union of k events A1,… ,Ak .

1.5 How to assign probabilities to individual events?

Now, we introduce a number of rules so that with the help of the axiomatic definition
and the following rules one may be able to compute the probabilities in a number of
situations.

Rule 1.1 (Symmetry in the outcomes). If the sample space consists of a finite num-
ber of distinct elements and if the physical characteristics of the experiments are such
that, with respect to all factors which may affect the possible outcomes, there is no
way of preferring one outcome to the other then the rule says to assign equal proba-
bilities to the elementary events.

In order to apply this rule, one has to have a sample space consisting of a finite
number of elements, situations such as tossing a coin once or a number of times,
rolling a die a number of times, predicting successful completion of a job when there
are only a fixednumber of alternatives, predicting rainfall, etc. The rule does not apply
to situations such as the cutting a string where the sample space consists of a contin-
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uum of points, throwing a dart at a target where the sample space consists of regions,
Buffon’s clean tile problemwhere the sample space consists of a roompavedwith tiles
or a finite planar region, and so on. The implication of Rule 1.1 is the following.

Rule 1.1a. When there is symmetry in the outcome of a random experiment andwhen
there are k elementary events in the sample space S, k being finite, and if m of the
sample points (elementary events) are favorable to an event A, then the probability
of the event A will be taken as

P(A) = number of sample points favorable to A
total number of sample points

= m
k

. (1.7)

Let us take the example of tossing a coin twice. The sample space is S =
{(H ,T), (T ,H), (T ,T)}. If the physical characteristics of the coin are such that there
is no way of preferring one side to the other (in such a case we call the coin an unbi-
ased coin or not loaded towards one side), the throwing of the coin is such that there is
no advantage for one side over the other or, in short, with respect to all factors which
may affect the outcomes, there is no advantage for one side over the other, then in
this case we assign equal probabilities of 1

4 to the individual elements in this sample
space. That is, we assign, for the event of getting the sequence H first and T next a
probability of 1

4 .
In some books, you may find the description saying when the “events are equally

likely” they have equal probabilities. The statement is circumlocutory in the sense
of using “probability” to define probability. Symmetry has nothing to do with the
chances for the individual outcomes. We have the axioms defining probabilities and
we have seen that the axioms are not sufficient to compute the probabilities in specific
situations, and hence it is meaningless to say “equally likely events” when trying to
compute the probabilities of events. Symmetry is concerned about the physical char-
acteristics of the experiments and the factors affecting the outcomes and not about
the chances of occurrence of the events.

The phrase used to describe symmetry are “unbiased coin” in the case of coins,
“balanced die” in the case of rolling a die, and in other cases, we say “when there is
symmetry in the experiment or symmetry in the outcomes”.

Thus, in the example of tossing a coin if we ask:
What is the probability of getting a head when an unbiased coin is tossed once,

then the answer is 1
2 . This value is assigned by us by taking into account of symmetry

in the experiment, and not coming from the axioms or deduced from somewhere.
What is the probability of getting exactly one head when an unbiased coin is

tossed twice?
Answer: Let A be the event of getting exactly one head. Let A1 be the event of get-

ting the sequence (H ,T) and A2 be the event of getting the sequence (T ,H). Then

A = A1 ∪ A2 and A1 ∩ A2 = ϕ.
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Therefore,

P(A) = P(A1) + P(A2)

by the third axiom. But we have assigned probabilities 1
4 to individual outcomes be-

cause of the additional assumption of symmetry, and hence P(A1) =
1
4 and P(A2) =

1
4 .

Therefore,

P(A) = 1
4

+ 1
4

= 1
2
.

Example 1.6. An unbiased coin is tossed (a) three times and (b) four times. What are
the probabilities of getting the sequences (i) HHT, (ii) THT in (a) and the sequences
(iii) HHTT, (iv) HHHH or HTTT in (b)?

Solution 1.6. In (a), the sample space consists of all possible sequences of H and T
and there are 8 such elementary events. They are available by looking at the problem
of filling three positions by usingH, and T . The first position can be filled in twoways,
either H or T . For each such choice, the second position can be filled in two ways. For
each such choice, for the first and second positions the third can be filled in two ways
so that the number of possible outcomes is 2 × 2 × 2 = 8. They are the following:

HHH , HHT , HTH , HTT , THH , THT , TTH , TTT .

Since we assumed symmetry, all these 8 points are assigned probabilities 1
8 each.

Hence the answers to (i) and (ii) are

P{(HHT)} = 1
8

and P{(THT)} = 1
8
.

When the coin is tossed four times, the sample space consists of 2 × 2 × 2 × 2 = 16 ele-
mentary events. Due to symmetry, we assign probabilities 1

16 to each of these points.
Hence

P{(HHHH)} = 1
16

.

In (iv), the event of getting the sequences HHHH or HTTT means the union of two
mutually exclusive events and by the third axiom, the probability is the sum of the
probabilities. We have assigned probabilities 1

16 each, and hence

P{(HHHH or HTTT)} = P{(HHHH)} + P{(HTTT)} =
1
16

+
1
16

=
1
8
.

Example 1.7. A balanced die is rolled two times. What is the probability of (i) rolling
9 and (ii) getting a sum greater than or equal to 10?

Solution 1.7. When we say “balanced”, it means that we are assuming symme-
try in the experiment and we are assigning equal probabilities to all elementary
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events. Here, there are 36 elementary events and each point will get probability of
1
36 each. (i) Rolling 9 means the sum of the face numbers is 9. The possible points
are (3,6), (4,5), (5,4), (6,3). These are mutually exclusive because, for example, when
the sequence (3,6) comes at the same time another sequence cannot come. Let A be
the event of rolling 9, and let A1 to A4 denote the events of getting the sequences
(3,6),… , (6,3), respectively. Then

A = A1 ∪ A2 ∪ A3 ∪ A4

and

A1 ∩ A2 = ϕ, A1 ∩ A3 = ϕ, A1 ∩ A4 = ϕ,

A2 ∩ A3 = ϕ, A2 ∩ A4 = ϕ, A3 ∩ A4 = ϕ.

That is, they are all mutually exclusive. Hence by the third axiom in the definition of
probability

P(A) = P(A1) + P(A2) + P(A3) + P(A4).

But we have assigned equal probabilities to elementary events. Hence

P(A) = 1
36

+ ⋯ + 1
36

= 4
36

= 1
9
.

Similarly, letB be the event of getting the sumgreater than or equal to 10,whichmeans
10 or 11 or 12. The points favorable to this event are (4,6), (5,5), (6,4), (5,6), (6,5), (6,6)
or 6 points are favorable to the event B and since symmetry is assumed

P(B) = 6
36

= 1
6
.

Rule 1.2. Assign probability 0 for almost surely impossible events and probability 1
for almost surely sure events.

By assigning probability 0, we are not saying that the corresponding event is log-
ically impossible. If an event is logically impossible, then its probability is zero as a
consequence of the axioms defining probability. When we assign 1 to almost surely a
sure event, we are not saying that the event is a sure event. For a logically sure event,
the probability is 1 by the second axiom defining probability. But an assigned proba-
bility 1 does not mean that the event is a sure event.

Rule 1.3. If the sample space consists of a continuum of points giving a line segment
(or segments) of finite length (or lengths), such as a piece of string of a length of 50 cm,
and if the experiment is to take a point from this line segment (or segments), such as
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a cut on this string, and if there is no preference of any sort in selecting this point, then
assign probabilities proportional to the lengths, taking the total length as unity.

When a point is selected from a line segment of finite length by using the rule of
assigning probabilities proportional to the lengths, then we use the phrase: a point
is selected at random from the line segment or we have a “random point” from this
line segment or if a string is cut by using the above rule we say that we have a random
cut of the string or we say that the point of cut is uniformly distributed over the line
segment. These are all standard phrases used in this situation. Then, if an event A is
that the random point lies on a segment of length m units out of a total length of n
units, n ≥m, then the rule says:

P(A) = m
n

. (1.8)

Example 1.8. A random cut is made on a string of 30 cm in length. Marking one end
of the string as zero and the other end as 30, what is the probability that (i) the cut
is between 10 and 11.7, (ii) the cut is between 10 and 10.001, (iii) the cut is at 10, and
(iv) the smaller piece is less than or equal to 10 cm?

Solution 1.8. Since we use the phrase “random cut”, we are assigning probabilities
proportional to the lengths. Let x be the distance from the end marked 0 to the point
of cut. Let A be the event that A = {x ∣ 10 ≤ x ≤ 11.7}, [this notation means: all values of
x such that x is between 10 and 11.7, both the end points are included], B be the event
that B = {x ∣ 10 ≤ x ≤ 10.001}, let C be the event that C = {x ∣ x = 10} and let D be the
event that the smaller piece is less than or equal to 10 cm. The length of the interval in
A is 11.7 − 10.0 = 1.7. Since we are assigning probabilities proportional to the lengths,
we have

P(A) = 11.7 − 10.0
30

= 1.7
30

= 17
300

P(B) = 10.001 − 10.000
30

= 0.001
30

= 1
30000

and

P(C) = 10 − 10
30

= 0
30

= 0.

Sincewe are assigning probabilities proportional to the lengths and since a point does
not have any length by definition, then according to this rule the probability that the
cut is at a specific point, in a continuum of points, is zero. By assigning this value zero
to this probability, we are not saying that it is impossible to cut the string at that point.
As per our rule of assigning probabilities proportional to lengths, then since a point
does not have length, the point will be assigned probability zero as per this rule. For
the event D, the smaller piece is of length less than or equal to 10 cm in the following
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two situations:

D1 = {x ∣ 0 ≤ x ≤ 10} and D2 = {x ∣ 20 ≤ x ≤ 30}.

Therefore,

D = D1 ∪D2 where D1 ∩D2 = ϕ.

Hence

P(D) = P(D1) + P(D2) =
10 − 0
30

+ 30 − 20
30

= 10
30

+ 10
30

= 20
30

= 2
3
.

Note that this variable x can be said to be uniformly distributed over the line segment
[0,30] in this example.

Note 1.4. The above rule cannot be applied if the string is of infinite length such as a
beam of light or laser beam or sound wave, etc. How do we compute probabilities in
such situations of strings of infinite length?

Rule 1.4. When a point is selected at random from a planar region of finite area,
assign probabilities proportional to the area and when a point is selected at random
fromahigher dimensional space of finite hyper-volume, then assign probabilities pro-
portional to the volume. According to this rule, if the total area is α and out of this, if
μ(α) of the area is favorable to an event A, then the probability of A is assumed as

P(A) = μ(α)
α

(1.9)

where α is the Greek letter alpha and μ is the Greek letter mu. Similarly, if v is the total
volume (or hyper-volume) of the space under consideration and if the fraction μ(v) of
v is favorable to an event A then, as per the above rule, the probability of A is taken as

P(A) =
μ(v)
v

. (1.10)

Several itemshereneed explanations:Whenapoint is takenat random fromapla-
nar region of finite area α, such as the point of hit of an arrow when the arrow is shot
onto a wall of a length 10 meters and a width of 2 meters (area = α = 10 × 2 = 20 sq me-
ters), here “at random” means that there is no preference of any sort for the point to
be found anywhere on the planar region. Thenwe assign probabilities α1

α to every pos-
sible subregion of area α1 with a similar interpretation for higher dimensional situa-
tions. The standard terminology for length, area, volume, etc. is the following: length
(one dimensional), area (two-dimensional), volume (3-dimensional), hyper-volume
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(4 or higher dimensional). For simplicity, we say “volume” for 3 or higher dimensional
cases, instead of saying “hyper-volume”.

Example 1.9. A person trying dart throwing for the first time throws a dart at random
to a circular board of a radius of 2 meters. Assuming that the dart hits the board, what
is the probability that (1) it hits within the central region of radius 1 meter; (2) it hits
along a horizontal line passing through the center and (3) it hits exactly at the center
of the board as shown in Figure 1.5?

Solution 1.9. Assuming that the point of the hit is a random point on the board, we
may assign probabilities proportional to the area. The total area of the board is the
area of a circle with a radius of 2 meters:

Total area = πr2 = π(2)2 = 4πm2

where the standardnotationm2means squaremeters. (1) The areaof the central region
of the radius of one meter = π(1)2 = πm2. Hence the required probability, denoted by
P(A), is

P(A) = πm2

4πm2 = 1
4
.

Figure 1.5: Circular board and circular, line, point targets.

For answering (2), we have to look at the area along a line passing through the cen-
ter. But, by definition, a line has no area, and hence the area here is zero. Thus the
required probability is 0

4π = 0. In (3) also, a point has no area by definition, and hence
the probability is zero.

Note 1.5. Note that the numerator and denominator here are in terms of square me-
ters, but probability is a pure number and has no unit of measurement or does not
depend on any unit of measurement.

Note 1.6. Also when assigning probabilities proportional to the area, remember that
lines and points have no areas, and a point has no length or area but a line has length
but no area. Similarly, when assigning probabilities proportional to the volume, re-
member that a planar region has no volume but it has area, and a line has no volume
or area but has length, and a point has no length, area or volume.
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1.5.1 Buffon’s “clean tile problem”

Example 1.10. Solve Buffon’s clean tile problem. That is, a circular coin of diame-
ter d is thrown upward. When it falls on the floor paved with identical square tiles of
lengthmwith d <m, what is the probability that the coin will fall clean, which means
that the coin will not cut any of the edges and corners of the tiles?

Solution 1.10. In Figure 1.6, a typical square tile is marked. Since the coin is tossed
upward, we assume that the center of the coin could be anywhere on the tile if the
coin has fallen on that tile. In other words, we are assuming that the center of the coin
is a random point on the square tile or uniformly distributed over that square tile. In
Figure 1.6, an inner square is drawn d

2 distance away from the boundaries of the outer
square. If the center of the coin is anywhere on the boundaries of the inner square or
in the region between the walls of the two squares, then the coin can touch or cut the
walls of the outer square.

Figure 1.6: Square tile and circular coin.

If the center of the coin is strictly within the inner square, then the coin will fall clean.
Therefore, the probability of the event, A = the event that the coin falls clean, is given
by

P(A) = area of the inner square
area of the outer square

=
(m − d

2 − d
2 )

2

m2 =
(m − d)2

m2 . (1.11)

This problem is generalized by looking at a floor pavedwith rectangular tiles of length
m units, width n units and a circular coin of diameter d units where d <m, d < n. This
problemcanbe done in a similarway by looking at the center of the coin and assuming
that the center is uniformly distributed over the rectangle. The floor can be pavedwith
any symmetrical object such as a rhombus or general polygon, and a circular coin is
tossed. The problem is to compute the probability that the coin will fall clean.

A three-dimensional generalization of the problem is to consider a prism with a
square, rectangular, parallelogram or general polygonal base and a ball or sphere of
radius r is randomly placed inside the prism. Some illustrations are given in Figure 1.7.
What is the probability that the ball will not touch any of the sides, base or top of the
prism?Whenwemove froma one-dimensional case to two or higher dimensions, then
more axioms such as “invariance” is needed to define probability measures.
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Figure 1.7: Tiles of various
shapes.

Another basic problem that Buffon had looked into is called Buffon’s needle problem.
Afloor is pavedwithparallel lines,munits apart. Aheadless needle (or a line segment)
of length d is tossed up. What is the probability that the needle will touch or cut any
of the parallel lines when the needle falls to the floor? There are several situations of
interest here. One is the case of a short needle where the length of the needle, d, is less
than m. Another case is when d < 2m and d >m. Another case is a long needle which
can cut a number of parallel lines. Remember that however long the needle may be
there is a possibility that the needle need not cut any of the lines, for example, the
needle can fall parallel to the lines.

Figure 1.8: Buffon’s needle problem.

Another needle problem is when the floor has horizontal and vertical lines making
rectangular grids of lengthm units andwidth n units and a needle of length d is tossed
as shown in Figure 1.8. A generalization of this problem is the case when the needle
can be of any shape, and need not be straight.

For dealing with Buffon’s needle problem, we need the concepts of random vari-
ables and independence of random variables. Hence we will not do examples here.

When we combine geometry with probability, many interesting paradoxes can
arise. The subject dealing with the combination of geometry and probability is called
Stochastic Geometry. Studentswhoare interested in this area can look into the book [4]
and other papers of A.M. Mathai.

Exercises 1.5
1.5.1. An unbiased coin is tossed until a head is obtained.What is the probability that
the experiment is finished in (i) 4 or less number of trials, (ii) in 20 or less number of
trials?

1.5.2. A balanced die is rolled 3 times. What is the probability of getting:
(a) sum greater than 14;
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(b) all the face numbers are the same;
(c) at least two of the face numbers are the same;
(d) getting the sequences 666 or 121 or 112?

1.5.3. Anunbiased coin is flipped 3 times.What is the probability of getting (1) exactly
one head or (2) at least one head?

1.5.4. A box contains 6 identical chips numbered 1, 2,3,4,5,6. Two chips are taken
one-by-one at random (blind-folded after shuffling well) with replacement. What is
the probability that (1) the first number is bigger than the second number? (2) the first
number is less than 1

2 of the second number?

1.5.5. What are the probabilities in Exercise 1.5.4 if the sampling is done without re-
placement?

1.5.6. In Exercise 1.5.4, what is the probability that (1) the number in the second trial
is bigger than the number in the first trial and (2) the number in the second trial is
bigger than that in the first trial, given that the first trial resulted in the number 1?

1.5.7. Abox contains 7 identicalmarbles except for the color, 4 are red and 3 are green.
Twomarbles are picked at random one by onewithout replacement. What is the prob-
ability of getting:
(a) the sequence RG (red green);
(b) exactly one red and one green;
(c) RR (red red);
(d) exactly 2 red marbles?

1.5.8. In Exercise 1.5.7 suppose a subset of 2 marbles is taken at random or blind-
folded by putting the hand in the box and taking 2 together. Answer (a), (b), (c), (d).

1.5.9. Two identical pieces of string of 20 cm are there. One end of each ismarked zero
and the other end 20. One string is cut at random. Let x be the distance from zero to
the point of cut. The second string is cut at random. Let y be the distance from zero to
the point of cut. Find the probability that:
(i) x < y, (ii) x ≤ y, (iii) x + y ≤ 10, (iv) x + y ≥ 30,
(v) 10 ≤ x ≤ 15, (vi) 5 ≤ y ≤ 20, (vii) 5 ≤ x ≤ 10 and 10 ≤ y ≤ 20,
(viii) x2 + y2 ≤ 10, (ix) x2 + y2 = 10.

1.5.10. A floor is paved with identical square tiles of side 10 cm. A circular coin with a
diameter of 2 cm is tossed up. What is the probability that:
(a) the coin will fall clean;
(b) the coin will not fall clean;
(c) the coin will cut exactly one of the edges of the tiles?

1.5.11. In Exercise 1.5.10, if the coin is flipped twice, what is the probability that:
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(a) on both occasions the coin will fall clean;
(b) in exactly one occasion it falls clean;
(c) on the first occasion it falls clean and on the secondoccasion it does not fall clean?

1.5.12. In Exercise 1.5.10, suppose that the sides of the tiles are m units each and the
diameter of the coin is d units.What should the connection be betweenm and d so that
the game is fair, which means the probability of the coin falling clean is the same as
the probability it does not fall clean (in such a case, in a game of chance, both people
betting on each of the two events of falling clean and not falling clean will have the
same chance of winning at each trial).

1.5.13. Suppose that the floor is paved with identical rectangular tiles with lengths of
10 cm and a width of 5 cm and a coin with a diameter of 4 cm is tossed. What is the
probability that the coin will fall clean?

1.5.14. Suppose that a floor is paved with identical rhombuses of side m units and a
circular coin of diameter d is tossed.What is the probability that the coinwill fall clean
if d is small such that it can fall clean?

1.5.15. In Exercise 1.5.13, if the floor is paved with identical equilateral triangles, then
what will be the corresponding probability?

1.5.16. Answer the questions (a) and (b) in Exercise 1.5.10 if the tiles are (1) equilateral
triangles with sides of 20 cm each, (2) parallelograms with sides of equal length of
20 cm and (3) hexagons with sides of 20 cm each.



2 Probability

2.1 Introduction

In Chapter 1, we have introduced the basic notion of probability. In the present chap-
ter, we will explore more properties of probability, the idea of conditional probability,
basic notions of independence of events, pair-wise independence, mutual indepen-
dence, Bayes’ theorem, etc. For the computations of probabilities in given situations,
we will need some ideas of permutations and combinations. Students may be familiar
with these aspects but for the sake of those who are not familiar, or forgotten, a brief
description is given here as Sections 2.2 and 2.3. In Section 2.4, a note on sigma and pi
notations is given. Those who already know these materials may skip these sections
and go directly to Section 2.5.

2.2 Permutations

To permute means to rearrange and the number of permutations means the number
of such rearrangements. We shall look into the problem of filling up some positions
with some objects. For example, let there be r seats in a row and n individuals to be
seated on these r seats. In howmany differentways canwe select individuals from this
set of n individuals to occupy these r seats. For example, suppose that there are r = 2
seats and n = 5 individuals. The first seat can be given to one of the 5 individuals, and
hence there are five choices of filling up the first seat. When the first seat is already
filled, there are 4 individuals left and one seat is left. Hence the second seat can be
filled with one of the four remaining individuals or in 4 different ways. For each of the
five choices for the first seat, there are four choices for the second seat. Hence the total
number of choices for filling up these two seats is 5×4 = 20 ways. If A,B,C,D,E denote
the five individuals and if the first seat is given to A then the sequences possible for
the two seats are AB, AC, AD, AE. If B is given the first seat again, there are four such
choices, and so on.We can state this as the total number of permutations of five, taken
two at a time, and it is 20. We can also state this as the total number of ordered sets
of two from a set of five or the total number of sequences of two distinct items taken,
from a set of five items.

Thus, if there are n individuals and r seats to be filled, r ≤ n, then the total number
of choices for filling up these r seats with n individuals is n(n− 1)(n− 2)⋯(n− (r − 1)).

Notation 2.1. P(n, r) = nPr = Total number of permutations of n, taken r at a time.

Definition 2.1 (Permutations). The total number of permutations of n distinct ob-
jects, taken r at a time or the total number of ordered sets of r distinct items from

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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the set of n distinct items or the total number of sequences of r items from a set of
n distinct items is given by

P(n, r) = n(n − 1)(n − 2)⋯(n − (r − 1)) = n(n − 1)⋯(n − r + 1). (2.1)

For example, the total number of permutations of 5 items, taken 3 at a time is 5 ×
4 × 3 = 60. The total number of permutations of 5, taken 5 at a time or all is 5 × 4 × 3 ×
2 × 1 = 120:

P(1, 1) = 1, P(2, 1) = 2, P(n, 1) = n, P(10, 2) = (10)(9) = 90,
P(4,4) = (4)(3)(2)(1) = 24 = 4!, P(−3, 2) = no meaning,

P(2, 1
2
) = no meaning.

Notation 2.2. n! = factorial n or n factorial.

Definition 2.2.

n! = (1)(2)⋯(n), 0! = 1 (convention).

That is,

2! = (1)(2) = 2, 3! = (1)(2)(3) = 6, 4! = (1)(2)(3)(4) = 24,

(−2)! = not defined, ( 1
2
)! = not defined,

and so on. We can also write the number of permutations in terms of factorials:

P(n, r) = n(n − 1)⋯(n − r + 1) = n(n − 1)⋯(n − r + 1)(n − r)⋯(2)(1)
(n − r)(n − r − 1)⋯(2)(1)

by multiplying and dividing by (n − r)(n − r − 1)⋯(2)(1). That is,

P(n, r) = n!
(n − r)!

. (2.2)

If we want this formula, in terms of factorials, to hold for all n then let us see what
happens if we compute P(n,n). Writing in terms of factorials, by substituting r = n on
the right side of the above equation (2.2), we have

P(n,n) = n!
0!

.

But, from the original definition,

P(n,n) = n(n − 1)⋯(2)(1) = n!

Hence we need the convention 0! = 1 if we want to use the representation of P(n, r) in
terms of factorials for all r and n. [Mathematical conventions are convenient assump-
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tions which will not contradict or interfere with any of the mathematical derivation
or computation. Also note that all computations can be carried out without this con-
vention also. If we do not want to use the convention, then at equation (2.2) write
r = 1,… ,n − 1 and P(n,n) = n!.]

As a simple example, we can considerwords in a text.Words of a distinct alphabet
are an ordered set or ordered sequence of a distinct alphabet. If the alphabet is rear-
ranged or permuted, then we obtain different words. House numbers in a city, postal
codes in addresses, etc. are all ordered sets of numbers, and if the numbers are per-
muted we get other house numbers, other postal codes, etc.

Example 2.1. Howmanydifferent 3-letterwords canbemadebyusingall of the alpha-
bet in the word (1) “can”, (2) how many different 4-letter words can be made by using
all of the alphabet of the word “good”, (3) how many 11-letter words can be made by
using all of the alphabet in the word “Mississippi”?

Solution 2.1. (1) The different words are the following:

can, cna, anc, acn, nac, nca.

There are 6 = 3! such words. In (2), we have the letter “o” repeated 2 times. If the
o’s were different such as o1,o2, then the total number of words possible is 4! = 24. But
o1o2 or o2o1 will give the same oo. Note that o1,o2 can be permuted in 2! ways and all
these permutations will produce the same word. Hence the total number of distinct
words possible is

4!
2!

= 12.

In (3), the letter “s” is repeated four times, “i” is repeated 4 times and “p” is repeated
2 times. Hence the total number of distinct words possible is

11!
4!4!2!

= 34650.

Example 2.2. Howmany different number plates can be made containing only three
digits if (1) repetition of numbers is allowed, (2) no repetition is allowed.

Solution 2.2. Anumber platewith 3 digitsmeans filling up 3 positionswith one of the
numbers 0, 1,… ,9. The first position can be filled in 10 different ways with one of the
10 numbers 0, 1,… ,9.When a repetition is allowed, the second and third positions can
also be filled in 10 different ways. Thus the total number of number plates possible is

10 × 10 × 10 = 103 = 1000 when repetition is allowed.

When repetition is not allowed, then the first position can be filled in 10 ways, the
second only in 9 ways and the third position in only 8 ways. Thus the total number of
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number plates possible is

10 × 9 × 8 = 720 when repetition is not allowed.

We can also write the number of permutations by using the Pochhammer symbol,
which is widely used in mathematical analysis.

Notation 2.3. (α)k : Pochhammer symbol, where α is the Greek letter alpha.

Definition 2.3.

(α)k = α(α + 1)(α + 2)⋯(α + k − 1), α ≠ 0, (α)0 = 1. (2.3)

For example,

(1)n = (1)(2)⋯(1 + n − 1) = n!; (2)3 = (2)(3)(4) = 24;

(−2)3 = (−2)(−2 + 1)(−2 + 2) = 0; ( 1
2
)
2
= ( 1

2
)( 1

2
+ 1) = ( 1

2
)(3

2
) = 3

4
;

(0)2 = not defined; (3)0 = 1; (5)−2 = not defined.

Note that the various factors in the Pochhammer symbol are in ascending order in
the form a(a + 1)(a + 2)⋯. Suppose we have factors in descending order such as
b(b − 1)(b − 2)⋯ then can we write this also in a Pochhammer symbol. The answer is
in the affirmative. Consider the following:

b(b − 1)⋯(b − k + 1) = (−1)k(−b)(−b + 1)⋯(−b + k − 1)
= (−1)k(−b)k . (2.4)

With thehelp of (2.4),we canwrite the number of permutations in terms of a Pochham-
mer symbol. The total number of permutations of n, taken r at a time, is given by P(n, r)
where

P(n, r) = n(n − 1)(n − 2)⋯(n − r + 1) = (−1)r(−n)(−n + 1)⋯(−n + r − 1)
= (−1)r(−n)r . (2.5)

Exercises 2.2
2.2.1. Evaluate the following numbers of permutations, if possible: (1) P(4, 2);
(2) P(3,4); (3) P(−5, 2); (4) P( 12 , 2); (5) P(

3
2 ,

1
2 ).

2.2.2. If there are 20 students in a class, then their birthdays could be any one of the
365 days 1, 2,… ,365. If no two birthdays are the same or if all students have distinct
birthdays, then how many possibilities are there?
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2.2.3. How many 3-letter words can be made by using the alphabets of the word,
(1) mind; (2) big, with (a) no letter is repeated, (b) the letter i is present.

2.2.4. How many 3-digital number plates can be made (1) with no restriction; (2) no
numbers should be repeated; (3) one number 5 must be present; (4) the plate should
start with a number 5.

2.2.5. In howmany ways 10 persons can be seated (a) on the straight line of 4 chairs;
(b) on a circular table with 4 chairs?

2.2.6. Evaluate the following Pochhammer symbols: (1) (−5)2; (2) (−5)5; (3) (− 1
2 )3;

(4) ( 13 )4.

2.2.7. Convert the following number of permutations into Pochhammer notation:
(1) P(5,3); (2) P(10, 2); (3) P(5,0); (4) P(5,5).

2.2.8. From a box containing 3 red and 5 green identical marbles, three marbles are
picked at random (i) with replacement; (ii) without replacement. How many sample
points are there in the sample space?

2.2.9. In Exercise 2.2.8, if we are interested in the event of getting exactly 2 red and
one green marble, then how many sample points are there favorable to this event?

2.2.10. A coin is tossed 3 times. Write down all possible sequences of head H and
tails T .

2.3 Combinations

In permutations, we were interested in the rearrangement or in sequences or in or-
dered sets or ordered subsets from the given set of objects. Suppose that we are not
interested in the order but only in the subsets. For example, if we have 3 letters a,b, c
and if we are looking at the ordered subsets of two letters from these three letters then
the ordered sequences are

ab, ac, ba, bc, ca, cb

or there are 3 × 2 = 6 such ordered sets. Suppose that we are only concerned with the
subsets of two letters from this set of three letters then the subsets are

{a,b}, {a, c}, {b, c}

because whether the sequence ab or ba appears it is the same subset of the letters a
and b.

How many subsets of r elements are possible from a set of n distinct elements? If
a subset of r elements is there, then we can order them in r! ways to get all ordered
sequences.
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Hence the total number of subsets of r elements from a set of n elements = total
number of permutations of n taken r at a time, divided by r!:

= P(n, r)
r!

= n(n − 1)⋯(n − r + 1)
r!

= n!
r!(n − r)!

. (2.6)

This is known as the number of combinations of n taken r at a time. The standard
notations used are (nr ), nCr , C(n, r). We will use the notation (nr ).

Notation 2.4. (nr ) = the number of combinations of n, taken r at a time = the num-
ber of subsets of r distinct elements from the set of n distinct elements.

Definition 2.4. Thenumber of combinations of n, taken r at a timeor thenumber of
possible subsets of r distinct elements from a set of n distinct elements, is given by

(
n
r
) = P(n, r)

r!
= n(n − 1)⋯(n − r + 1)

r!
= n!
r!(n − r)!

. (2.7)

= (−1)r(−n)r
r!

(in terms of Pochhammer symbol). (2.8)

From this definition itself, the following properties are evident by substituting for r:

(
n
n
) = (

n
0
) = 1; (

n
1
) = (

n
n − 1

) = n;

(
n
2
) = (

n
n − 2

) = n(n − 1)
2!

, (
−3
2
) = not defined; (

1
2
1
4
) = not defined.

From the representation in terms of factorials, we have the following results for all r:

(
n
r
) = (

n
n − r

) , r = 0, 1, 2,… ,n ⇒ (2.9)

(
n
r
) = (

n − 1
r

) + (
n − 1
r − 1

) (2.10)

(
n
0
) = (

n
n
) , (

n
1
) = (

n
n − 1

) , (
n
2
) = (

n
n − 2

) , and so on.

For example,

(
100
98

) = (
100

100 − 98
) = (

100
2

) = (100)(99)
2!

= 4950,

(
210
210

) = (
210

210 − 210
) = (

210
0

) = 1,

(
10
7
) = (

10
3
) = (10)(9)(8)

3!
= (10)(9)(8)

(3)(2)(1)
= 120.
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Note that for the definitions of the numbers of permutations and combinations to hold
both n and r must be non-negative integers, 0, 1, 2,…. When evaluating the number
of permutations or the number of combinations in a given situation, do not use the
representations in terms of factorials, use the basic definitions, that is,

P(n, r) = n(n − 1)⋯(n − r + 1) and (
n
r
) = P(n, r)

r!
= n(n − 1)⋯(n − r + 1)

r!
.

The representations in terms of factorials are useful for theoretical developments.
When factorials are evaluated for large numbers, the computer is not going to give
you the correct value. It will print out a number, which is the maximum number that
the computer can handle, and does not need to be equal to the value of that factorial.
Hence if that large factorial is divided by another big factorial, and not the same as
the numerator factorial, the computer will give the value as 1.

Example 2.3. A box contains 7 identical marbles, except for color, of which 4 are red
and 3 are green. Two marbles are selected at random (a) one by one with replace-
ment; (b) one by one without replacement; (c) two marbles together. (i) Compute the
numbers of sample points in these cases; (ii) compute the probabilities of getting the
sequence (RG) = (R = red, G = green) in (a) and (b); (iii) compute the probabilities of
getting exactly one red and one green marbles in (a), (b) and (c).

Solution 2.3. (a) It is like filling two positions with 7 objects. The first position can be
filled in 7 ways, and since the first marble is put back, the second position can also be
filled in 7 ways, and hence the total number of sample points is 72 = 49 and the sample
space consists of all such 49 pairs of marbles.

(b) Here, the sampling is done without replacement and hence the first position
can be filled in 7 ways and the second in 6 ways because the first marble is not put
back. Hence the total number of sample points here is 7×6 = 42 and the sample space
consists of all such 42 pairs of marbles.

(c) Here, we are looking at all possible subsets of 2 items from a set of 7 items, and
hence the sample space consists of all such subsets of 2 items and the total number of
sample points is

(
7
2
) = (7)(6)

2!
= 42

2
= 21.

In order to compute the probabilities, we will assume symmetry in the outcomes be-
cause of the phrase “at random”. Hence in (a) all the elementary events get the prob-
abilities of 1

49 each, in (b) 1
42 each and in (c) 1

21 each. Now we need to compute only
how many sample points are favorable to the events.

(ii) If the first marble has to be red, then that can only come from the set of red
marbles, and hence there are 4 choices to fill the first position and similarly there are
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3 choices to fill the second position and the number of sample points favorable to the
events in (a) and (b) is 4×3 = 12. Hence the required probabilities in (a) and (b) are the
following:

12
49

for (a) and 12
42

for (b).

For answering (iii), one has to look into all possible sequences of getting exactly one
red and one green in (a) and (b) and all subsets containing exactly one red and one
green in (c). Exactly one red and one green can come from the two sequences RG and
GR and the number of sample points favorable to the event in (a) and (b) is 4 × 3 = 12
plus 3 × 4 = 12, equal to 24. Hence the required probabilities in (a) and (b) are the
following:

24
49

for (a) and 24
42

= 4
7
for (b).

In (c), the total number of sample points favorable to the event of getting exactly one
red and one green marble is the following: One red can come only from the set of red
marbles and this can be done in (41 ) = 4 ways and similarly the one green can come
in (31 ) = 3 ways. Thus the total number of sample points favorable to the event is 12.
Hence the required probability of getting exactly one red and one green marble is

12
21

= 4
7
.

Observe that sampling without replacement and taking a subset of two produced the
same result. This, in fact, is a general property.

Exercises 2.3
2.3.1. From a deck of 52 playing cards (13 diamonds, 13 spades, 13 clubs, 13 hearts)
a hand of 8 cards is to be taken. (a) How many possibilities are there in making this
hand of 8? (b) How many possibilities are there in making a hand of 8 consisting of 5
spades and 3 clubs?

2.3.2. Acommittee of 5 people is to be formed consisting of 3women and 2men. There
are 10men and 5women available for selection. In howmanyways can this committee
be formed?

2.3.3. The 6/36 lottery is where there are 36 specific numbers and 6 numbers will be
selected at random one-by-one without replacement or a subset of 6 numbers from
the set of 36 numbers is taken. How many points are there in the sample space?

2.3.4. The 7/49 lottery consists of 49 specificnumbers anda subset of 7 is taken, either
together or one-by-onewithout replacement. (a) Howmany sample points are there in
this experiment? (b) If someone wishes to buy one lottery ticket to play 6/36 or 7/49,
should she buy a ticket from 6/36 or 7/49 and why?
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2.3.5. Show that

(1)∶
4
∑
r=0

(
4
r
) = 16; (2)∶

5
∑
r=0

(
5
r
) = 32; (3)∶

n
∑
r=0

(
n
r
) = 2n.

2.3.6. Show that
2
∑
r=0

(
3
r
)(

2
2 − r

) = 10;
2
∑
r=0

(
4
r
)(

3
2 − r

) = 21;

r
∑
s=0

(
m
s
)(

n
r − s

) = (
m + n
r

) .

2.3.7. Suppose there are r indistinguishable balls and n boxes. Balls are put into the
boxes without any restriction. A box may receive none, one or more balls. In how
many ways r indistinguishable balls can be distributed into n boxes and show that
it is (n+r−1r ).

2.3.8. Compute the combinations in Exercise 2.3.7 for (i) r = 2, n = 3; (ii) r = 4, n = 3;
(iii) Verify the results in (i) and (ii) by the actual count.

2.3.9. Evaluate the following sum:

(
n
0
) + (

n
1
) + ⋯ + (

n
n
) .

2.3.10. Evaluate the following sum:

(
n
0
) − (

n
1
) + (

n
2
) − ⋯ + (−1)n (

n
n
) .

2.4 Sum∑ and product∏ notation

Notation 2.5. ∑: notation for a sum.

Definition 2.5. ∑n
j=1 aj = a1 + a2 + ⋯ + an.

The standard notation used for a sum is ∑ (similar to Greek capital letter sigma).
For example, if x is any element of the set {2, −1,0,5}, then

∑x = sum of all elements in the set = (2) + (−1) + (0) + (5) = 6.

If a1 = 50kg, a2 = 45kg, a3 = 40kg, a4 = 55kg, a5 = 40kg denote the weights in kilo-
grams of five sacks of potato, then the total weight of all the five sacks will be the sum,
which can be written as

5
∑
j=1

aj = a1 + a2 + a3 + a4 + a5 = 50 + 45 + 40 + 55 + 40 = 230kg.
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Here, the notation ∑aj means write the first number, which is a1 or aj for j = 1, add to
it the number for j = 2, and so on until the last number. Thus

n
∑
j=1

bj = b1 + b2 + ⋯ + bn =
n
∑
i=1

bi =
n
∑
k=1

bk ,

the subscript can be denoted by any symbol i, j,k, etc. because in the notation for the
sum or called the sigma notation the subscript is replaced by 1, 2,… and the successive
numbers are added up. If c1 = Rs100, c2 = Rs250, c3 = Rs150 are the costs of three
items bought by a shopper then the total cost is

3
∑
j=1

cj = c1 + c2 + c3 = 100 + 250 + 150 = Rs500.

If the shopper bought 4 items, all were of the sameprice Rs 50, then as per our notation
4
∑
j=1

50 = 50 + 50 + 50 + 50 = 4 × 50 = Rs200.

Thus one property is obvious. If c is a constant, then
n
∑
j=1

c = n × c = nc. (2.11)

Suppose that the first day a person spent a1 = Rs20 for breakfast and b1 = Rs35 for
lunch. In the second day, he spent a2 = Rs25 for breakfast and b2 = Rs30 for lunch.
Then the total amount spent for the two days is given by

2
∑
i=1

(ai + bi) = (a1 + b1) + (a2 + b2) =
2
∑
i=1

ai +
2
∑
i=1

bi

= (20 + 25) + (35 + 30) = Rs110.

Hence another general property is obvious
n
∑
j=1

(aj + bj) =
n
∑
j=1

aj +
n
∑
j=1

bj . (2.12)

Another property is the following:
k
∑
j=1

caj = c
k
∑
j=1

aj = c(a1 + ⋯ + ak);
k
∑
j=1

(caj + dbj) = c
k
∑
j=1

aj + d
k
∑
j=1

bj (2.13)

where c and d are constants, free of j. The average of a set of numbers x1,… ,xn, de-
noted by x̄, can be written as

x̄ = (x1 + ⋯ + xn)
n

=
1
n
(

n
∑
j=1

xj). (2.14)

For example, if the numbers are 2, −3,5 then as per our notation
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x1 = 2, x2 = −3, x3 = 5, n = 3 and x̄ = (2) + (−3) + (5)
3

= 4
3
.

Let us see what happens if we consider ∑3
j=1(xj − x̄) here:

3
∑
j=1

(xj − x̄) = (x1 − x̄) + (x2 − x̄) + (x3 − x̄)

= (2 − 4
3
) + (−3 − 4

3
) + (5 − 4

3
)

by adding up all terms by putting j = 1, j = 2,… and the sum is

= [(2) + (−3) + (5)] − 3(4
3
) = 4 − 4 = 0.

This, in fact, is a general property. Whatever be the numbers x1,x2,… ,xn:
n
∑
j=1

(xj − x̄) =
n
∑
j=1

xj −
n
∑
j=1

x̄ =
n
∑
j=1

xj −
n
∑
j=1

xj = 0 (2.15)

since x̄ is free of j it acts as a constant and
n
∑
j=1

x̄ = nx̄ = n
(∑n

j=1 xj)
n

=
n
∑
j=1

xj .

Whatever be the numbers x1,x2,… ,xn,
n
∑
j=1

x2j = x21 + x22 + ⋯ + x2n; (2.16)

(
n
∑
j=1

xj)
2

= (x1 + ⋯ + xn)2 = x21 + ⋯ + x2n + 2x1x2 + ⋯ + 2x1xn

+ 2x2x3 + ⋯ + 2x2xn + ⋯ + 2xn−1xn

=
n
∑
j=1

x2j + 2∑
i<j
xixj =

n
∑
j=1

x2j + 2∑
i>j
xixj

=
n
∑
i=1

n
∑
j=1

xixj . (2.17)

For example, the sum∑i<j xixj means to take the sum of product of all terms where the
first subscript is less than the second subscript or i < j. It is a double sum involving i
and j but subject to the condition i < j. That is, for example,

(x1 + x2 + x3)2 = x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x2x3

which is the same as saying

(x1 + x2 + x3)2 =
3
∑
j=1

x2j + 2∑
i<j
xixj
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= x21 + x22 + x23 + 2x3x1 + 2x2x1 + 2x3x2

=
3
∑
j=1

x2j + 2∑
i>j
xixj

= x21 + x22 + x23 + 2x2x1 + 2x3x1 + 2x3x2

=
3
∑
i=1

3
∑
j=1

xixj

= x1x1 + x2x2 + x3x3 + x1x2 + x2x1
+ x1x3 + x3x1 + x2x3 + x3x2

which is the same as saying the double sum without any restriction on i and j, that is,
∑3
i=1 ∑

3
j=1(xixj). Some of the general properties of the sigma notation are the following:

For any set of numbers a1,a2,… ,b1,b2,…
n
∑
i=1

(aibi) = a1b1 + a2b2 + ⋯ + anbn; (2.18)

m
∑
i=1

n
∑
j=1

(aibj) =
m
∑
i=1

ai[
n
∑
j=1

bj]

=
m
∑
i=1

ai[b1 + ⋯ + bn]

= [a1 + ⋯ + am][b1 + ⋯ + bn] = [b1 + ⋯ + bn][a1 + ⋯ + am]

=
n
∑
j=1

m
∑
i=1

(bjai) (2.19)

or, in other words, we could have opened up the sumwith respect to i first or j first the
result would have remained the same.

If we have two or more subscripts, the sigma notation will be the same type. For
example, let wi,j (which is also written as wij without the comma between the sub-
scripts if there is no possibility of confusion) be the weight of the i-th individual in the
j-th age group. Suppose we have numbered some people from 1 to 40, say, i = 1,… ,40
and categorized into 5 categories according to their ages such as age less than or equal
to 20 in group 1, greater than 20 but less than or equal to 30 in group 2, greater than
30 but less than or equal to 40 in group 3, greater than 40 but less than or equal to 50
in group 4, greater than 50 in group 5. Then j = 1, 2,3,4,5. We have w10,5 the weight of
the 10th person in the 5th age group, and if her weight is 55 kg then w10,5 = 55. Then
the total weight of all the individuals is given by

40
∑
i=1

5
∑
j=1

wi,j =
40
∑
i=1

[
5
∑
j=1

wi,j]

=
5
∑
j=1

[
40
∑
i=1

wi,j]
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that is, we can sum up i first or j first and it is also

=w1,1 +w1,2 + ⋯ +w1,5 +w2,1 + ⋯ +w2,5 + ⋯ +w40,5

=w1,1 +w2,1 + ⋯ +w40,1 +w1,2 + ⋯ +w40,2 + ⋯ +w40,5.

Thus we have the following general rule:
m
∑
i=1

n
∑
j=1

xij =
m
∑
i=1

[
n
∑
j=1

xij]

=
n
∑
j=1

[
m
∑
i=1

xij]. (2.20)

2.4.1 The product notation or pi notation

Just like the notation for a sum, calling it the sigma notation, we have a notation for a
product, calling it the pi notation.

Notation 2.6. ∏: the product notation.

Definition 2.6.
n

∏
j=1

aj = a1 × a2 × ⋯ × an = a1a2 ⋯an.

For example, if a1 = 5, a2 = −1, a3 = 2 then

3
∏
j=1

aj = a1a2a3 = (5)(−1)(2) = −10.

If a1 = a2 = a3 = 5, then ∏3
j=1 aj = (5)(5)(5) = 53 = 125. Thus, in general we have the fol-

lowing result:
n

∏
j=1

c = cn;
n

∏
j=1

c ≠ c
n

∏
j=1

1 (2.21)

whenever c is a constant.
n

∏
j=1

(aj + bj) = (a1 + b1)(a2 + b2)⋯(an + bn) ≠
n

∏
j=1

aj +
n

∏
j=1

bj . (2.22)

(
n

∏
i=1

ai)(
m
∏
j=1

bj) = (
m
∏
j=1

bj)(
n

∏
i=1

ai) = a1 ⋯anb1 ⋯bm. (2.23)

But if the brackets are not there, then let us see what happens.
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2
∏
i=1

ai
3

∏
j=1

bj = (a1
3

∏
j=1

bj)(a2
3

∏
j=1

bj) = a1a2(
3

∏
j=1

bj)
2

opening up i first, and it is also = a1a2(b1b2b3)2. Let us see what happens if we open
up j first.

2
∏
i=1

ai
3

∏
j=1

bj = (
2

∏
i=1

aib1)(
2

∏
i=1

aib2)(
2

∏
i=1

aib3)

= b1b2b3(
2

∏
i=1

ai)
3

= b1b2b3(a1a2)3.

Hence it is clear that if product notations are written without brackets then a product
need not determine a unique quantity, or the notation becomes meaningless. Hence
remember to put proper brackets at appropriate places, otherwise the notation can
become meaningless:

2
∏
i=1

(ai − c) = (a1 − c)(a2 − c) = a1a2 − c(a1 + a2) + c2 ≠
2

∏
i=1

ai −
2

∏
i=1

c = a1a2 − c2.

n
∏
j=1

(x − aj) = (x − a1)(x − a2)⋯(x − an). (2.24)

n
∏
j=1

caj = (ca1)(ca2)⋯(can)] = cna1 ⋯an ≠ c
n

∏
j=1

aj .

Exercises 2.4
2.4.1. If x ∈ {3,5,0} and y ∈ {−2, −5,0,6}, then compute (i) ∑x; (ii) ∑y; (iii) ∑(x + y).

2.4.2. If x1 = 2, x2 = −3, x3 = 0, x4 = 5, then compute
(i) x̄;
(ii) ∑4

i=1(xi − x̄);
(iii) ∑4

i=1 x
2
i ;

(iv) ∑4
i=1(xi − x̄)2;

(v) ∑4
i=1 |xi| (absolute value means the magnitude without the sign, when xi is real,

that is |6| = 6, |−6| = 6, |0| = 0, |− 1
2 | =

1
2 , |−3

2| = 32 = 9);
(vi) ∑4

i=1 |xi − x̄|.

2.4.3. For general numbers x1,… ,xn, derive the following general results:

n
∑
j=1

(xj − x̄)2 =
n
∑
j=1

x2j − n(x̄)2 =
n
∑
j=1

x2j − 1
n
(

n
∑
j=1

xj)
2

;

[
n
∑
j=1

(xj − x̄)2]
1
2

≠
n
∑
j=1

(xj − x̄); (2.25)
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|
n
∑
j=1

(xj − x̄)| ≠
n
∑
j=1

|xj − x̄|.

[Give counter examples wherever something is to be disproved.]

2.4.4. Evaluate the following:
(i) ∏5

i=1(10);
(ii) ∏3

i=1(ai − 3) where a1 = 5, a2 = 0, a3 = −2;
(iii) ∏3

i=1(ai − bi) where (a1,b1) = (2,3), (a2,b2) = (5, 1), (a3,b3) = (1, −2), and show that
it is not equal to ∏3

i=1 ai − ∏3
i=1 bi .

2.4.5. Write the following by using a double product notation:

(a1 − a2)(a1 − a3)⋯(a1 − an)(a2 − a3)⋯(a2 − an)⋯(an−1 − an).

2.4.6. Open up the following and write as a sum:
(i) (x − a1)(x − a2)(x − a3);
(ii) (x − a1)(x − a2)⋯(x − an).

2.4.7. Open up the following:
(i) (∏2

i=1 ai)(∑
3
j=1 bj);

(ii) (∏2
i=1 ai)∑

3
j=1 bj;

(iii) ∏2
i=1 ai(∑

3
j=1 bj);

(iv) ∏2
i=1 ai ∑

3
j=1 bj .

2.4.8. Evaluate the following:
(i) ∏2

i=1[∏
2
j=1(ai − bj)];

(ii) ∏2
j=1[∏

2
i=1(ai − bj)].

2.4.9. If a1 = 2, a2 = −1 then evaluate
(i) (∏2

i=1 ai)
2 and

(ii) ∏2
i=1 a

2
i .

2.4.10. For paired values (x1,y1),… , (xn,yn) show that

n
∑
j=1

(xj − x̄)(yj − ȳ) =
n
∑
j=1

xjyj − nx̄ȳ.

Example 2.4. In Example 2.3, suppose that the marbles are taken at random, one by
one, without replacement. What is the probability that (a) the second marble taken is
green, given that the first marble removed is a red marble? (b) the second marble is
green?
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Solution 2.4. Let A be the event that the first marble removed is red and let B be the
event that the second marble is green. (a) If it is already known that the first marble
removed is red then there are only 6 marbles left in the box, out of which 3 are green,
and hence the required probability is 3

6 = 1
2 . That is,

P(B given that A has occurred) = 3
6

= 1
2
.

What isA∩Bhere? This is the event that the firstmarble is red and the secondmarble is
green or getting the sequenceRG. This probability is already evaluated in Example 2.3.
That is,

P(A ∩ B) = 12
42

= 2
7
.

What is the probability P(A) that the first marble is red? This can be computed ei-
ther looking at the first trial alone, where there are 7 marbles out of which 4 are red,
and hence the probability is P(A) = 4

7 . We can also look at it after the completion of
the experiment of taking two marbles one by one without replacement. Then the first
marble is red if we have the sequence RG or RR. The total number of points favorable
to this event is RG giving 4 × 3 = 12 plus RR giving 4 × 3 = 12, and hence the probabil-
ity

P(A) = 12 + 12
42

= 4
7
.

One interesting property may be noted from the above. That is,

P(A ∩ B) = 12
42

= P(A)P(B given that A has occurred) = 4
7

× 3
6
.

This is a general property that we shall discuss next, after checking (b).
(b) Here, we need the probability for the second marble to be green. This can

happen in two ways, under the sequence RG or GG. The sample points favorable to
these two sequences is 4 × 3 = 12 plus 3 × 2 = 6 or 18. Hence

P(B) = 18
42

=
3
7
.

It is equivalent to taking one marble at random and the probability for that marble
being green.

2.5 Conditional probabilities

We will examine probability of the type B given A or the probability of an event given
that some other event has occurred. In some cases that information will change the
probability, that is, the probability of a conditional statement and that of an uncon-
ditional statement may be different, as seen from Example 2.4. We will introduce a
formal notation and definition for such conditional statements here.
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Notation 2.7. P(B|A) = probability of B given A = the conditional probability of B
given thatA has already occurred,whereA andB are two events in the same sample
space.

Here, the notation is a vertical bar after B and it should not be written as B/A or
B
A and these have no meaning when A and B are events. Conditional probability can
be defined in terms of the probability for simultaneous occurrence and the marginal
probability or the probability of the conditioned event.

Definition 2.7. The conditional probability of B given A is the probability of the
simultaneous occurrence of B and A divided by the probability of Awhen P(A) ≠ 0.
That is,

P(B|A) = P(B ∩ A)
P(A)

, P(A) ≠ 0, ⇒ P(A ∩ B) = P(A)P(B|A) ⇒

P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B), P(A) ≠ 0, P(B) ≠ 0. (2.26)

Thus the probability of intersection can bewritten as the conditional probability times
the marginal probability of the conditioned event. This rule can be extended to any
number of events:

P(A ∩ B ∩ C) = P(A|B ∩ C)P(B ∩ C) = P(A|B ∩ C)P(B|C)P(C),

P(B ∩ C) ≠ 0, P(C) ≠ 0. (2.27)

Extending this result, we have

P(A1 ∩ A2 ∩ A3 ∩ ⋯ ∩ Ak) = P(A1|A2 ∩ A3 ∩ ⋯ ∩ Ak),
P(A2 ∩ ⋯ ∩ Ak) ≠ 0

= P(A1|A2 ∩ ⋯ ∩ Ak)P(A2|A3 ∩ ⋯ ∩ Ak)
× ⋯P(Ak−1|Ak)P(Ak),

P(A2 ∩ ⋯ ∩ Ak) ≠ 0, … , P(Ak) ≠ 0. (2.28)

Example 2.5. Abox contains 4 red and 3 green identicalmarbles.Marbles are taken at
random one by one (a) without replacement; (b) with replacement. What is the prob-
ability of getting (i) the sequence RRG; (ii) the sequence RGR; (iii) exactly 2 red and
one green marble.

Solution 2.5. (i)(a) Let the marbles be selected at random without replacement. Let
A be the event that the first marble is red, B be the event that the second marble is
red and C be the event that the third marble is green. Then the sequence RRG means
A ∩ B ∩ C. By using the rule in (2.28), we have
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P(A ∩ B ∩ C) = P(C|B ∩ A)P(B|A)P(A) = 3
5

× 3
6

× 4
7

= P(A)P(B|A)P(C|A ∩ B) = 4
7

× 3
6

× 3
5

= 6
35

.

For the first marble being red is P(A) = 4
7 because there are 7 marbles out of which

4 are red and the marbles are picked at random. If one red marble is removed, then
the probability of getting another red marble is P(B|A) = 3

6 because there are only 6
marbles left out of which 3 are red. If two redmarbles are removed, then there are only
5 marbles out of which 3 are green, and hence P(C|A ∩ B) = 3

5 . By a similar argument,
the probability in (ii)(a) is

P({RGR}) = 4
7

× 3
6

× 3
5

= 6
35

.

(i), (ii)(b) Let themarbles be takenwith replacement. If marbles are returned each
time, then the probability remains the same. Then probability of getting a red in any
trial is 4

7 and the probability of getting a green in any trial is
3
7 . The occurrence or non-

occurrence of an event in the first trial does not affect the probability of occurrence of
an event in the second trial, as so on. Again, by using the same formula (2.27), we have

P({RRG}) = 4
7

× 4
7

× 3
7

= (4
7
)
2
(3
7
); P({RGR}) = 4

7
× 3
7

× 4
7

= (4
7
)
2
(3
7
).

(iii) Note that exactly 2 red and one green, out of three marbles taken can come in

(
3
2
) = (

3
1
) = 3

ways. These are the sequences RRG,RGR,GRR. By using (2.27), we see that for each of
these sequences the probability remains the same. Hence the probabilities for (iii)(a)
and (iii)(b) are respectively,

3 ×
6
35

= 18
35

and 3 × (4
7
)
2
(3
7
).

Example 2.6. In Example 2.5, suppose that three marbles are taken together at ran-
dom. What is the probability of getting exactly 2 red and one green marbles?

Solution 2.6. This is a matter of selecting subsets of size 3 or of 3 elements. The total
number of sample points possible is

(
7
3
) = 7 × 6 × 5

1 × 2 × 3
= 35.

The total number of sample points favorable to the event is

(
4
2
)(

3
1
) = (4 × 3

1 × 2
) × (3) = 18
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because the red marbles can come only from the set of red marbles and there are 4
red and a subset of 2 is taken, which can be done in (42 ) ways and similarly the green
marbles can be selected in (31 ) ways. Note that for each selection of red, the green can
be selected in (31 ) ways and vice versa, and hence the total number of sample points
favorable to the event is the product of the two combinations.Hence the requiredprob-
ability in (iii)(a) is

(42 )(
3
1 )

(73 )
= 18
35

.

When sampling is done with replacement then the probability of getting a red marble
at any trial is 4

7 and the probability of getting a greenmarble at any trial is 3
7 . The total

number of ways of getting 2 red or 1 green in 3 trials is (31 ) = (32 ). Hence the answer for
(iii)(b) is

(
3
2
)(4

7
)
2
(3
7
) = 3(4

7
)
2
(3
7
).

Definition 2.8 (Statistical independence or product probability property (PPP)). If

P(A ∩ B) = P(A)P(B) (2.29)

then the events A and B are said to be independent events or said to satisfy the
product probability property. If three events A,B,C are such that

P(A ∩ B) = P(A)P(B), P(A ∩ C) = P(A)P(C), P(B ∩ C) = P(B)P(C) (2.30)

then A,B,C are said to be pairwise independent events. In addition to (2.30) if fur-
ther,

P(A ∩ B ∩ C) = P(A)P(B)P(C)

then the eventsA,B,C are said to bemutually independent events. Pairwise indepen-
dence need not imply mutual independence. A set of events A1,A2,… ,Ak are said
to be mutually independent events if for all subsets of the set {A1,… ,Ak} the prod-
uct probability property holds or the probability of the intersection is the product
of the probabilities of individual events, that is,

P(Ai1 ∩ ⋯ ∩ Air ) = P(Ai1 )⋯P(Air ) (2.31)

for all different subscripts (i1,… , ir), r = 2,… ,k. This means for every intersection
of two, three,…, k distinct events the probability of the intersection is the product
of the individual probabilities.

From the following figure, it can be seen that pair-wise independence need not
imply mutual independence.
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Figure 2.1: Pairwise and mutual independence.

In Figure 2.1 (a), a sample space with symmetry in the outcomes and with 20 sample
points, three events A,B,C, is given. The numbers in the various regions indicate the
numbers of points falling in various regions. Each of the 20 sample points has a prob-
ability of 1

20 each. A total of 10 sample points fall in each of A,B and C. Five points
each fall in the intersections A ∩ B, A ∩ C, B ∩ C, three sample points fall in A ∩ B ∩ C
and two sample points are in the complementary region of A ∪ B ∪ C. Note that

P(A) = 10
20

= 1
2

= P(B) = P(C);

P(A ∩ B) = 5
20

= 1
4

= P(A)P(B);

P(A ∩ C) = 5
20

= 1
4

= P(A)P(C);

P(B ∩ C) = 5
20

= 1
4

= P(B)P(C);

P(A ∩ B ∩ C) = 3
20

≠ P(A)P(B)P(C) = 1
8
.

Hence A,B,C are pair-wise independent but not mutually independent.
Some students may be thinking that P(A ∩ B ∩ C) = P(A)P(B)P(C) is sufficient to

guarantee mutual independence. This is not sufficient. In Figure 2.1 (b), let us assume
symmetry and let the numbers of elementary events be as shown there in the sets
A,B,C, 6 in A, 6 in B, 4 in C and one outside, thus a total of 12 points. Then

P(A) = 6
12

=
1
2
; P(B) = 6

12
=
1
2
; P(C) =

4
12

=
1
3
;

P(A ∩ B ∩ C) = 1
12

= P(A)P(B)P(C);

P(A ∩ B) = 2
12

= 1
6

≠ P(A)P(B) = 1
2

× 1
2

= 1
4
.

Hence P(A ∩ B ∩ C) = P(A)P(B)P(C) need not imply P(A ∩ B) = P(A)P(B).

Note 2.1. Independence of events should not be confused with mutually exclusive
events. The phrase “independent” is one of the unfortunate terms in statistical litera-
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ture. This can create a wrong impression in theminds of students as if the events have
nothing to do with each other or they are mutually exclusive. When we say that the
events A and B are independent they depend on each other a lot, the dependence is
in the form of a product probability or the probability of intersection is the product of
the individual probabilities, that is,

P(A ∩ B) = P(A)P(B).

Hence the studentsmay observe thatA and B depend on each other through this prod-
uct probability property (PPP), and hence this author has suggested to replace “inde-
pendence of events” with events satisfying product probability property. The students
must keep in mind that

independence of events has nothing to do with mutually exclusiveness of events.

Two events can bemutually exclusive and not independent or mutually exclusive and
independent or notmutually exclusive and independent or notmutually exclusive and
not independent.

Now the students may wonder from where this word “independent” originated.
This has to do with conditional statements. We had defined conditional probability of
A given B as

P(A|B) = P(A ∩ B)
P(B)

for P(B) ≠ 0.

Now, if the product probability property holds then P(A ∩ B) = P(A)P(B). Then in this
case

P(A|B) = P(A)P(B)
P(B)

= P(A) when P(B) ≠ 0. (2.32)

This means that conditional probability of A given B is the same as the marginal or
unconditional probability of A when the product probability property holds. In other
words, the probability of A is not affected by the occurrence or non-occurrence of B
and in this sense, independent of the occurrence of B. This is from where the word
“independent” came in. But this word has created a lot of confusion when this con-
cept is applied in practical situations. Hence it is much safer to say when the product
probability property or PPP holds instead of saying when there is independence. We
have given examples of sampling with replacement where PPP holds or where the
events are independent.

2.5.1 The total probability law

Two important results on conditional probability are the total probability law and
Bayes’ theorem. Both deal with a partitioning of the sample space. Let a sample space



54 | 2 Probability

be partitioned into mutually exclusive and totally exhaustive events A1,… ,Ak and let
B be any other event in the same sample space as in Figure 2.2. From the Venn diagram
one may note that B is partitioned into mutually exclusive pieces B ∩ A1,B ∩ A2,… ,
B ∩ Ak , some of which may be empty. That is,

S = A1 ∪ A2 ∪ ⋯ ∪ Ak .
Ai ∩ Aj = ϕ, for all i ≠ j = 1,… ,k.

B = (B ∩ A1) ∪ (B ∩ A2) ∪ ⋯ ∪ (B ∩ Ak),
(B ∩ Ai) ∩ (B ∩ Aj) = ϕ, for all i ≠ j = 1,… ,k.

Figure 2.2: Total probability law.

Hence by the second and third axioms of probability we have

P(B) = P(B ∩ A1) + P(B ∩ A2) + ⋯ + P(B ∩ Ak) (2.33)

which can be written, by using conditional probability, as

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2)
+ ⋯ + P(B|Ak)P(Ak). (2.34)

for P(Aj) ≠ 0, j = 1,… ,k. This equation (2.34) is known as the total probability law
where the probability of the event B is split into a sum of conditional probabilities of B
givenA1,… ,Ak andmarginal probabilities of A1,… ,Ak . It is a probability law connect-
ing conditional probabilities and marginal probabilities when the marginal probabil-
ities are non-zeros. We can get many interesting applications of this probability law.

Example 2.7. Dr Joy is not a very good medical practitioner. If a patient goes to him,
the chance that he will diagnose the patient’s symptoms properly is 30%. Even if the
diagnosis is correct his treatment is such that the chance of the patient dying is 60%
and if the diagnosis is wrong the chance of the patient dying is 95%. What is the prob-
ability that a patient going to Dr Joy dies during treatment?

Solution 2.7. Let A1 be the event of a correct diagnosis, and A2 that of a wrong diag-
nosis. Then A1 ∩ A2 = ϕ, A1 ∪ A2 = S the sure event. Let B be the event of a patient of
Dr Joy dying. Then the following probabilities are given:

P(A1) = 0.3, P(A2) = 0.7, P(B|A1) = 0.6, P(B|A2) = 0.95.
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We are asked to compute the probability of B. By the total probability law,

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) = (0.6)(0.3) + (0.95)(0.7) = 0.845

or the chance of the patient dying is 84.5%.

Example 2.8. Mr Narayanan is a civil engineer with Kerala government. He is asked
to design an over bridge (sky way). The chance that his design is going to be faulty
is 60% and the chance that his design will be correct is 40%. The chance of the over
bridge collapsing if the design is faulty is 90%; otherwise, due to other causes, the
chance of the over bridge collapsing is 20%. What is the chance that an over bridge
built by Mr Narayanan will collapse?

Solution 2.8. Let A1 be the event that the design is faulty and A2 be the event that the
design is not faulty. Then A1 ∩ A2 = ϕ and A1 ∪ A2 = S a sure event. Let B be the event
of the over bridge collapsing. Then we are given the following:

P(A1) = 0.6, P(A2) = 0.4, P(B|A1) = 0.9, P(B|A2) = 0.2.

We are asked to compute the probability of B. From the total probability law,

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) = (0.9)(0.6) + (0.2)(0.4) = 0.62.

There is a 62% chance of the over bridge designed by Mr Narayanan collapsing.

2.5.2 Bayes’ rule

Consider again the partitioning of the sample space into mutually exclusive and to-
tally exhaustive events A1,… ,Ak and let B be any event in the same sample space. In
the total probability law, we computed the probability of B. Let us look into any one
intersection of B with the Aj ’s, for example, consider B ∩ A1. From the definition of
conditional probability, we can write

P(B ∩ A1) = P(A1|B)P(B), P(B) ≠ 0.

Therefore,

P(A1|B) =
P(B ∩ A1)
P(B)

, P(B) ≠ 0

= P(B|A1)P(A1)
P(B)

= P(B|A1)P(A1)
P(B|A1)P(A1) + ⋯ + P(B|Ak)P(Ak)

, (2.35)

P(Aj) ≠ 0, j = 1,… ,k.
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This equation (2.35) is known as Bayes’ rule, Bayes’ law or Bayes’ theorem. It is named
after a Christian priest, Rev. Bayes, who discovered this rule. The beauty of the result
can be seen from many perspectives. It can be interpreted as a rule connecting prior
and posterior probabilities in the sense that probabilities of the type P(Aj|B) can be
interpreted as posterior probabilities or the probability of the event Aj computed after
observing the event B and P(Aj) can be called prior probability of Aj or the probabil-
ity of Aj computed before observing the event B. Bayes’ rule also provides an inverse
reasoning or establishes a connection between probabilities of the type P(A1|B) and
P(B|A1), where one can be interpreted as the probability from cause to effect and the
other from effect to cause.

If a patient died and if the relatives of the patient felt that the medical doctor at-
tending to the patientwas incompetent or the hospital was negligent, then theywould
like to have an estimate of the chance that the patient died due to the negligence or
incompetence of the doctor, etc. What is the probability that the diagnosis was wrong
given that the patient died? In the case of a bridge collapsing, the concerned general
public may want to know the chance that the engineer’s design was in fact faulty in
the light of the bridge collapsing.

Example 2.9. In Example 2.7, what is the probability that Dr Joy’s diagnosis was
wrong in the light of a patient of Dr Joy dying?

Solution 2.9. Here, we are asked to compute the probability P(A2|B). But

P(A2|B) =
P(B|A2)P(A2)

P(B)
= P(B|A2)P(A2)
P(B|A1)P(A1) + P(B|A2)P(A2)

= (0.95)(0.7)
0.845

= 0.665
0.845

= 133
169

≈ 0.787.

There is approximately a 78.7% chance that the doctor’s diagnosis was wrong. There
is a very good chance of a successful lawsuit against the doctor.

Example 2.10. In Example 2.8, what is the probability that the design of Mr Naraya-
nan was faulty, in the light of an over bridge designed by him collapsing?

Solution 2.10. Here, we are asked to compute the probability P(A1|B). From Bayes’
rule, we have

P(A1|B) =
P(B|A1)P(A1)

P(B)
=

P(B|A1)P(A1)
P(B|A1)P(A1) + P(B|A2)P(A2)

= (0.9)(0.6)
(0.62)

= 54
62

≈ 0.87.

There is approximately a 87% chance that Mr Narayanan’s designwas faulty. But there
is no way of taking any action against Mr Narayanan due to job security in the Kerala
system even if several people also died due to the collapse of the over bridge.
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2.5.3 Entropy

Another concept associated with a partitioning of a sample space or a system

(A1,p1),… , (Ak ,pk),

where A1,… ,Ak are mutually exclusive and totally exhaustive events (a partitioning
of the sample space) and p1,… ,pk the associated probabilities, that is, P(Aj) = pj,
j = 1,… ,k such that pj ≥ 0, p1 + ⋯ + pk = 1, is the concept of entropy or information
or uncertainty. This can be explained with a simple example for k = 2.

Suppose that Mr Nimbus is contesting an election to be the chairman of the local
township. Suppose that the only two possibilities are that either he wins or he does
not win. Thus we have two events A1,A2 such that A1 ∩ A2 = ϕ, A1 ∪ A2 = S where S is
the sure event. Three local newspapers are predicting his chances ofwinning. The first
newspaper gave a 50–50 chance of his winning, the second gave a 80–20 chance and
the third gave a 60–40 chance. That is, if A1 is the event of winning and p = P(A1)
the true probability of winning, then the three estimates for this p are 0.5,0.8,0.6,
respectively. We have three schemes here:

Scheme 1∶ (
A1 A2
0.5 0.5

) ;

Scheme 2∶ (
A1 A2
0.8 0.2

) ;

Scheme 3∶ (
A1 A2
0.6 0.4

) .

In Scheme 1, there is quite a lot of uncertainty about the win, because it is a 50–50
situation with maximum uncertainty, a 50% chance of winning. In Scheme 2, the un-
certainty is much less because it is a 80–20 situation.Whatever be that “uncertainty”,
one can say this much that in Scheme 3 the uncertainty is in between the situations in
Schemes 1 and 2. Lack of uncertainty is the “information” content in a scheme. If one
can come upwith amathematical measure for this ‘information” content in a scheme,
it has a lot of applications in practical situations such as sending a wireless message
fromonepoint and it is captured at another point. Onewould like tomake sure that the
message is fully captured in every respect or at least the information content is maxi-
mum. If a photo is transmitted, we would like to capture it with all of its full details.

Shannon in 1948 came up with a measure of “uncertainty” or “information” in a
scheme. He developed it for communication networks. The measure is

S = −c
k
∑
i=1

pi lnpi

where c is a constant and ln is the natural logarithm. He developed it by putting for-
ward desirable properties as axioms, postulates or assumptions, and then deriving
the expression mathematically. A whole discipline is developed and it is now known
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as “Information Theory” with a wide range of applications in almost all fields. The
measure is simply called “entropy” in order to avoid possible misinterpretation if the
term “information” or “uncertainty” is used. Such a procedure of developing amathe-
maticalmeasure frombasic postulates is called an axiomatic development. Axiomatic
development of the basic concepts in Information Theory and Statistics may be seen
from the book [14]. Shannon’s theory is extended also in various forms, some of which
are given in the abovementioned book and somemore applicationsmay be seen from
a recent paper by Mathai and Haubold [8].

Exercises 2.5
2.5.1. Anunbiased coin is tossed 10 times.What is the probability of getting (i) exactly
4 heads?; (ii) exactly 2 tails?; (iii) first head at the 10th trial?; (iv) the 3rd head at the
10th trial?

2.5.2. Aclass has 10 students. Each student has a birthdaywhich canbeoneof the 365
days of the year, and no other information about the birthdays is available. (i): A stu-
dent is selected at random. What is the probability that the student has the birthday
on 1 February? (ii) What is the probability that their birthdays are all distinct, none
coinciding with any other?

2.5.3. In anumber lottery, each ticket has 3 digits.When the lottery is drawn, a specific
sequence of 3 digits will win, the digits could be repeated also. A person has bought 4
tickets. What is the probability that one of his tickets is the winning ticket?

2.5.4. In Exercise 2.5.3, if repetition of the numbers is not allowed, then what is the
answer?

2.5.5. From a well-shuffled deck of 52 playing cards, a hand of 8 is drawn at random.
What is the probability that the hand contains 4 clubs, 2 spades, 1 heart and 1 dia-
mond?

2.5.6. In a game, an unbiased coin is tossed successively. The game is finishedwhen a
head appears. What is the probability that (i) the game is over with less than or equal
to 10 trials; (ii) the game is over at the 10th trial.

2.5.7. In the same game of tossing an unbiased coin successively, suppose that a per-
son wins the game if a head appears. What is the probability of the person winning
the game?

2.5.8. A balanced die is rolled twice. What is the probability of (i) rolling 6 (sum of
the face numbers is 6)? (ii) getting an even number on both occasions? (iii) and even
number comes in the first trial and odd number comes in the second trial?

2.5.9. In 6/36 lottery, there are 36 numbers and a given collection of 6 will win. A per-
son has 3 such 6/36 tickets. What is the probability that one of these three is the win-
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ning ticket (assume that a person will not buy tickets with the same set of numbers on
more than one ticket)?

2.5.10. In a 7/49 lottery, there are 49 numbers and a specific collection of 7 num-
bers wins. A person has 3 such tickets. (i) What is the probability that one of these
is the winning ticket (assume that no two tickets will have the same set of numbers);
(ii) Comparingwith the probabilities in Exercises 2.5.9 and 2.5.10 (i), which lottery that
a person should prefer 6/36 or 7/49?

2.5.11. A manufacturing unit of water heaters is known to produce 10% of defective
items. A customer bought 3 water heaters from this manufacturer. What is the proba-
bility that (i) at least one of the three is defective; (ii) all are defective?

2.5.12. Vembanad Lake contains n Karimeen (particular fish). A random sample of
50 Karimeen were caught and tagged and then released into the lake. After several
months, a random sample of 100 Karimeen were caught. (i) What is the probability
that this sample contains 5 tagged Karimeen? (ii) How will you estimate n, the total
number of Karimeen in the Vembanad Lake based on this information that out of 100
caught 5 were found to be tagged?

2.5.13. A box contains 3 red and 5 green identical balls. Balls are taken at random,
one by one, with replacement. What is the probability of getting (i) 3 red and 5 green
in 8 trials; (ii) a red ball is obtained before a green ball is obtained.

2.5.14. In Exercise 2.5.13, if the balls are taken at random without replacement, what
is the probability of getting (i) the sequenceRRGG in four trials; (ii)RGRR in four trials?
(ii) the third ball is green given that the first two were red? (iii) the third ball is green
given that the first ball was red? (iv) the third ball is green and no other information is
available.

2.5.15. Thekkady Wildlife Reserve is visited by people from Kerala, Tamilnadu, Kar-
nataka and from other places. For any day, suppose that the proportions are 50%,
30%, 10%, 10%, respectively. Suppose that the probability that garbage will be thrown
around at the reserve, on any day, by visitors from Kerala is 0.9, visitors from Tamil-
nadu is 0.9, visitors from Karnataka is 0.5 and for others it is 0.10. (i) What is the prob-
ability that the reserve will have garbage thrown around on any given day; (ii) On a
particular day, it was found that the place had garbage thrown around, and what is
the probability that it is done by Keralite visitors?

2.5.16. In a production process, twomachines are producing the same item. Machine
1 is known to produce 5% defective (items which do not satisfy quality specifications)
andMachine 2 is known to produce 2% defective. Sixty percent of the total production
per day is by Machine 1 and 40% by Machine 2. An item from the day’s production is
taken at random and found to be defective. What is the probability that it was pro-
duced by Machine 1?
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2.5.17. In a multiple choice examination, there are 10 questions and each question is
supplied with 4 possible answers of which one is the correct answer to the question.
A student, who does not know any of the correct answers, is answering the questions
by picking answers at random.What is the probability that the student gets (i) exactly
8 correct answers; (ii) at least 8 correct answers; (iii) not more than three correct an-
swers?

2.5.18. There are 4 envelopes addressed to 4 different people. There are 4 letters ad-
dressed to the same 4 people. A secretary puts the letters at random to the four en-
velopes and mails. All letters are delivered. What is the probability that none gets the
letter addressed to him/her?

2.5.19. Construct two examples each of practical situations where you have two
events A and B in the same sample space such that they are (i) mutually exclusive and
independent; (ii) mutually exclusive and not independent; (iii) notmutually exclusive
but independent; (iv) not mutually exclusive and not independent.

2.5.20. For the events A1,… ,Ak in the same sample space S, show that
(i) P(A1 ∪ A2 ∪ ⋯ ∪ Ak) ≤ p(A1) + P(A2) + ⋯ + P(Ak);
(ii) P(A1 ∩ A2 ∩ ⋯ ∩ Ak) ≥ P(A1) + ⋯ + P(Ak) − (k − 1).

2.5.21. For two events A and B in the same sample space S, show that if A and B
are independent events (that is satisfying the product probability property) then (i) A
and Bc; (ii) Ac and B; (iii) Ac and Bc are independent events, where Ac and Bc denote
the complements of A and B in S.



3 Random variables

3.1 Introduction

Random variables constitute an extension of mathematical variables just like com-
plex variables providing an extension to the real variable system. Random variables
are mathematical variables with some probability measures attached to them. Before
giving a formal definition to random variables, let us examine some random experi-
ments and some variables associated with such random experiments. Let us take the
simple experiment of an unbiased coin being tossed twice.

Example 3.1. Tossing an unbiased coin twice. The sample space is

S = {(H ,T), (T ,H), (H ,H), (T ,T)}.

There are four outcomes or four elementary events. Let x be the number of heads in
the elementary events or in the outcomes. Then x can take the values 0, 1, 2, and thus
x is a variable here. But we can attach a probability statement to the values taken by
this variable x. The probability that x takes the value zero is the probability of getting
two tails and it is 1

4 . The probability that x takes the value 1 is the probability of getting
exactly onehead,which is 1

2 . The probability that x takes the value 2 is
1
4 . The probabil-

ity that x takes any another value, other than 0, 1, 2, is zero because it is an impossible
event in this random experiment. Thus the probability function, associated with this
variable x, denoted by f (x), can be written as follows:

f (x) =

{{{{{{
{{{{{{
{

0.25, for x = 0
0.50, for x = 1
0.25, for x = 2
0, elsewhere.

Here, x takes individually distinct values with non-zero probabilities. That is, x here
takes the specific value zero with probability 1

4 , the value 1 with probability
1
2 and the

value 2 with probability 1
4 . Such random variables are called discrete random vari-

ables. We will give a formal definition after giving a definition for a random variable.

We can also compute the following probability in this case.What is the probability
that x ≤ a for all real values of a? Let us denote this probability by F(a), that is,

F(a) = Pr{x ≤ a} = probability of the event {x ≤ a}.

From Figure 3.1, it may be noted that when a is anywhere from −∞ to 0, not includ-
ing zero, the probability is zero, and hence F(a) = 0. At x = 0, there is a probability 1

4
and this remains the same for all values of a from zero to 1 with zero included but 1 ex-

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562545-003
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cluded, that is, 0 ≤ a < 1. Remember that we are computing the sum of all probabilities
up to and including point x = a, or we are computing the cumulative probabilities in
the notation Pr{x ≤ a}. There is a jump at x = 1 equal to 1

2 . Thus when 1 ≤ a < 2, then
all the probabilities cumulated up to a is 0 + 1

4 + 0 + 1
2 + 0 = 3

4 . When a is anywhere
2 ≤ a < ∞, all the probabilities cumulated up to a will be 0 + 1

4 + 0 + 1
2 + 0 + 1

4 + 0 = 1.
Thus the cumulative probability function here, denoted by F(a) = Pr{x ≤ a}, can be
written as follows:

F(a) =

{{{{{{
{{{{{{
{

0, −∞ < a < 0
0.25, 0 ≤ a < 1
0.75, 1 ≤ a < 2
1, 2 ≤ a < ∞.

Here, for this variable x, we can associate with x a probability function f (x) and a
cumulative probability function F(a) = Pr{x ≤ a}.

Figure 3.1: Left: Probability function f (x); Right: Cumulative
probability function F (x).

Notation 3.1. Pr{c ≤ x ≤ d}: probability of the event that c ≤ x ≤ d.

Now let us examine another variable defined over this same sample space. Let y
be the number of heads minus the number of tails in the outcomes. Then y will take
the value −2 for the sample point (T ,T) where the number of heads is zero and the
number of tails is 2. The points (H ,T) and (T ,H) will give a value 0 for y and (H ,H)
gives a value 2 to y. If fy(y) denotes the probability function and Fy(a) = Pr{y ≤ a} the
cumulative probability function, thenwe have the following, whichmay also be noted
from Figure 3.2:

fy(y) =

{{{{{{
{{{{{{
{

0.25, y = −2
0.5, y = 0
0.25, y = 2
0, elsewhere.

Fy(a) =

{{{{{{
{{{{{{
{

0, −∞ < a < −2
0.25, −2 ≤ a < 0
0.75, 0 ≤ a < 2
1, 2 ≤ a < ∞.
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Both x and y here are discrete variables in the sense of taking individually distinct
values with non-zero probabilities. We may also note one more property that on a
given sample spaceanynumberof suchvariables canbedefined. The above ones,
x and y, are only two such variables.

Figure 3.2: Left: Probability function of y; Right: Cumulative
probability function of y.

Now, let us consider another example of a variable, which is not discrete. Let us ex-
amine the problem of a child playing with scissors and cutting a string of 10 cm into
two pieces.

Example 3.2 (Random cut of a string). Let one end of the string be denoted by 0 and
the other end by 10 and let the distance from zero to the point of cut be x. Then, of
course, x is a variable because we did not know where exactly would be the cut on
the string. What is the probability that the cut is anywhere in the interval 2 ≤ x ≤ 3.5?
In Chapter 1, we have seen that in a situation like this we assign probabilities propor-
tional to the length of the intervals and then

Pr{2 ≤ x ≤ 3.5} = 3.5 − 2.0
10

= 1.5
10

= 0.15.

What is the probability that the cut is between 2 and 2.001? This is given by

Pr{2 ≤ x ≤ 2.001} = 2.001 − 2.000
10

= 0.001
10

= 0.0001.

What is the probability that the cut is exactly at 2?

Pr{x = 2} = 2 − 2
10

= 0.

Here, x is definedona continuumof points and theprobability that x takes any specific
value is zero because here the probabilities are assigned as relative lengths. A point
hasno length. Suchvariables,whicharedefinedoncontinuumofpoints,will be called
continuous random variables.Wewill give a formal definition after defining a random
variable. A probability function which can be associated with this x, denoted by fx(x),
will be of the following form:

fx(x) =
{
{
{

1
10 , 0 ≤ x ≤ 10
0, elsewhere.

Let us see whether we can compute the cumulative probabilities here also.What is the
probability that x ≤ a for all real values of a? Let us denote this by Fx(a). Then when
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−∞ < a < 0, the cumulative probability is zero. When 0 ≤ a < 10, it is a
10 , probabilities

being relative lengths, and when 10 ≤ a < ∞ it is 10
10 + 0 = 1. Thus we have

Fx(a) =
{{{
{{{
{

0, −∞ < a < 0
a
10 , 0 ≤ a < 10
1, 10 ≤ a < ∞.

The probability function in the continuous case is usually called the density func-
tion. Some authors do not make a distinction; in both discrete and continuous cases,
the probability functions are either called probability functions or density functions.
We will use the term “probability function” in the discrete case and mixed cases and
“density function” in the continuous case. The density and cumulative density, for the
above example, are given in Figure 3.3.

Figure 3.3: Left: Density function of x; Right: Cumulative den-
sity function of x.

Here, we may note some interesting properties. The cumulative probability function
Fx(a) could have been obtained from the density function by integration. That is,

Fx(a) = ∫
a

−∞
f (t)dt = 0 + ∫

a

0

1
10

dt = [ t
10

]
a

0
= a
10

.

Similarly, the density is available from the cumulative density function by differenti-
ation since here the cumulative density function is differentiable. That is,

[ d
da

Fx(a)]
a=x

= [ d
da

a
10

]
a=x

= 1
10

= fx(x).

We have considered two discrete variables associated with the random experiment
in Example 3.1 and one continuous random variable in Example 3.2. In all of the three
cases, one could have computed the cumulative probabilities, or Pr{x ≤ a}was defined
for all real a, −∞ < a < ∞. Such variables will be called random variables. Before giv-
ing a formal definition, a fewmore observations are in order. In the two discrete cases,
we had the probability function, which were of the form:

f (x∗) = Pr{x = x∗} (3.1)

and the cumulative probability function was obtained by adding up the individual
probabilities. That is,

F(a) = Pr{x ≤ a} = ∑
−∞<x≤a

f (x). (3.2)

In Example 3.2, we considered one continuous random variable x where we had the
density function
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fx(x) =
{
{
{

1
10 , 0 ≤ x ≤ 10
0, elsewhere,

and the cumulative density function

Fx(a) = Pr{x ≤ a} =
{{{
{{{
{

0, −∞ < a < 0
a
10 , 0 ≤ a < 10
1, 10 ≤ a < ∞.

= ∫
a

−∞
fx(t)dt. (3.3)

Definition 3.1 (Random variables). Any variable x defined on a sample space S for
which the cumulative probabilities Pr{x ≤ a} can be defined for all real values of a,
−∞ < a < ∞, is called a real random variable x.

Definition 3.2 (Discrete random variables). Any randomvariable xwhich takes in-
dividually distinct values with non-zero probabilities is called a discrete random
variable and in this case the probability function, denoted by fx(x), is given by

fx(x∗) = Pr{x = x∗}

and obtained by taking successive differences in (3.2).

Definition 3.3 (Continuous random variables). Any random variable x, which is
defined on a continuum of points, where the probability that x takes a specific
value x∗ is zero, is called a continuous random variable and the density function
is available from the cumulative density by differentiation, when differentiable, or
the cumulative density is available by integration of the density. That is,

fx(x) = [ d
da

Fx(a)]
a=x

(3.4)

or

Fx(a) = ∫
a

−∞
fx(t)dt. (3.5)

Definition 3.4 (Distribution function). The cumulative probability/density func-
tion of a random variable x is also called the distribution function associated with
that random variable x, and it is denoted by F(x):

F(a) = [Pr{x ≤ a}, −∞ < a < ∞]. (3.6)

We can also define probability/density function and cumulative function, free of ran-
dom experiments, by using a few axioms.
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3.2 Axioms for probability/density function and distribution
functions

Definition 3.5 (Density/Probability function). Any function f (x) satisfying the fol-
lowing two axioms is called the probability/density function of a real random vari-
able x:
(i) f (x) ≥ 0 for all real x, −∞ < x < ∞;
(ii) ∫∞
−∞

f (x)dx = 1 if x is continuous; and ∑−∞<x<∞ f (x) = 1 if x is discrete.

Example 3.3. Check whether the following can be probability functions for discrete
random variables:

f1(x) =
{{{
{{{
{

2/3, x = −2
1/3, x = 5
0, elsewhere.

f2(x) =

{{{{{{
{{{{{{
{

3/4, x = −3
2/4, x = 0,
−1/4, x = 2
0, elsewhere.

f3(x) =
{{{
{{{
{

3/5, x = 0
3/5, x = 1
0, elsewhere.

Solution 3.3. Consider f1(x). Here, f1(x) takes thenon-zero values
2
3 and

1
3 at thepoints

x = −2 and x = 5, respectively, and x takes all other values with zero probabilities. Con-
dition (i) is satisfied, f (x) ≥ 0 for all values of x. Condition (ii) is also satisfied because
2
3 + 1

3 + 0 = 1. Hence f1(x) here can represent a probability function for a discrete ran-
dom variable x. We could have also stated f1(x) as follows:

f1(−2) =
2
3
; f1(5) =

1
3
; f (x) = 0 elsewhere

where, for example, f1(−2) means f1(x) at x = −2.
f2(x) is such that ∑x f2(x) = 1, and thus the second condition is satisfied. But f2(x)

at x = 2 or f2(2) = − 1
4 which is negative, and hence condition (i) is violated. Hence f2(x)

here cannot be the probability function of any random variable.
f3(x) is non-negative for all values of x because f3(x) takes the values 0,

3
5 ,

3
5 but

∑
x
f3(x) = 0 + 3

5
+ 3
5

= 6
5

> 1.

Here, condition (ii) is violated, and hence f3(x) cannot be the probability function of
any random variable.
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Example 3.4. Check whether the following can be density functions of some random
variables:

f1(x) =
{
{
{

1
b−a , a ≤ x ≤ b,b > a
0, elsewhere.

f2(x) =
{
{
{

cx4, 0 < x < 1
0, elsewhere.

f3(x) =
{
{
{

1
θe
− xθ , 0 ≤ x < ∞

0, elsewhere.

f4(x) =
{{{
{{{
{

x, 0 ≤ x < 1
2 − x, 1 ≤ x ≤ 2
0, elsewhere.

Solution 3.4. f1(x) is non-negative since it is either 0 or 1
b−a where b − a > 0. Hence

condition (i) is satisfied. Now, check the second condition:

∫
∞

−∞
f1(x)dx = 0 + ∫

b

a

1
b − a

dx = [ x
b − a

]
b

a
= b − a
b − a

= 1.

Hence the second condition is also satisfied. It is a density function of a continuous
random variable. The graph is given in Figure 3.4.

Figure 3.4: Uniform or rectangular density.

This density looks like a rectangle, and hence it is called a rectangular density. Since
the probabilities are available as integrals or areas under the curve if we take any in-
terval of length ϵ (epsilon) units, say from d to d + ϵ, then the probability that x falls
in the interval d to d + ϵ or d ≤ x ≤ d + ϵ is given by the integral:

∫
d+ϵ

d

1
b − a

dx =
ϵ

b − a
.

Since it is a rectangle, if we take an interval of length ϵ anywhere in the interval
a ≤ x ≤ b, then the area will be the same as ϵ

b−a or we can say that the total area 1 is
uniformly distributed over the interval [a,b]. In this sense, this density f1(x) is also
called uniform density. Also we may observe here that these unknown quantities a
and b could be any constants, free of x. As long as b > a, f1(x) is a density.
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f2(x) ≥ 0 for all values of x if c > 0 since either it is zero or x4 in the interval [0, 1]
which is positive. Thus condition (i) is satisfied if c > 0.Now, let us check condition (ii):

∫
∞

−∞
f2(x)dx = 0 + ∫

1

0
cx4dx

= [c x
5

5
]
1

0
= c
5
.

Hence condition (ii) is satisfied if c = 5. For c = 5, f2(x) is a density function.
f3(x) satisfies condition (i) when θ (theta) is positive because an exponential func-

tion can never be negative. Hence f3(x) takes zero or a positive value only. Now let us
check the second condition:

∫
∞

−∞

1
θ
e−

x
θ dx = 0 + ∫

∞

0

1
θ
e−

x
θ dx = [−e−

x
θ ]∞0 = 1.

Hence it is a density. Note thatwhatever be the value of θ as long as it is positive, f3(x) is
a density, see Figure 3.5.

Figure 3.5: Exponential or negative exponential density.

Since this density is associatedwith an exponential function it is called an exponential
density. Note that if θ is negative, then 1

θ < 0 even though the exponential function
remains positive. Thus condition (i) will be violated. If θ is negative, then the exponent
− x
θ > 0 thereby the integral from 0 to ∞ will be ∞. Thus condition (ii) will also be

violated. For θ ≤ 0 here, f3(x) cannot be a density. When integration is from 0 to ∞,
the exponential functionwith a positive exponent cannot create a densitywe need not
say “negative exponential density” andwe simply say that it is an exponential density,
and it is implied that the exponent is negative.

f4(x) is zero or x in [0, 1) and 2 − x in [1, 2], and hence f4(x) ≥ 0 for all x and con-
dition (i) is satisfied. The total integral is available from the integrals over the several
intervals:

∫
∞

−∞
f4(x)dx = 0 + ∫

1

0
xdx + ∫

2

1
(2 − x)dx + 0

= [x
2

2
]
1

0
+ [2x −

x2

2
]
2

1
=
1
2

+
1
2

= 1.

Thus, condition (ii) is also satisfied and f4(x) here is a density.
The graph of this density looks like a triangle, and hence it is called a triangular

density as shown in Figure 3.6.
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Figure 3.6: Triangular density.

Definition 3.6 (Parameters). Arbitrary constants sitting in a density or probability
function are called parameters.

In f1(x) of Example 3.4, there are two unknown quantities a and b. Irrespective of
the values of a and b, as long as b > a then we found that f1(x) was a density. Hence
there are two parameters in that density. In f3(x) of Example 3.4, we had one unknown
quantity θ. As long as θ was positive, f3(x) remained as a density. Hence there is one
parameter here in this density, and that is θ > 0.

Definition 3.7 (Normalizing constant). If a constant sitting in a function is such
that for a specific value of this constant the function becomes a density or proba-
bility function then that constant is called the normalizing constant.

In f2(x) of Example 3.4, there was a constant c but for c = 5, f2(x) became a density.
This c is the normalizing constant there.

Definition 3.8 (Degenerate random variable). If the whole probability mass is
concentrated at one point, then the random variable is called a degenerate ran-
dom variable or a mathematical variable. Consider the following density/probabil-
ity function:

f (x) =
{
{
{

1, x = b
0, elsewhere.

Here, at x = b the whole probability mass 1 is there and everywhere else the function
is zero. The random variable here is called a degenerate random variable or with prob-
ability 1 the variable x takes the value b or it is a mathematical variable. If there are
two points such that at x = cwe have probability 0.9999 and at x = d ≠ cwe have prob-
ability 0.0001, then it is not a degenerate random variable even though most of the
probability is at one point x = c.

Thus, statistics or statistical science is a systematic study of random phenomena
and random variables, extending the study of mathematical variables, and as such
mathematical variables become special cases of random variables or as degenerate
random variables. This author had coined the name “Statistical Science” when he
launched the Statistical Science Association of Canada, which became the present
Statistical Society of Canada. Thus in this author’s definition, statistical sciences has
a wider coverage compared to mathematical sciences. But nowadays the termmathe-
matical sciences is used to cover all aspects of mathematics and statistics.
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Example 3.5. Compute the distribution function for the following probability func-
tions:

f1(x) =

{{{{{{
{{{{{{
{

0.3, x = −2
0.2, x = 0,
0.5, x = 3
0, otherwise;

f2(x) =
{
{
{

c( 12 )
x , x = 0, 1,

0, otherwise.

Solution 3.5. The distribution function in the discrete case is

F(a) = Pr{x ≤ a} = ∑
−∞<x≤a

f (x).

Hence for f1(x), it is zero for −∞ < x < −2, then there is a jump of 0.3 at x = −2, and so
on. Therefore,

F(a) =

{{{{{{
{{{{{{
{

0, −∞ < a < −2
0.3, −2 ≤ a < 0
0.5 (= 0.3 + 0.2), 0 ≤ a < 3
1, 3 ≤ a < ∞.

It is a step function. In general, for a discrete case we get a step function as the distri-
bution function.

For f2(x), the normalizing constant c is to be determined to make it a probability
function. If it is a probability function, then the total probability is

0 +
2
∑
x=0

(c 1
2
)
x
= 0 + c(1 + 1

2
+ 1
4
) = c 7

4
.

Hence for c = 4
7 , f2(x) is a probability function and it is given by

f2(x) =

{{{{{{
{{{{{{
{

4/7, x = 0
2/7, x = 1
1/7, x = 2
0, otherwise.

Hence the distribution function is given by

F(x) =

{{{{{{
{{{{{{
{

0, −∞ < x < 0
4/7, 0 ≤ x < 1
6/7, 1 ≤ x < 2
1, 2 ≤ x < ∞.
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Again, note that it is a step function. The student may draw the graphs for the distri-
bution function for these two cases.

Example 3.6. Evaluate the distribution function for the following densities:

f1(x) =
{
{
{

1
θe
− xθ , 0 ≤ x < ∞

0, otherwise;

f2(x) =
{{{
{{{
{

x, 0 < x < 1
2 − x, 1 ≤ x < 2
0, otherwise.

Solution 3.6. The distribution function, by definition, in the continuous case is

F(t) = ∫
t

−∞
f (x)dx.

Hence in f1(x),

∫
t

−∞
f1(x)dx = 0 + ∫

t

0

1
θ
e−

x
θ dx

= [−e−
x
θ ]t0 = 1 − e−

t
θ , 0 ≤ t < ∞,

and zero from −∞ < x < 0. For f2(x), one has to integrate in different pieces. Evidently,
F(t) = 0 for −∞ < t < 0.When t is in the interval 0 to 1, the function is x and its integral
is x2

2 . Therefore,

[x
2

2
]
t

0
= t2

2
.

When t is in the interval 1 to 2 the integral up to 1, available from t2
2 at t = 1 which is 1

2 ,
plus the integral of the function (2 − x) from 1 to t is to be computed. That is,

1
2

+ ∫
t

1
(2 − x)dx = 1

2
+ [2x − x2

2
]
t

1
= −1 + 2t − t2

2
.

When t is above 2, the total integral is one. Hence we have

F(t) =

{{{{{{
{{{{{{
{

0, −∞ < t < 0
t2
2 , 0 ≤ t < 1
−1 + 2t − t2

2 , 1 ≤ t < 2
1, t ≥ 2.

The student is asked to draw the graphs of the distribution function in these two den-
sity functions.
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3.2.1 Axioms for a distribution function

If we have a discrete or continuous random variable, the distribution function is
F(t) = Pr{x ≤ t}. Without reference to a random variable x, one can define F(t) by
using the following axioms:
(i) F(−∞) = 0;
(ii) F(∞) = 1;
(iii) F(a) ≤ F(b) for all a < b;
(iv) F(t) is right continuous.

Thus F(t) is a monotonically non-decreasing (either it increases steadily or it remains
steady for some time) function from zero to 1 when t varies from −∞ to∞. The student
may verify that conditions (i) to (iv) above are satisfied by all the distribution functions
that we considered so far.

3.2.2 Mixed cases

Sometime we may have a random variable where part of the probability mass is dis-
tributed on some individually distinct points (discrete case) but the remaining proba-
bility is distributed over a continuum of points (continuous case). Such random vari-
ables are calledmixed cases. We will list one example here, fromwhere it will be clear
how to handle such cases.

Example 3.7. Compute the distribution function for the following probability func-
tion for a mixed case:

f (x) =
{{{
{{{
{

1
2 , x = −2
x, 0 ≤ x ≤ 1
0, otherwise.

Solution 3.7. The definition for the distribution function remains the same whether
the variable is discrete, continuous or mixed:

F(t) = Pr{x ≤ t}.

For −∞ < t < −2, obviously F(t) = 0. There is a jump of 1
2 at t = −2 and then it remains

the same until 1. In the interval [0, 1], the function is x and its integral is

∫
t

0
xdx = [x

2

2
]
t

0
= t2

2
.

For t greater than 1, the total probability 1 is attained. Therefore, we have
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F(t) =

{{{{{{
{{{{{{
{

0, −∞ < t < −2
1
2 , −2 ≤ t < 0
1
2 + t2

2 , 0 ≤ t < 1
1, t ≥ 1.

The graph will look like that in Figure 3.7.

Figure 3.7: The distribution function for a mixed
case.

Note that for t up to 0 it is a step function then the remaining part is a continuous
curve until 1 and then it remains steady at the final value 1.

Example 3.8. Compute the probabilities (i) Pr{−2 ≤ x ≤ 1}, (ii) Pr{0 ≤ x ≤ 1.7} for the
probability function

f (x) =

{{{{{{{{{
{{{{{{{{{
{

0.2, x = −1,
0.3, x = 0,
0.3, x = 1.5,
0.2, x = 2,
0, otherwise.

Solution 3.8. In the discrete case, the probabilities are added up from those at indi-
vidual points. When −2 ≤ x ≤ 1, the probabilities in this interval are 0, 0.2 at x = −1 and
0.3 at x = 0. Therefore, the answer to (i) is 0+0.2+0.3 = 0.5.When 0 ≤ x ≤ 1.7, the prob-
abilities are 0, 0.3 at x = 0 and0.3 at x = 1.5.Hence the answer to (ii) is 0+0.3+0.3 = 0.6.

In the discrete case, the probability that x falls in a certain interval is the sum of
the probabilities from the corresponding distinct pointswith non-zero probabilities
falling in that interval.

Example 3.9. Compute the following probabilities on the waiting time t, (i) Pr{0 ≤
t ≤ 2}, (ii) Pr{3 ≤ t ≤ 10} if the waiting time has an exponential density with the param-
eter θ = 5.

Solution 3.9. The waiting time having an exponential density with parameter θ = 5
means that the density of t is given by

f (t) =
{
{
{

1
5e
− t5 , 0 ≤ t < ∞

0, elsewhere.
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Probabilities are the areas under the density curve between the corresponding ordi-
nates or the integral of the density over the given interval. Hence for (i) the probability
is given by

∫
2

0

1
5
e−

t
5 dt = [−e−

t
5 ]20 = 1 − e−

2
5 .

In a similar manner, the probability for (ii) is given by

∫
10

3
f (t)dt = [−e−

t
5 ]103 = e−

3
5 − e−

10
5 .

The following shaded areas in Figure 3.8 are the probabilities.

Figure 3.8: Probabilities in the exponential density.

In a continuous case, the probability of the variable x falling in a certain interval
[a,b] is the area under the density curve over the interval [a,b] or between the or-
dinates at x = a and x = b.

Exercises 3.2
3.2.1. Check whether the following are probability functions for some discrete ran-
dom variables:

f1(x) =
{{{
{{{
{

1
2 , x = −1
1
2 , x = 1
0, elsewhere;

f2(x) =
{{{
{{{
{

2, x = 2
3

1, x = 1
3

0, elsewhere.

f3(x) =
{{{
{{{
{

1.2, x = 0
−0.2, x = 1
0, elsewhere;

f4(x) =
{{{
{{{
{

0.8, x = 1
0.3, x = 2
0, otherwise.

3.2.2. Check whether the following are density functions for some continuous ran-
dom variables:

f1(x) =
{
{
{

c(x2 + 3x + 1), 0 ≤ x ≤ 2
0, otherwise;
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f2(x) =
{
{
{

c
x2 , 1 ≤ x < ∞

0, otherwise;

f3(x) = ce−β|x|, −∞ < x < ∞;

f4(x) =
{{{
{{{
{

cx2, 0 < x < 2
6 − x, 2 ≤ x ≤ 6
0, otherwise.

3.2.3. An unbiased coin is tossed several times. If x denotes the number of heads in
the outcomes, construct the probability function of x when the coin is tossed (i) once;
(ii) two times; (iii) five times.

3.2.4. In a multiple choice examination, there are 8 questions and each question is
supplied with 3 possible answers of which one is the correct answer to the question.
A student, who does not know any of the correct answers, is answering the questions
by picking the answers at random. Let x be the number of correct answers. Construct
the probability function of x.

3.2.5. In Exercise 3.2.4, let x be the number of trials (answering the questions) at
which the first correct answer is obtained, such as the third (x = 3) question answered
is the first correct answer. Construct the probability function of x.

3.2.6. In Exercise 3.2.4, let the x-th trial resulted in the 3rd correct answer. Construct
the probability function of x.

3.2.7. Compute the distribution function for each probability function in Exercise 3.2.1
and draw the corresponding graphs.

3.2.8. Compute thedistribution function for eachprobability function inExercise 3.2.2
and draw the corresponding graphs also.

3.2.9. Compute the distribution functions and draw the graphs in Exercises 3.2.3–
3.2.6.

3.2.10. For the following mixed case, compute the distribution function:

f (x) =

{{{{{{
{{{{{{
{

1
4 , x = −5
x, 0 < x < 1,
1
4 , x = 5
0, otherwise.

3.2.11. In Exercise 3.2.2, compute the following probabilities: (i) Pr{1 ≤ x ≤ 1.5} for
f1(x); (ii) Pr{2 ≤ x ≤ 5} for f2(x); (iii) Pr{−2 ≤ x ≤ 2} for f3(x); (iv) Pr{1.5 ≤ x ≤ 3} for f4(x).

3.2.12. In Exercises 3.2.4 and 3.2.5, compute the probability for 2 ≤ x ≤ 5, and in Exer-
cise 3.2.6 compute the probability for 4 ≤ x ≤ 7.
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Note 3.1. For a full discussion of statistical densities andprobability functions in com-
mon use, we need some standard series such as binomial series, logarithmic series,
exponential series, etc.Wewillmention these brieflyhere. Thosewhoare familiarwith
these may skip this section and go directly to the next chapter.

3.3 Some commonly used series

The following power series can be obtained by using the following procedure when
the function is differentiable. Let f (x) be differentiable countably infinite number of
times and let it admit a power series expansion

f (x) = a0 + a1x + a2x2 + ⋯ + anxn + ⋯

then the coefficient

an =
[ dn
dxn f (x)|x=0]

n!

or the series is

f (x) = f (0) + f (1)(0)
1!

x + f (2)(0)
2!

x2 + ⋯ (3.7)

where f (r)(0) means to differentiate f (x), r times and then evaluate at x = 0. All of the
following series are derived by using the same procedure.

3.3.1 Exponential series

ex = 1 + x
1!

+ x2

2!
+ ⋯ + xr

r!
+ ⋯ for all x. (3.8)

e−x = 1 − x
1!

+ x2

2!
− ⋯ + (−1)r x

r

r!
+ ⋯ for all x. (3.9)

3.3.2 Logarithmic series

Logarithm to the base e is called the natural logarithms and it is denoted by ln.

ln(1 + x) = x − x2

2
+ x3

3
− ⋯ for |x| < 1. (3.10)

For the convergence of the series, we need the condition |x| < 1:

ln(1 − x) = −[x +
x2

2
+
x3

3
+ ⋯], |x| < 1. (3.11)
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3.3.3 Binomial series

The students are familiar with the binomial expansions for positive integer values,
which can also be obtained by direct repeated multiplications, and the general result
can be established by the method of induction:

(1 + x)2 = 1 + 2x + x2; (a + b)2 = a2 + 2ab + b2;
(1 + x)3 = 1 + 3x + 3x2 + x3; (a + b)3 = a3 + 3a2b + 3ab2 + b3;

(1 + x)n = (
n
0
) + (

n
1
)x + ⋯ + (

n
n
)xn, n = 1, 2,… ; (3.12)

(a + b)n = (
n
0
)anb0 + (

n
1
)an−1b + ⋯ + (

n
n
)a0bn,

n = 1, 2,… .

What happens if the exponent is not a positive integer, if the exponent is something
like 1

2 ,−20,−
3
2 or somegeneral rational number α (alpha)?Wecanderive an expansion

by using (3.7). Various forms of these are given below:

(1 − x)−α = 1 + (α)1
1!

x + (α)2
2!

x2 + ⋯ + (α)r
r!

xr + ⋯, |x| < 1. (3.13)

If α is not a negative integer, then we need the condition |x| < 1 for the convergence of
the series. The Pochhammer symbol is

(α)r = α(α + 1)⋯(α + r − 1), α ≠ 0, (α)0 = 1. (3.14)

Various forms of (3.13) can be obtained by replacing x by −x and α by −α. For the sake
of completeness, these will be listed here for ready reference:

(1 + x)−α = [1 − (−x)]−α = 1 − (α)1
1!

x +
(α)2
2!

x2 − ⋯, |x| < 1. (3.15)

(1 − x)α = (1 − x)−(−α) = 1 + (−α)1
1!

x +
(−α)2
2!

x2 + ⋯,

for |x| < 1. (3.16)

(1 + x)α = [1 − (−x)]−(−α) = 1 − (−α)1
1!

x + (−α)2
2!

x2 − ⋯, (3.17)

for |x| < 1. In all cases, the condition |x| < 1 is needed for the convergence of the series
except in the casewhen the exponent is a positive integer.When the exponent is α > 0,
then the coefficient of xr

r! is (−α)r . If α is a positive integer, then this Pochhammer sym-
bol will be zero for some r and the series will terminate into a polynomial, and hence
the question of convergence does not arise. We have used the form (1 ± x)±α. This is
general enough because if we have a form

(a ± b)±α = a±α(1 ± b
a
)
±α
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and thus we can convert to the form (1 ± x) by taking out a or b to make the resulting
series convergent.

3.3.4 Trigonometric series

sinx = x − x3

3!
+ x5

5!
− ⋯

cosx = 1 − x2

2!
+ x4

4!
− ⋯

eix = cosx + i sinx, i = √−1.

3.3.5 A note on logarithms

The mathematical statement

ax = b

can be stated as the exponent x is the logarithm of b to the base a. For example, 23 = 8
can be written as 3 (the exponent) is the logarithm of 8 to the base 2. The definition
is restricted to b being strictly a positive quantity when real or logarithm of negative
quantities or zero is not defined in the real case. The standard notations used are the
following:

logb ≡ log10 b or common logarithm or logarithm to the base 10. When we say
“log y”, it is a logarithm of y to be base 10.

lnb ≡ loge b or natural logarithm or logarithm to the base e. When we say “ln y”,
it is a logarithm of y to be base e.

For all other bases, other than 10 or e, write the base and write it as loga b. This
note is given here because the students usually do not know the distinction between
the notations “log” and “ln”. For example,

d
dx

lnx = 1
x
, d

dx
logx = 1

x
log10 e ≠ 1

x
.

Note 3.2. In Section 3.2.1,wehave given an axiomatic definition of a distribution func-
tion and we defined a random variable with the help of the distribution function. Let
us denote the distribution function associated with a random variable x by F(x). If
F(x) is differentiable at an arbitrary point x, then let us denote the derivative by f (x).
That is, d

dxF(x) = f (x), which will also indicate that

F(x) = ∫
x

−∞
f (t)dt.
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In this situation, we call F(x) an absolutely continuous distribution function. Abso-
lute continuity is related to more general measures and integrals known as Lebesgue
integrals. For the time being, if you come across the phrase “absolutely continuous
distribution function”, then assume that F(x) is differentiable and its derivative is the
density f (x).

Note 3.3. Suppose that a density function f (x) has non-zero part over the interval
[a,b] and zero outside this interval. When x is continuous, then the probability that
x = a, that is, Pr{x = a} = 0 and Pr{x = b} = 0. Then the students have the confusion
whether f (x) should be written as non-zero in a ≤ x ≤ b or a < x ≤ b or a ≤ x < b or
a < x < b. Should we include the boundary points x = a and x = b with the non-zero
part of the density or with the zero part? For example, if we write an exponential den-
sity:

f (x) =
{
{
{

1
θe
− xθ , θ > 0, 0 ≤ x < ∞

0, elsewhere

should we write 0 < x < ∞ or 0 ≤ x < ∞. Note that if we are computing only probabil-
ities then it will not make any difference. But if we are looking for a mode, then the
function has a mode at x = 0 and if x = 0 is not included in the non-zero part of the
density, then naturallywe cannot evaluate themode. For estimation of the parameters
also, we may have similar problems. For example, if we consider a uniform density

f (x) =
{
{
{

1
b−a , a ≤ x ≤ b
0, elsewhere

then what is known as maximum likelihood estimates [discussed in Module 7] for the
parameters a and b do not exist if the end points are not included. That is, if the non-
zero part of the density is written as a < x < b, then themaximum likelihood estimates
for a and b do not exist. Hence when writing the non-zero part of the density include
the end points of the interval where the function is non-zero.

Note 3.4. Note thatwhena randomvariables x is continuous, then the followingprob-
ability statements are equivalent:

Pr{a < x < b} = Pr{a ≤ x < b} = Pr{a < x ≤ b} = Pr{a ≤ x ≤ b}
= F(b) − F(a)

where F(x) is the distribution function. Also when F(x) is absolutely continuous

F(b) − F(a) = ∫
b

a
f (t)dt or d

dx
F(x) = f (x)

where f (x) is the density function.
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Exercises 3.3
3.3.1. By using a binomial expansion show that, for n = 1, 2,…

2n = (n
0
) + (n

1
) + (n

2
) + ⋯ + (n

n
)

0 = (n
0
) − (n

1
) + (n

2
) + ⋯ ± (n

n
)

3.3.2. By using the identity,

(1 + x)m(1 + x)n ≡ (1 + x)m+n

and comparing the coefficient of xr on both sides show that

r
∑
s=0

(
m
s
)(

n
r − s

) = (
m + n
r

) , m,n = 1, 2,… .

3.3.3. By using the identity,

(1 + x)n1 (1 + x)n2 ⋯(1 + x)nk ≡ (1 + x)n1+⋯+nk

and comparing the coefficient of xr on both sides show that

∑
r1

⋯∑
rk

(
n1
r1

)(
n2
r2

)⋯(
nk
rk

) = (
n
r
)

where r = r1 + ⋯ + rk , n = n1 + ⋯ + nk , nj = 1, 2,…, j = 1,… ,k.

3.3.4. Show that
n
∑
m=1

m = n(n + 1)
2

;
n
∑
m=1

m2 = n(n + 1)(2n + 1)
6

;

n
∑
m=1

m3 = [n(n + 1)
2

]
2
.

3.3.5. Compute the sums ∑n
m=1m

4; ∑n
m=1m

5; ∑n
m=1m

p, p = 6,7,….

3.3.6. Show that

a + ar + ar2 + ⋯ + arn−1 = a (1 − rn)
1 − r

, r ≠ 1;

a + ar + ar2 + ⋯ = a
∞

∑
n=0

rn = a
1 − r

, for |r| < 1.

3.3.7. What is the infinite sum in Exercise 3.3.6 for (i) r = 1; (ii) r = −1; (iii) r > 1;
(iv) r < −1.
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3.3.8. Evaluate the sum ∑∞x=k (x−1k−1 )pkqx−k , q = 1 − p, 0 < p < 1.

3.3.9. Evaluate the sum ∑n
x=0 (nx )pxetxqn−x , q = 1 − p, 0 < p < 1.

3.3.10. Compute the sum ∑∞x=k (x−1k−1 )pketxqx−k , q = 1 − p, 0 < p < 1.





4 Expected values

4.1 Introduction

Here, we will start with some commonly used probability functions and density func-
tions and then we will define the concepts called expected values, moments, mo-
ment generating functions, etc. In Chapter 3, we have defined a probability function,
a density function and distribution function or cumulative probability/density func-
tion. There is another term used in statistics and probability literature called “distri-
butions” something like “exponential distribution”, “normal distribution”, etc. There
is a possibility of confusion between a distribution and a distribution function. A dis-
tribution function is the cumulative probability/density function as defined in Chap-
ter 3, whereas when we say that, for example, we have an exponential distribution or
a variable x is exponentially distributed, we mean that we have identified a random
variable, a density function or a distribution function, and it is the random variable
having exponential density. When we say we have a uniform distribution, it means
that we have identified a random variable having a uniform or rectangular density or
we have identified a random variable that is uniformly distributed. It is unfortunate
that two technical terms, “distribution” and “distribution function”, which are very
similar, are used in statistical literature. Hopefully, the students will get accustomed
to the technical terms fast and will not be confused.

We will introduce the concept of expected values first and then we will deal with
commonly appearing probability/density functions or commonly appearing statistical
distributions.

4.2 Expected values

Notation 4.1. E(⋅) = E[(⋅)] expected value of (⋅).

Definition 4.1. Expected value of a function ψ(x) of the random variable x: Let x
be a randomvariable and letψ(x), (ψ is the Greek letter psi) be a function of x. Then
the expected value of ψ(x), denoted by E[ψ(x)] = Eψ(x) is defined as

E[ψ(x)] = E(ψ(x)) = ∑
−∞<x<∞

ψ(x)f (x) when x is discrete

= ∫
∞

−∞
ψ(x)f (x)dx when x is continuous (4.1)

where f (x) is the probability/density function.

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562545-004



84 | 4 Expected values

When f (x) is a density function, obtainedbydifferentiating adistribution function
F(x), then instead of writing f (x)dx we may also write it as dF(x) in (4.1). Expected
values need not exist for all functions ψ(x) and for all random variables x.

Example 4.1. Consider the probability function:

f (x) =

{{{{{{
{{{{{{
{

0.2, x = −1
0.3, x = 0
0.5, x = 2
0, elsewhere.

Evaluate (i) E[x]; (ii) E[2x2 − 5x]; (iii) 8.

Solution 4.1. In (i), the function ψ(x) = x and by definition, we multiply x with the
probability function and sum up over all values of x. Here, the random variable takes
only −1,0, 2 with non-zero probabilities and all other values with zero probabilities.
Hence when we multiply with the probability function everywhere it will be zeros ex-
cept at the points x = −1, x = 0 and x = 2. Therefore, for (i),

E[x] = ∑
−∞<x<∞

xf (x) = 0 + (−1)(0.2) + (0)(0.3) + (2)(0.5) = 0.8.

When x takes the value −1, the corresponding probability is 0.2. Hence xf (x) =
(−1)(0.2) = −0.2 at x = −1. Similarly, xf (x) = (0)(0.3) = 0 at x = 0 and xf (x) = (2)(0.5) =
1.0 at x = 2. Then we added up all these to get our final answer as 0.8.

(ii) Here, we need the expected value of 2x2 − 5x. That is,

E[2x2 − 5x] = ∑
−∞<x<∞

[2x2 − 5x]f (x) = ∑
−1,0,2

[2x2 − 5x]f (x).

When x = −1, the probability f (x) = 0.2, and hence the corresponding value of

[2x2 − 5x]f (x) = [2(−1)2 − 5(−1)](0.2) = 2(−1)2(0.2) − 5(−1)(0.2) = 1.4.

When x = 0, 2x2 − 5x = 0, and hence this term will be zero. When x = 2,

[2x2 − 5x]f (x) = [2(2)2 − 5(2)](0.5) = −1.

Hence the final sum (1.4) + (0) + (−1) = 0.4 is the answer to (ii). We may also note one
interesting property that the above expected value can also be computed as

E[2x2 − 5x] = 2E[x2] − 5E[x].

In (iii), we do not have any variable x. Hence from the definition

E[8] = ∑
−∞<x<∞

8f (x) = 8 ∑
−∞<x<∞

f (x) = 8

since the total probability or ∑x f (x) = 1 by definition. This in fact is a general result.
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Result 4.1. Whatever be the random variable under consideration, the expected
value of a constant is the constant itself. That is,

E[c] = c (4.2)

whenever c is a constant.

Onemore property is evident from the computations in Example 4.1. When a sum
was involved in (ii), we could have obtained the final answer by summing up individ-
ually also. The following general result follows from the definition itself.

Result 4.2. The expected value of a constant times a function is the constant times
the expected value of the function, and the expected value of a sum is the sum of the
expected values whenever the expected values exist. That is,

E[cψ(x)] = cE[ψ(x)] (4.3)
E[aψ1(x) + bψ2(x)] = E[aψ1(x)] + E[bψ2(x)]

= aE[ψ1(x)] + bE[ψ2(x)] (4.4)

where a and b are constants and ψ1(x) and ψ2(x) are two functions of the same ran-
dom variable x.

Note that once the expected value is taken the resulting quantity is a constant and
it does not depend on the random variable x anymore.

Result 4.3. For any random variable x, for which E(x) exists,

E[x − E(x)] = 0. (4.5)

The proof follows from the fact that E(x) is a constant and the expected value of a
constant is the constant itself. Taking expectation by using Result 4.2, we have

E[x − E(x)] = E[x] − E[E(x)] = E(x) − E(x) = 0.

Example 4.2. If a discrete random variable takes the values x1,… ,xn with probabili-
ties p1,… ,pn, respectively, compute E[x] for the general case as well as for the partic-
ular case when p1 = p2 = ⋯ = pn = 1

n .

Solution 4.2. We may note that a general discrete random variable is of the general
type described in this example. The variable takes some values with non-zero proba-
bilities and other values with zero probabilities. In Example 4.1, the variable took the
values −1,0, 2 with non-zero probabilities and other values with zero probabilities. If
we draw a correspondence with Example 4.2, then x1 = −1, x2 = 0, x3 = 2, n = 3. Let us
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consider the special case first. In the special case, all the probabilities are equal to 1
n

each. Hence

E[x] = ∑
−∞<x<∞

xf (x) = 0 + x1(
1
n
) + x2(

1
n
) + ⋯ + xn(

1
n
)

= x1 + ⋯ + xn
n

= x̄. (4.6)

In this case, it is the average of the numbers x1,… ,xn or E[x] in this case corresponds
to the concept of average. In the general case,

E[x] = ∑
−∞<x<∞

xf (x) = (x1)(p1) + ⋯ + (xn)(pn) =
∑n
i=1 xipi
∑n
i=1 pi

(4.7)

and note that∑n
i=1 pi = 1 by definition. The last expression in (4.7) is the expression for

the centre of gravity of a physical system when p1,… ,pn are weights, or forces acting
at the points x1,… ,xn. Hence E[x] can be interpreted in many ways.

E[x] is themean value of x or some sort of an average value of x and it is the centre
of gravity of a physical system.

Example 4.3. Evaluate the mean value of x if x has the following density:

f (x) =
{
{
{

1
x2 , 1 ≤ x < ∞

0, elsewhere.

Solution 4.3. Since it is a continuous case, we integrate to find the expected values.
Therefore,

E[x] = ∫
∞

−∞
xf (x)dx

= 0 + ∫
∞

1
x( 1

x2
)dx

= ∫
∞

1

1
x
dx = [lnx]∞1 = ∞.

Here, the mean value is not a finite quantity. When an expected value is not a definite
finite quantity, we say that the expected value does not exist.

Expected value of ψ(x) does not exist when:
(i) E[ψ(x)] = +∞
(ii) E[ψ(x)] = −∞
(iii) E[ψ(x)] oscillates between finite or infinite quantities, or the sum (in the dis-

crete case) or the integral (in the continuous case) does not converge.

Example 4.4. If x is uniformly distributed over the interval [a,b], compute (i): the
mean value of x, (ii): E[x − E[(x)]2.
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Solution 4.4. Since we are told that x is uniformly distributed, the density of x is a
rectangular or uniform density. That is,

f (x) =
{
{
{

1
b−a , a ≤ x ≤ b, b > a
0, elsewhere.

Hence the mean value of x, by definition,

E[x] = ∫
∞

−∞
xf (x)dx = 0 + ∫

b

a
x 1
b − a

dx

= [ x2

2(b − a)
]
b

a
= b2 − a2

2(b − a)
= (b + a)(b − a)

2(b − a)
= b + a

2
.

Thus, the mean value is the middle point of the interval here or the average of the end
points as shown in Figure 4.1.

Figure 4.1: Expected value in the uniform density.

(ii) For computing this, either we can substitute for E(x) and then compute directly, or
simplify first and then compute. Let us simplify first by using Results 4.1 and 4.2:

E[x − E(x)]2 = E[x2 − 2xE(x) + (E(x))2] = E[x2 − 2x(a + b
2

) + (a + b
2

)
2
]

= E(x2) − 2(a + b
2

)E(x) + (a + b
2

)
2

since the expected value of a constant is the constant itself, and

= E(x2) − 2(a + b
2

)
2
+ (a + b

2
)
2
= E(x2) − (a + b

2
)
2
.

This means that we have to only compute E(x2). But

E(x2) = ∫
b

a

x2

b − a
dx = (b3 − a3)

3(b − a)
= (a2 + ab + b2)

3
.

Hence

E[x − E(x)]2 = a2 + ab + b2

3
− (a + b)2

4
= (b − a)2

12
.

This quantity E[x − E(x)]2 is a very important quantity and it is called the variance.
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Notation 4.2. Var(x) = σ2 = σ2x = variance of x, where σ is the Greek letter sigma.

Definition 4.2 (Variance of a random variable). It is defined as the following ex-
pected value for any random variable x:

Var(x) = σ2x = E[x − E(x)]2 = E(x2) − [E(x)]2. (4.8)

Since Var(x) ≥ 0, we have from (4.8), E(x2) ≥ [E(x)]2 ⇒ [E(x2)]
1
2 ≥ |E(x)|. The last part

of (4.8) is available by opening up and then simplifying by using Results 4.1 and 4.2
and by using the fact that E(x) is a constant. It is already derived in the solution of
Example 4.4.

Notation 4.3. σ,σx ,√Var(x): Standard deviation of x.

Definition 4.3 (Standard deviation). The standarddeviationof a real randomvari-
able x is defined as the positive square root of the variance of x. It is abbreviated
as S.D. That is,

S.D = σx = +√Var(x). (4.9)

What are the uses of the variance and standard deviation? We have already seen that
the mean value = E(x) has the interpretation of average, central value, central ten-
dency of x, centre of gravity of a physical system. Similarly, the variance corresponds
to the moment of inertia in a physical system. Standard deviation is a mathematical
distance of x from the point E(x) or from the centre of gravity of the system, and hence
the standard deviation can be taken as ameasure of scatter or dispersion of x from the
mean value = E(x). A high value for the standard deviation means that the variable is
more spread out and small value for standard deviationmeans that the variable is con-
centrated around the centre of gravity of the systemor around the central value = E(x).

4.2.1 Measures of central tendency

One measure of central tendency of the random variable x is the mean value or ex-
pected value of x, E(x). Other measures in common use are the median and the mode.
The idea of amedian value is thatweare looking for a pointM such that theprobability
of the random variable x falling below is equal to the probability of x falling aboveM.
In this sense, M is a middle point. M may not be unique and there may be several
points qualifying to be medians for a given x. The following is a formal definition for
the median.

Notation 4.4. M: median of x.
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Definition 4.4 (Median of a random variable x). LetM be a point such that

Pr{x ≤M} ≥ 1
2

and

Pr{x ≥M} ≥ 1
2
.

All pointsM satisfying these two conditions are called median points.

In some cases, we can have a unique point M and in other cases we can have
several values forM. We will examine some discrete and some continuous cases.

Example 4.5. Consider the following probability functions:

f1(x) =

{{{{{{
{{{{{{
{

0.4, x = 1
0.2, x = 2
0.4, x = 7
0, elsewhere;

f2(x) =
{
{
{

0.5, x = −1
0.5, x = 5

Compute the medians in each case.

Figure 4.2: Left: Probability function f1(x);
Right: Probability function f2(x).

Solution 4.5. In f1(x) of Figure 4.2, the point x = 2 satisfies both the conditions:

Pr{x ≤ 2} = 0.6 > 0.5 and Pr{x ≥ 2} = 0.6 > 0.5

and hence x = 2 is the unique median point for this x.
In f2(x), any point from −1 to 5 will qualify or −1 ≤M ≤ 5. If a unique value is pre-

ferred, then one can take themiddle value of this interval, namely, x = 2 as themedian.

Example 4.6. Compute the median point or points for the following densities:

f1(x) =
{
{
{

1
2x, 0 ≤ x ≤ 2
0, elsewhere;
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Figure 4.3: Left: Density f1(x); Right: Density f2(x).

f2(x) =
{{{
{{{
{

x, 0 ≤ x ≤ 1
3 − x, 2 ≤ x ≤ 3
0, otherwise.

Solution 4.6. For f1(x) of Figure 4.3, we can get a unique median point. Let us com-
pute the probability

Pr{x ≤M} = 1
2
∫
M

0
xdx = M2

4
.

We can equate this to 1
2 because in this case

Pr{x ≤M} = 1
2

= Pr{x ≥M}.

Equating M2

4 to 1
2 we haveM = √2.

In the case of f2(x), let us compute the probabilities in the two pieces where we
have non-zero functions:

∫
1

0
xdx = 1

2
and

∫
3

2
(3 − x)dx = 1

2
.

This means that any point from 1 to 2, 1 ≤M ≤ 2 will qualify to be a median point. If a
single point is preferred, then 1.5 is the candidate.

Another measure used as a measure of central tendency of a random variable x is
themode. This is groupedwithmeasures of central tendencybut it doesnot havemuch
to do with measuring central tendency. The point(s) corresponding to local maximum
(maxima) for the density curve (in the continuous case) is (are) taken as mode(s) in
the continuous case, and the point(s) corresponding to the localmaximumprobability
mass is (are) taken as mode(s) in the discrete case. In Example 4.5, we would have
taken 1 and 7 as modes in f1(x), and −1 and 5 as modes in f2(x). In Example 4.6, we
would have taken x = 2 as the mode in f1(x) and 1 and 2 as modes in f2(x).
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4.2.2 Measures of scatter or dispersion

We have already introduced one measure of scatter, which is the standard deviation.
This is a measure of the spread of x from E(x). If an arbitrary point a is taken, then
√E[x − a]2 is a measure of scatter of x from the point a, which is also called themean
deviation of x from a. Other measures of scatter from a are the following:

Mr(a) = E[|x − a|r]
1
r , r = 1, 2,… (4.10)

M1(a) = E|x − a| =mean absolute deviation from a (4.11)

All these qualify to be mathematical distances of x from the point a and in this sense
are measures of scatter of x from the point a. Out of these, the mean deviation from
a and mean absolute deviation from a are very important because they are very often
used for statistical decision making. Hence we will list two basic properties here.

Result 4.4. The mean deviation from a is least when a = E(x).

Proof. Minimization of √E(x − a)2 also implies the minimization of the square
E[x − a]2 and vice versa. Consider E[x − a]2, add and subtract E(x) inside and ex-
pand to obtain the following:

E[x − a]2 = E[x − E(x) + E(x) − a]2

= E[x − E(x)]2 − 2E[x − E(x)][E(x) − a] + (E(x) − a)2

= Var(x) + [E(x) − a]2

since E(x) − a is a constant and E[x − E(x)] = 0. But the right-hand side has only one
termdepending on a andboth terms are non-negative. Hence theminimum is attained
when the term containing a is zero, that is, [E(x) − a]2 = 0⇒ a = E(x).

This result is very important in model building problems, in regression analysis,
etc.

Result 4.5. Themean absolute deviation is least when the deviations are taken from
the median or E|x − a| is least when a = the median of x.

The proof is slightly longer and it will be listed in the exercises.

4.2.3 Some properties of variance

(i) Var(c) = 0 when c is a constant.
The proof follows from the definition itself.
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Var(x) = E[x − E(x)]2 = E[c − c]2 = 0 (4.12)

since E(c) = c when c is a constant.

(ii) Let y = x + a where a is a constant. Then

Var(y) = Var(x + a) = Var(x)

or the relocation of the variable x does not affect the variance.
When a constant is added to the variable, we say that the variable is relocated and

a here is the location parameter. Observe that E(x + a) = E(x) + a and then

y − E(y) = (x + a) − (E(x) + a) = x − E(x)

thus a is canceled. As an example let us consider the following problem. One pump-
kin is randomly selected from a heap of pumpkins and weighed. Let x1 be the weight
observed. Later it came to the attention that the balance was defective and it always
showed 100 grams more than the actual weight. If x is the true weight of the pump-
kin, then the observed weight x1 = x + 100, weight being measured in grams. Will this
faulty balance affect the mean value and variance of the true weight of a pumpkin
selected at random? Let y = x + c where x is a random variable and c is a constant.
Then, denoting the mean value by μ (mu) and variance by σ2 (sigma squared), we
have

μ = E(y) = E(x + c) = E(x) + c (4.13)

The mean value is affected:

σ2 = Var(y) = E[y − E(y)]2

= E[(x + c) − (E(x) + c)]2 = E[x − E(x)]2 = Var(x). (4.14)

Note thatwhen thedeviation y−E(y) is taken the constant is eliminated, andhence the
relocation of the variable will affect the mean value but it will not affect the variance.

The pumpkin was weighed in grams. Suppose we want to convert the weight into
kilograms. Then

x grams ⇒ z =
1

1000
x kilograms.

Let us compare the variance of x and variance of z. In general, let z = bx where b is a
constant and let us denote the variances of z and x by σ2z and σ2x , respectively, and the
corresponding standard deviations by σz and σx . Then by definition

σ2z = E[z − E(z)]2 where E(z) = E(bx) = bE(x)

= E[bx − bE(x)]2 = b2E[x − E(x)]2 = b2 Var(x)
= b2σ2x . (4.15)
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Thus the variance of z is square of the scaling factor times the variance of x. Since
standard deviation is the positive square root of the variance

σz = |b|σx . (4.16)

Remember to take the absolute value. If the original b is−2, then themultiplying factor
for the standard deviation is |−2| = 2 and not −2. The term “scaling” came from multi-
plication by a positive constant but nowadays it is used to denote a constant multiple
whether the constant is positive or negative, as long as it is not zero. If we look at a
scaling and relocation, that is, let t = cx + d where c and d are constants. Then

t = cx + d ⇒ Var(t) = c2 Var(x); σt = |c|σx . (4.17)

Some general propertiesmay be observed. In general (for some special cases theymay
hold),

(iii) σ2x = E(x − E(x)]2 does not imply σx = E[x − E(x)];

(iv) σ2x = E[x − E(x)]2 does not imply σx = E[|x − E(x)|];

(v) σ2x = 0 if and only if x is a degenerate random variable. That is, if x is degenerate
then σ2x = 0 and if σ2x = 0 then x is degenerate. That means the only random variable
where variance is zero is the degenerate random variable. If and only if is usually ab-
breviated as“iff”.

(vi) σ2x > 0, σx > 0 always except for the degenerate case where σ2x = 0. That is, the
variance, thereby the standard deviation, of a random variable is non-negative.

Exercises 4.2

4.2.1. Compute (i) E(x); (ii) E[x3 − 2x + 5]; (iii) E[x − 2]2; (iv) Var(x) for the random
variable in

f (x) =
{{{
{{{
{

0.5, x = −1
0.5, x = 1
0, elsewhere.

4.2.2. Compute the same items in Exercise 4.2.1 for the random variable in

f (x) =
{
{
{

cx, 0 ≤ x ≤ 2
0, elsewhere.

Determine the normalizing constant c first.
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4.2.3. Compute the same items in Exercise 4.2.1 for the random variable in

f (x) =
{{{
{{{
{

cx2, 0 ≤ x ≤ 1
2 − x, 1 < x ≤ 2
0, elsewhere.

Evaluate the normalizing constant c first.

4.2.4. Construct two examples where E(x) = 0, Var(x) = 1 in discrete case.

4.2.5. Construct two examples where E(x) = 0, Var(x) = 1 in a continuous case.

4.2.6. Compute E[x − 2]2 for the Exercises in 4.2.1, 4.2.2, 4.2.3 first directly by taking
the expected value of E[x − 2]2 and then by expanding (x − 2)2, taking the expected
values and simplifying. Verify that both procedures give the same results.

4.2.7. Construct a probability/density function of x where E[|x|] = 0.

4.2.8. Let

f (x) =
{
{
{

cx3(1 − x)2, 0 ≤ x ≤ 1
0, elsewhere.

be a density. Compute (i) the normalizing constant c; (ii) the median point; (iii) mode
or modes.

4.2.9. For Exercise 4.2.3, compute (i) c; (ii) the median; (iii) the mode or modes.

4.2.10. Construct a density function of a randomvariable xwhere E(x) existswhereas
E[x2] does not exist.

4.2.11. In Exercises 4.2.1–4.2.3, compute the following probabilities: (i) Pr{−2 ≤
x ≤ 0.8}; (ii) Pr{0.5 ≤ x ≤ 1.8}; (iii) mark the areas in a graph in (i) and (ii) for Exer-
cises 4.2.2 and 4.2.3.

4.2.12. The monthly income x of households in a city is found to follow the distribu-
tion with the density:

f (x) =
{
{
{

c
x3 , 1000 ≤ x ≤ 30000
0, elsewhere.

Compute (i) c; (ii) the expected income or mean value of the income; (iii) the median
income in this city so that 50% of the households have income below that and 50%
above that.

4.2.13. The waiting time t at a bus stop is found to be exponentially distributed with
the density
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f (t) =
{
{
{

1
5e
− t5 , 0 ≤ t < ∞

0, otherwise,

time beingmeasured inminutes. Compute (i) the expectedwaiting time μ (mu) for this
bus; (ii) the standard deviation σ for this waiting time; (iii) the probability Pr{μ − σ <
t < μ+σ} or the waiting time being one standard deviation away from themean value;
(iv) Pr{|x − μ| ≤ 2σ}; (v) Pr{|x − μ| ≤ 3σ}.

4.2.14. For the exponential density

f (x) =
{
{
{

1
θe
− xθ , 0 ≤ x < ∞

0, elsewhere

prove that the mean value of x, that is, E[x] is this parameter θ. Compute the variance
also. [Observe that θ is a scaling parameter here.]

4.2.15. The life time t of a certain type of electric bulbs is found to be exponentially
distributed with expected life time 1 000 hours, time being measured in hours. One
bulb from this type of bulbs has already lasted for 1 500 hours (i.e., t ≥ 1 500). Let A
be this event. Let B be the event that it will last for at least another 500 hours more.
Interpret the events A,A ∩ B and then compute the probability that it will last at least
another 500 hours more given that it has already lasted for 1 500 hours.

4.3 Higher moments

In Section 4.2, we define expected value in general as well as mean value = E(x) and
variance = E[x − E(x)]2. Here, we define certain expected values which are called the
moments. The concept of moments originally came from physics but used heavily in
statistical literature.

Notation 4.5. μr′: r-th integer moment about the origin.

Definition 4.5 (Moments about the origin). The α-th moment or the α-th moment
about the origin of a random variable x is defined as

E[xα] = ∫
∞

−∞
xαf (x)dx when x is continuous

= ∑
−∞<x<∞

xαf (x) when x is discrete

and when E(xα] exists. Here, α could be any complex number. When α is a positive
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integer, α = r = 1, 2,… then the r-th moment is denoted by μr′ or

μr′ = E[xr], r = 1, 2,… (4.18)

In a mixed case, where some probability mass is distributed on some individually
distinct points and the remaining on a continuum of points, take xαf (x), sum up over
the discrete points and integrate over the continuum of points to get E[xα]. Observe
that E[x0] = E[1] = 1.

Notation 4.6. μr = r-th central moment for r = 1, 2,…

Definition 4.6 (Central moments). The α-th central moment is defined as E[x −
E(x)]α for any complex number α, whenever it exists, and when α = r = 1, 2,… then
the r-th central moment is defined as

μr = E[x − E(x)]r , r = 1, 2,… (4.19)

The α-th moment about any arbitrary point a is defined as E[x − a]α whenever this
expected value exists. Thus when a = E(x) we have the central moments.

Notation 4.7. μ[r] = r-th factorial moment.

Definition 4.7 (Factorial moments). The r-th factorial moment is defined as

μ[r] = E[x(x − 1)(x − 2)⋯(x − r + 1)] (4.20)

whenever it exists.

Factorial moments are usually easier to evaluate compared to moments about the
origin or central moments when factorials are involved in the denominator in some
probability functions for discrete variables. This will be seen when we evaluate mo-
ments inbinomial or Poissonprobability functions later on. Beforeproceeding further,
let us look into some examples.

Example 4.7. Compute (i) E(x3); (ii) E[x − E(x)]4; (iii) E|x|; (iv) E(x2 − 3x + 4) for the
following probability function:

f (x) =
{{{
{{{
{

0.5, x = −2
0.5, x = 2
0, elsewhere.

Solution 4.7. Since it is a discrete case we sum up. Denoting summation over x by∑x
we have,
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(i) E(x3) = ∑x x
3f (x) = (−2)3(0.5) + (2)3(0.5) +0 = −4+ 4 = 0. In this case, it is easily

seen that E(xr) = 0, r = 1,3,5,…, or all odd moments are zeros here, since the proba-
bility function is symmetric about x = 0.

(ii) Since E(x) = 0 here, we have

E[x − E(x)]4 = E[x4] = ∑
x
x4f (x)

= (−2)4(0.5) + (2)4(0.5) + 0 = (16)(0.5) + (16)(0.5) = 16.

(iii) Here, we take the absolute values

E|x| = ∑
x

|x| = |(−2)|(0.5) + |(2)|(0.5) + 0 = (2)(0.5) + (2)(0.5) = 2.

(iv) Here, we can use the property that the expected value of a sum is the sum of
the expected values:

E(x2 − 3x + 4) = E(x2) − 3E(x) + E(4) = E(x2) − 3(0) + 4

since E(x) = 0 and since E(4) = 4 and = 4+ 4 = 8 since E(x2) = (−2)2(0.5) + (2)2(0.5) = 4.

Example 4.8. Answer the same questions in Example 4.7 for the following density:

f (x) =
{{{
{{{
{

x, 0 ≤ x < 1
2 − x, 1 ≤ x ≤ 2
0, elsewhere.

Solution 4.8. Since the variable is continuous here, we will integrate. From −∞ to 0,
the function f (x) is zero and the integral over zero is zero:

E(x3) = ∫
x
x3f (x)dx = 0 + ∫

1

0
x3(x)dx + ∫

2

1
[x3(2 − x)]dx

since f (x) has different forms we integrate on each piece, and then

E(x3) = [
x5

5
]
1

0
+ [2x

4

4
− x5

5
]
2

1

=
1
5

+
15
2

−
31
5

=
3
2
.

Since x ≥ 0 here, |x| = x itself. Let us compute E(x).

E(x) = 0 + ∫
1

0
x(x)dx + ∫

2

1
[x(2 − x)]dx = 1

3
+ 2
3

= 1.

This may also be seen from the areas in the density function when you graph the den-
sity. The mid-value is 1. Thus, (iii) is answered, the value is 1. Let us compute E(x2):

E(x2) = 0 + ∫
1

0
x2(x)dx + ∫

2

1
x2(2 − x)dx = 7

6
.
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Then (iv) can be answered:

E(x2 − 3x + 4) = E(x2) − 3E(x) + 4 = 7
6

− 3(1) + 4 = 13
6

.

Now, (ii) can be answered in two ways, either by expanding E[x − E(x)]4 first by using
thebinomial expansionand then taking the expected values or by substituting forE(x)
first and then taking the expected values directly. Let us expand after substituting the
value for E(x) = 1, by using a binomial expansion. That is,

E[x − E(x)]4

= E[x − 1]4 = E[x + (−1)]4

= E [x4 + (
4
1
)x3(−1) + (

4
2
)x2(−1)2 + x(

4
3
)(−1)3 + (

4
4
)(−1)4]

= E[x4 − 4x3 + 6x2 − 4x + 1] = E(x4) − 4E(x3) + 6E(x2) − 4E(x) + 1

= E(x4) − 4(3
2
) + 6( 7

6
) − 4(1) + 1 = E(x4) − 2.

Now, we will compute E(x4).

E(x4) = 0 + ∫
1

0
x4(x)dx + ∫

2

1
x4(2 − x)dx = 31

15
.

Hence

E[x − E(x)]4 = 31
15

− 2 = 1
15

.

Example 4.9. Prove that the following function is a probability function for a discrete
random variable and then compute the second factorial moment:

f (x) =
{
{
{

λx
x! e
−λ , x = 0, 1, 2,… , λ > 0

0, elsewhere.

[This probability function is known as Poisson probability function, named after its
inventor, S. Poisson, a French mathematician.]

Solution 4.9. Since exponential function is non-negative, f (x) here is non-negative
for all values of x and λ > 0. Here, λ > 0 is a parameter. The total probability is

∑
x
f (x) = e−λ

∞

∑
x=0

λx

x!
.

But
∞

∑
x=0

λx

x!
= 1 + λ

1!
+ λ2

2!
+ ⋯ = eλ
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by the exponential series. Hence the total probability is

e−λeλ = e−λ+λ = e0 = 1.

Hence f (x) here is a probability function. The second factorial moment

μ[2] = E[x(x − 1)] =
∞

∑
x=0

x(x − 1)λ
x

x!
e−λ = e−λ

∞

∑
x=2

x(x − 1)λ
x

x!
.

But note that when x = 0 or x = 1 the right side is zero, and hence the sum starts only
from x = 2, going to infinity. When x goes from 2 to ∞ or when x ≠ 0 and x ≠ 1, we can
divide both numerator and denominator by x(x − 1) or we can cancel x(x − 1). That is,

x(x − 1)
x!

= 1
(x − 2)!

.

But this cancellation, or division of numerator and denominator by the same quantity,
was not possible if x could be zero or 1 because division by zero is impossible. Now,
we can sum up. For convenience, let us take λ2 and e−λ outside. Hence

E[x(x − 1)] = λ2e−λ
∞

∑
x=2

λn−2

(n − 2)!

= λ2e−λ[1 + λ
1!

+ λ2

2!
+ ⋯]

= λ2e−λeλ = λ2.

Here, the sum was opened up by putting x = 2, x = 3, x = 4 and so on and writing up
the terms. We could have also used the procedure of substitution. Put y = x − 2 then,
when x = 2, we have y = 0 and then

∞

∑
x=2

[⋅] =
∞

∑
y=0

[⋅]

which would have also yielded the same result.

In this example, we may note one interesting aspect. Since x! was sitting in the
denominator, we could easily cancel factors such as, x, x(x − 1), x(x − 1)(x − 2), etc.,
and thus factorial moments are easy to evaluate. But we cannot cancel x2 because
after canceling one x still there is onemore x left out and the denominator has become
(x − 1)!. If we want to compute E[x2] in this case, we can use the identity

x(x − 1) = x2 − x ⇒ x2 ≡ x(x − 1) + x.

Higher moments about the origin can be computed from factorial moments by using
such identities in this Poisson case because of the presence of x! in the denominator
of the probability function.
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4.3.1 Moment generating function

There are several types of generating functions which will all generate integer mo-
ments about the origin.

Notation 4.8. M(t): Moment generating function of a random variable x.

Definition 4.8 (Moment generating function). The moment generating function
of a random variable x or of the probability/density function f (x) is defined as the
following integral:

M(t) = ∫
∞

−∞
etxf (x)dx when x is continuous

= ∑
−∞<x<∞

etxf (x) when x is discrete

whenever the sum/integral exists. In the mixed case, integrate over the continuum
of points and sum up over the discrete points where there are non-zero probability
masses.

Why is M(t) called the moment generating function? Let us expand etx . That is,
for example, for the continuous situation,

M(t) = ∫
∞

−∞
etxf (x)dx

= ∫
∞

−∞
[1 + tx

1!
+ t2x2

2!
+ ⋯]f (x)dx

= ∫
∞

−∞
f (x)dx + t

1!
∫
∞

−∞
xf (x)dx + ⋯

if term by term integration is possible, and

M(t) = 1 + t
1!
E(x) + t2

2!
E(x2) + t3

3!
E(x3) + ⋯ (4.21)

Thus the coefficient of tr
r! in the above power series is E(xr) the r-th integer moment

of x for r = 0, 1, 2,…. Thus all the integer moments about the origin are generated by
this functionM(t), and hence it is called a moment generating function. Thus, ifM(t)
exists andadmits apower series in t then the coefficient of t

r

r! is the r-th integermoment
E(xr). IfM(t) is differentiable, then youmay differentiate successively and evaluate at
t = 0. From (4.21), note that

μr′ = E[xr] =
dr

dtr
M(t)|

t=0
(4.22)

= coefficient of t
r

r!
in the series. (4.23)
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Differentiation is possible whenM(t) is differentiable and series expansion is possible
whenM(t) can be expanded into a power series.

ThisM(t)maynot exist formany of the probability/density functions. Let us check
one example.

Example 4.10. Check whether the moment generating function M(t) exists for the
following density:

f (x) =
{
{
{

1
x2 , 1 ≤ x < ∞

0, elsewhere.

Solution 4.10. It was already shown earlier that this f (x) is a density function. Here,

M(t) = ∫
∞

−∞
etxf (x)dx = 0 + ∫

∞

1

1
x2
etxdx.

Integrating by parts, taking u = etx and dv = 1
x2 so that v = ∫ 1

x2 dx = − 1
x and then using

the formula ∫udv = uv − ∫ vdu we have

M(t) = [− 1
x
etx]
∞

1
+ t∫
∞

1

1
x
etxdx

= [− 1
x
etx]
∞

1
+ t[lnxetx]∞1 − t2 ∫

∞

1
lnxetxdx.

The first term goes to −∞ for t > 0 since the exponential term increases faster than x.
The integral does not exist for t > 0. There is another generating function which will
exist always when f (x) is a density. This is known as the characteristic function of the
random variable x.

Notation 4.9. ϕ(t) = the characteristic function of x or of f (x).

Definition 4.9 (Characteristic function). The characteristic function ϕ(t) is de-
fined as

ϕ(t) = ∫
∞

−∞
eitxf (x)dx, i = √−1 when x is continuous

= ∑
−∞<x<∞

eitxf (x) when x is discrete. (4.24)

Mixed cases can be handled as stated before. Since

|eitx | = |cos tx + i sin tx| = √cos2 tx + sin2 tx = 1 (4.25)

we have
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|ϕ(t)| = |∫
∞

−∞
eitxf (x)dx| ≤ ∫

∞

−∞
|eitx |f (x)dx

= ∫
∞

−∞
f (x)dx = 1 (4.26)

by definition. Hence the integral is always convergent.

Mathematical concepts corresponding tomoments, moment generating function,
etc. are given in a note below. Those who are not familiar with complex variables may
skip the notes and go directly to Chapter 5.

4.3.2 Moments and Mellin transforms

We have defined arbitrary moments. One such moment is called the Mellin transform
of a function. Consider a function f (x) defined over 0 ≤ x < ∞ and consider an integral
of the following type.

Notation 4.10. Mf (s): Mellin transform of the function f (x), with the Mellin pa-
rameter s.

Definition 4.10 (Mellin transform). TheMellin transformof a function f (x) is given
by

Mf (s) = ∫
∞

0
xs−1f (x)dx (4.27)

provided the integral exists, where s is a complex variable. Note that when f (x) is a
density function then it is nothing but the (s − 1)-th moment of x. Mellin transform
is defined for f (x) where f (x) need not be a density. In Example 4.8, we could have
computed arbitrarymoments of the type E[xs−1]where s is a complex variable. Thus
in this case the Mellin transform of the density function in Example 4.8 exists.

One question that is often asked is that suppose that you know a function of s,
which is theMellin transform of some unknown function f (x), canwe determine f (x)?
Then f (x)will be called the inverse Mellin transform. For statisticians, this problem is
of great interest.Wemaybe able to comeupwith aMellin transform through somepro-
cedure. Then the problem is to determine the unknown density which produced that
Mellin transform. The formula to recover the unknown function from a given Mellin
transform is the following:

f (x) = 1
2πi

∫
c+i∞

c−i∞
Mf (s)x−sds (4.28)
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where i = √−1. This formula holds under some conditions on the unknown function
and the knownMf (s). This integral is a contour integral or an integral in the complex
plain. Since this area is beyond the scope of this book, we will not elaborate on this
aspect here.

Notation 4.11. Ff (t): Fourier transform of f (x) with parameter t.

Definition 4.11 (Fourier transform). Fourier transform of a function f (x), with pa-
rameter t is defined as

Ff (t) = ∫
∞

−∞
e−itxf (x)dx, i = √−1 (4.29)

This integral is in the complex domain, and hence we will not elaborate here. Note
that the characteristic function ϕ(t), and the Fourier transform Ff (t)when f (x) is a
density function, will also generate the moments. Fourier transform is defined for
arbitrary functions, need not be density functions.

Another generating function which is applicable on positive random variables is
the Laplace transform. Thiswill also generatemomentswhen f (x) is a density function
but the Laplace transform is defined over all f (x) as long as the integral exists.

Notation 4.12. Lf (t): Laplace transform of the function f (x), with the Laplace pa-
rameter t.

Definition 4.12 (Laplace transform). The Laplace transform of a function f (x) is
defined as the following integral:

Lf (t) = ∫
∞

0
e−txf (x)dx (4.30)

whenever this integral is convergent, where t is called the Laplace parameter or the
parameter in the Laplace transform.

Such an integral need not exist for all functions f (x). Let us expand e−tx . If f (x) is
a density function for a positive random variable x and if Lf (t) admits a power series
expansion or if all integermoments exist, then as in the case of themoment generating
function, one can obtain the integer moments:

E(xr) = (−1)r d
r

dtr
Lf (t)|

t=0
when Lf (t) is differentiable (4.31)

= coefficient of (−t)r

r!
when Lf (t) is expansible. (4.32)
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Let Mx(t) be the moment generating function of a real random variable x then the
following properties follow from the definition itself:

(1)∶ lim
t→0

Mx(t) = 1; (2)∶Max(t) =Mx(at); (3)∶Max+b(t) = etbMx(at) (4.33)

where a and b are constants. Similar properties hold for characteristic function and
Laplace transform (for positive variables).

4.3.3 Uniqueness and the moment problem

For a given random variable x, whether it is continuous, discrete or mixed, there is
only one distribution function (cumulative probability or density), one moment gen-
erating function, one characteristic function, corresponding to this variable. There
cannot be two different density functions or two different moment generating func-
tions, etc. corresponding to a given random variable. What about moments? Suppose
that all integer moments are available, that is, suppose that E(xr), r = 0, 1, 2,… are all
fixed or given. Will the random variable x be uniquely determined by this moment se-
quence? This is known as the moment problem. This problem originated in physics.
The answer is that these moments, even though countably infinite of them are avail-
able, still these need not uniquely determine the randomvariable or there can bemore
than one random variable giving rise to the samemoment sequence. Some sets of suf-
ficient conditions are available in the literature under which a moment sequence will
uniquely determine the random variable. One such condition is that the variable has
a finite range with non-zero density/probability. The non-zero part of the density is in
the finite range a ≤ x ≤ b where a and b are finite. One such example is the uniform
density.

What about the Mellin transform, which will be (s − 1)-th moment when f (x) is a
density for x ≥ 0,will it determine the density? InMellin transformMf (x) = E(xs−1), s is
a complex variable. As long as s is defined on a strip in the complex plain where the
function Mf (s) is analytic, then we can show that f (x) is uniquely determined under
someminor additional conditions and inverse Mellin transform, given in (4.28), is the
unique determination of f (x). Detailed conditions for the existence of Mellin and in-
verse Mellin transformmay be seen from the book [2], which is available at CMS. Sim-
ilarly, from the given moment generating function, characteristic function, Laplace
transform,Fourier transform, the function f (x) canbeuniquelydeterminedunder spe-
cific conditions. These formulae are known as the inverse Laplace transform, inverse
Fourier transform, etc. What we will do later is not the evaluation of these inverse
transforms by using complex analysis but remembering that these inverse transforms
will uniquely determine the original function f (x)wewill identify the transformswith
known transforms and write up f (x).



4.3 Higher moments | 105

Exercises 4.3
For the following probability/density functions evaluate themoment generating func-
tion M(t) and then obtain the r-th integer moment by (i) differentiation when M(t)
is differentiable, (ii) by series expansion when M(t) can be expanded as a power se-
ries:

4.3.1. f (x) =
{{{
{{{
{

0.7, x = −1
0.3, x = 2,
0, elsewhere.

4.3.2. f (x) =
{
{
{

pqx−1, x = 1, 2,… , 0 < p < 1, q = 1 − p
0, elsewhere.

4.3.3. f (x) =
{
{
{

1
3 , 0 ≤ x ≤ 3
0, elsewhere.

4.3.4. f (x) =
{
{
{

θe−θx , x ≥ 0, θ > 0
0, elsewhere.

4.3.5. Compute E(xα) for α a complex number for Exercises 4.3.1 and 4.3.3.

4.3.6. Prove that E|x − a| is a minimum when a is the median of the random vari-
able x.





5 Commonly used discrete distributions

5.1 Introduction

In this chapter, we will deal with some discrete distributions and in the next chap-
ter we will consider continuous distributions. Themost commonly appearing discrete
distributions are associated with Bernoulli trials. In a random experiment if each out-
come consists of only two possibilities, such as in a toss of a coin either head H or
tail T can come, only H or T will appear in each trial, only two possibilities are there,
then such a random experiment is called a Bernoulli trial. If a student is writing an
examination and if the final result is to be recorded as either a pass P or a failure F,
then only one of the two possibilities can occur. Then attempting each examination is
a Bernoulli trial. But if the final result is to be recorded as one of the grades A,B,C,D,
then there are four possibilities in each outcome. Then this is not a Bernoulli trial.
When a die is rolled once and if we are looking for either an odd number O or an even
number E, then there are only two possibilities. It is a Bernoulli trial. But if our aim is
to seewhich number turns up then there are 6 possibilities, that is, one of the numbers
1, 2,3,4,5,6 can appear or there are 6 possible items or possibilities in an outcome. It
is a multinomial trial. It is not a Bernoulli trial.

In a Bernoulli trial, let the possible events in each outcome be denoted byA and B.
Then A∩B = ϕ and A∪B = S = the sure event. Let the occurrence of A be called “a suc-
cess” and the occurrence of B “a failure”. Let the probability of A be p. Then

P(A) = p, P(B) = P(Ac) = 1 − P(A) = 1 − p = q

where 1−p is denoted by q. If a balanced or unbiased coin is tossed once and if getting
a head is a success, then P(A) = 1

2 and if the coin is not unbiased then P(A) ≠ 1
2 . When

a balanced die is rolled once and if A is the event of getting the numbers 1 or 2, then B
is the event of getting 3 or 4 or 5 or 6. In this case,

P(A) =
2
6

= 1
3

and P(B) = 4
6

= 2
3
.

5.2 Bernoulli probability law

Let x be the number of successes in one Bernoulli trial. Then x = 1 means a success
with probability p and x = 0means a failure with probability q. These are the only two
values x can take with non-zero probabilities here. Then the probability function in
this case, denoted by f1(x), can be written as

f1(x) =
{
{
{

pxq1−x , x = 0, 1
0, elsewhere.

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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Here, p is the only parameter. This is known as theBernoulli probability law. Themean
value E(x), variance σ2 = E[x − E(x)]2 and the moment generating function M(t) are
the following: Since it is a discrete case, we sum up:

E(x) = ∑
x
xf1(x) = 0 + (0)[p0q1−0] + (1)[p1q1−1] = p. (5.1)

E(x2) = ∑
x
x2f1(x) = 0 + (0)2[p0q1−0] + (1)2[p1q1−1] = p.

Var(x) = E(x2) − [E(x)]2 = p − p2 = p(1 − p) = pq. (5.2)
M(t) = ∑

x
etxf1(x) = 0 + et(0)[p0q1−0] + et(1)[p1q1−1]

= q + pet . (5.3)

Wemaynote that thisM(t) canbe expanded inpower series and it canbedifferentiated
also. We can obtain the integer moments by expansion or by differentiation:

M(t) = q + p[1 + t
1!

+ t2

2!
+ ⋯].

Therefore, the coefficient of t1
1! is p = E(x) and the coefficient of t2

2! is p = E(x2). Higher
integer moments can also obtained from this series. Now, consider differentiation:

d
dt
M(t)|

t=0
= d
dt

[q + pet]|
t=0

= [pet]|t=0 = p.

d2

dt2
M(t)|

t=0
= d
dt

{ d
dt
M(t)}|

t=0
= d
dt

[pet]|
t=0

= p.

Example 5.1. A gambler gets Rs 5 if the number 1 or 3 or 6 comes when a balanced
die is rolled once and he loses Rs 5 if the number 2 or 4 or 5 comes. Howmuch money
can he expect to win in one trial of rolling this die once?

Solution 5.1. This is nothing but the expected value of a Bernoulli random variable
with p = 1

2 since the die is balanced. Hence

E(x) = 0 + (5)( 1
2
) + (−5)( 1

2
) = 0.

It is a fair game. Neither the gambler nor the gambling house has an upper hand, the
expected gain or win is zero. Suppose that the die is loaded towards the number 2 or 4
or 5 and suppose that the probability of occurrence of any of these numbers is 2

3 then
the expected gain or win of the gambler is

E(x) = 0 + (5)( 1
3
) + (−5)( 2

3
) = −5

3

or the gambler is expected to lose Rs 5
3 in each game or the gambling house has the

upper hand.
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5.3 Binomial probability law

Suppose that aBernoulli trial is repeated n timesunder identical situations or consider
n identical independent Bernoulli trials. Let x be the total number of successes in these
n trials. Then x can take the values 0, 1, 2,… ,n with non-zero probabilities. In each
trial, the probability of success is p. A success or failure in a trial does not depend
upon what happened before. If A2 is the event of getting a success in the second trial
and if A1 is the event of getting a failure in the first trial then

P(A1) = q, P(A2|A1) = P(A2) = p, P(A ∩ B) = qp.

where P(A ∩ B) is the probability of getting the sequence “failure, success”. Suppose
that the first x trials resulted in successes and the remaining n − x trials resulted in
failures. Then the probability of getting the sequence SS…SFF…F, where S denotes
a success and F denotes a failure, is

pp⋯pqq⋯q = pxqn−x .

Suppose that the first three trials were failures, the next x trials were successes and the
remaining trials were failures then the probability for this sequence is qqqpxq⋯q =
pxqn−x . For any given sequence, whichever way S and F appear, the probability is
pxqn−x . How many such sequences are possible? It is (nx ) or ( n

n−x ). Hence if the prob-
ability of getting exactly x successes in n independent Bernoulli trails is denoted by
f2(x) then

f2(x) =
{
{
{

(nx )pxqn−x , x = 0, 1,… ,n
0, elsewhere, 0 < p < 1, q = 1 − p, n = 1, 2,… .

Note that n and p are parameters here. What is the total probability in this case?

∑
x
f2(x) = 0 +

n
∑
x=0

(
n
x
)pxqn−x = (q + p)n = 1n = 1,

see equation (3.12) of Section 3.3 for the binomial sum. The total probability is 1 as can
be expected when it is a probability law. Since f2(x) is the general term in a binomial
expansion of (q+p)n, this f2(x) is called a Binomial probability law. What are themean
value, variance and the moment generating function in this case?

E(x) = ∑
x
xf2(x) =

n
∑
x=0

x(
n
x
)pxqn−x

=
n
∑
x=1

x(
n
x
)pxqn−x

since at x = 0, xf2(x) = 0. For x ≠ 0, we can cancel x or divide numerator and denomi-
nator by x. We can rewrite

x(
n
x
) = x[ n!

x!(n − x)!
] = n!

(x − 1)!(n − x)!
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since for x ≠ 0 we can cancel x,

n!
(x − 1)!(n − x)!

= n[ (n − 1)!
(x − 1)!(n − x)!

] = n(
n − 1
x − 1

)

and

pxqn−x = p[px−1q(n−1)−(x−1)].

Therefore,

∑
x
x(

n
x
)pxqn−x = np

n
∑
x=1

(
n − 1
x − 1

)px−1q(n−1)−(x−1)

= np
N
∑
y=0

(
N
y
)pyqN−y , y = x − 1, N = n − 1

= np(q + p)n−1 = np since q + p = 1.

Therefore, the mean value here is

E(x) = np. (5.4)

For computing the variance, we can use the formula

σ2 = E[x − E(x)]2 = E(x2) − [E(x)]2.

Let us compute E(x2) first:

E(x2) = ∑
x
x2f2(x) = 0 +

n
∑
x=1

x2 n!
x!(n − x)!

pxqn−x

since at x = 0 the right side is zero, and hence the sum starts from x = 1. We can cancel
one x with x! giving (x − 1)! in the denominator. But still there is one more x in the
numerator. Butwe can see that since a factorial is sitting in the denominator it is easier
to compute the factorial moments. Hence we may use the identity and write

x2 ≡ x(x − 1) + x.

Now, we can compute E[x(x − 1)], and E(x) which is already computed.

E[x(x − 1)] =
n
∑
x=0

x(x − 1) n!
x!(n − x)!

pxqn−x

=
n
∑
x=2

x(x − 1) n!
x!(n − x)!

pxqn−x

since at x = 0, x = 1 the right side is zero. That is,

E[x(x − 1)] =
n
∑
x=2

n!
(x − 2)!(n − x)!

pxqn−x .
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Now, take out n(n − 1) from n!, take out p2 from px , rewrite n − x = (n − 2) − (x − 2),
substitute y = x − 2, N = n − 2. Then we have

E[x(x − 1)] = n(n − 1)p2
N
∑
y=0

(
N
y
)pyqN−y = n(n − 1)p2(q + p)N = n(n − 1)p2

since (q + p) = 1. Therefore,

σ2 = E[x2] − [E(x)]2 = n(n − 1)p2 + np − (np)2

= np − np2 = np(1 − p) = npq. (5.5)

Thus, the mean value in the binomial case E(x) = np and the variance σ2 = npq. Let us
compute the moment generating function:

M(t) = ∑
x
etxf2(x) =

n
∑
x=0

(
n
x
)etxpxqn−x

=
n
∑
x=0

(
n
x
)(pet)xqn−x = (q + pet)n. (5.6)

For a binomial expansion, see Section 3.3. Note that, the integer moments can be eas-
ily obtained by differentiation of this moment generating function. Expansion can be
done but it is more involved. Deriving the integer moments by differentiation is left to
the students.

Before doing some examples, we will introduce two more standard probability
functions associated with Bernoulli trials.

5.4 Geometric probability law

Again, let us consider independent Bernoulli trials where the probability of success
in every trial is p and q = 1 − p. Let us ask the question: what is the probability that
the first success is at the x-th trial? The trial number is the random variable here. Let
f3(x) denote this probability function. If the first success is at the x-th trial, then the
first x − 1 trials resulted in failures with probabilities q each and then a success with
probability p. Therefore,

f3(x) =
{
{
{

qx−1p, x = 1, 2,…
0, elsewhere.

Note that p is the only parameter here. The successive terms here are p,pq,pq2,…
which are in geometric progression, and hence the law is called the geometric proba-
bility law. The graph is shown in Figure 5.1.
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Figure 5.1: Geometric probability law.

Let us see the sum of the probabilities here. The total probability

∑
x
f3(x) =

∞

∑
x=1

qx−1p = p{1 + q + q2 + ⋯}

= p(1 − q)−1 see the binomial expansion in Section 3.3
= pp−1 = 1

as can be expected. Let us compute the mean value E(x), variance σ2 and the moment
generating functionM(t) for this geometric probability law:

E(x) = ∑
x
xf3(x) =

∞

∑
x=1

xqx−1p = p{1 + 2q + 3q2 + ⋯}

= p(1 − q)−2, 0 < q < 1 see Section 3.3 for the binomial sum

= pp−2 = 1
p
, 0 < p < 1. (5.7)

We can also derive this by using the following procedure:

E(x) =
∞

∑
x=1

xqx−1p = p
∞

∑
x=1

[
d
dq

qx]

= p d
dq

∞

∑
x=1

qx

= p d
dq

[q + q1 + ⋯] = p d
dq

[q(1 − q)−1]

= p[(1 − q)−1 + q(1 − q)−2] = 1 + q
p

=
q + p
p

=
1
p
.

For computing E(x2), we may observe the following:

x2qx−1p = p d
dq

[q d
dq

qx].
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Hence

E(x2) =
∞

∑
x=1

x2qx−1p = p
∞

∑
x=1

{ d
dq

[q d
dq

qx]}

= d
dq

q d
dq

∞

∑
x=1

qx = d
dq

q d
dq

[q(1 − q)−1]

= p d
dq

[q(1 − q)−1 + q2(1 − q)−2] = p(1 − q)−1

+ p[3q(1 − q)−2 + 2q2(1 − q)−3] = 1 + 3q
p

+ 2q
2

p2
. (5.8)

We can also obtain this from the moment generating function:

M(t) =
∞

∑
x=1

etxpqx−1 = p{et + qe2t + q2e3t + ⋯}

= pet(1 − qet)−1 for qet < 1. (5.9)

DifferentiatingM(t) with respect to t and then evaluating at t = 0, we have

E(x) = d
dt
M(t)|

t=0
= p d

dt
et(1 − qet)−1|

t=0

= {pet(1 − qet)−1 + pet(1 − qet)−2qet}|t=0

= pp−1 + pp−2q = 1 + q
p

= 1
p
.

E(x2) = d2

dt2
M(t)|

t=0
= d
dt

{pet(1 − qet)−1 + pqe2t(1 − qet)−2}t=0

= {pet(1 − qet)−1 + petqet(1 − qet)−2 + 2pqe2t(1 − qet)−2}t=0

= 1 + q
p

+ 2q
p

+ 2q
2

p2
= 1 + 3q

p
+ 2q

2

p2
.

5.5 Negative binomial probability law

Again, let us consider independent Bernoulli trials with the probability of success p
remaining the same. Let us ask the question: what is the probability that the x-th trial
will result in the k-th success for a fixed k, something like the 10-th trial resulting in
the 7-th success? Let this probability be denoted by f4(x). The k-th success at the x-th
trial means that there were k − 1 successes in the first x − 1 trials; the successes could
have occurred any time in any sequence but a total of k − 1 of them. This is given by a
binomial probability law of x − 1 trials and k − 1 successes. The next trial should be a
success, then one has the x-th trial resulting in the k-th success. Hence

f4(x) =
{
{
{

[(x−1k−1 )pk−1q(x−1)−(k−1)]p = (x−1k−1 )pkqx−k , x = k,k + 1,…
0, elsewhere.
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Note that one has to have at least k trials to get k successes, and hence x varies from
x = k onward. Here, p and k are parameters. What is the total probability here?

∑
x
f4(x) =

∞

∑
x=k

(
x − 1
k − 1

)pkqx−k

=
∞

∑
x=k

(
x − 1
x − k

)pkqx−k since (
n
r
) = (

n
n − r

)

= pk {(
k − 1
0

) + (
k
1
)q + (

k + 1
2

)q2 + ⋯}

= pk{1 + k q
1!

+ k(k + 1)q
2

2!
+ ⋯}

= pk(1 − q)−k = pkp−k = 1

as can be expected. Since f4(x) is the general term in a binomial expansionwith a neg-
ative exponent, this probability is known as the negative binomial probability function.

Naturally, when k = 1 we have the geometric probability law. Thus the geomet-
ric probability law is a particular case of the negative binomial probability law. Let
us compute E(x),E(x2) and the moment generating function. The moment generating
function:

M(t) = pk
∞

∑
x=k

(
x − 1
k − 1

)qx−ketx = pk
∞

∑
x=k

(
x − 1
x − k

)qx−ketx

= pk {(
k − 1
0

)ekt + (
k
1
)e(k+1)tq + ⋯}

= pkekt{1 + k qe
t

1!
+ k(k + 1) (qe

t)2

2!
q + ⋯}

= pkekt(1 − qet)−k for qet < 1. (5.10)

This is a differentiable function. Hence

E(x) = d
dt
M(t)|

t=0
= pk{kekt(1 − qet)−k + kekt(1 − qet)−k−1qet}|t=0

= kpk{p−k + qp−k−1} = k{1 + q
p
} = k

p
. (5.11)

E(x2) =
d2

dt2
M(t)|t=0 =

d
dt

[
d
dt
M(t)]|

t=0

= kpk{kekt(1 − qet)−k + kqe(k+1)t(1 − qet)−(k+1)

+ q(k + 1)e(k+1)t(1 − qet)−(k+1) + (k + 1)q2e(k+1)t(1 − qet)−(k+1)}|t=0

= k2 + q
p
(2k2 + k) +

q2

p2
k(k + 1). (5.12)

We have given four important probability functions, namely the Bernoulli probabil-
ity law, the binomial probability law, the geometric probability law and the negative
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binomial probability law, connected with independent Bernoulli trials. All these are
frequently used in statistical literature and probability theory.

Example 5.2. In amultiple choice examination, each question is suppliedwith 3 pos-
sible answers of which one is the correct answer to the question. A student, who does
not know any of the correct answers, is doing the examination by selecting answers at
random. What is the probability that (a) out of the 5 questions answered the student
has (i) exactly 3 correct answers, (ii) at least 3 correct answers; (b) (i) the third question
answered is the first correct answer; (ii) at least 3 questions out of the 10 questions to
be answered are needed to get the first correct answer; (c) the 5th question answered
is the 3rd correct answer; (ii) at least 4 questions, out of the 10 questions answered,
are needed to get the 3rd correct answer.

Solution 5.2. Attempting to answer the questions by selecting answers at randomcan
be taken as independent Bernoulli trials with probability of success 1

3 because out of
the 3 possible answers only one is the correct answer to the question. In our notation,
p = 1

3 , q = 2
3 . For (a), it is a binomial situation with n = 5. In (i), we need Pr{x = 3}. From

the binomial probability law,

Pr{x = 3} = (
5
3
)p3q5−3 = (

5
2
)( 1

3
)
3
( 2
3
)
2

= (5)(4)
2!

4
35

= 40
35

.

When computing the number of combinations, always use the definition:

(
n
r
) = n(n − 1)⋯(n − r + 1)

r!
.

It will be foolish to use all factorials because it will involve unnecessary computations
and often big factorials cannot even be handled by computers. In (a)(ii), we need

Pr{x = 3} + Pr{x = 4} + Pr{x = 5} = L say.

Then

L = (
5
3
)( 1

3
)
3
( 2
3
)
2
+ (

5
4
)( 1

3
)
4
( 2
3
) + (

5
5
)( 1

3
)
5
( 2
3
)
0
.

But

(
5
3
)( 1

3
)
3
( 2
3
)
2
= (

5
2
)( 1

3
)
3
( 2
3
)
2
= (5)(4)

2!
( 1
3
)
3
( 2
3
)
2
= 40
35

.

(
5
4
)( 1

3
)
4
( 2
3
)
1
= (

5
1
) 2
35

= 10
35

.

(
5
5
)( 1

3
)
5
( 2
3
)
0
= 1
35

.
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The total is
51
35

= 17
81

.

For (b), it is a geometric probability law. In (i), x = 3 and the answer is

q3−1p = ( 2
3
)
2
( 1
3
) = 4

27
.

For (ii) in (b), we need the sum:
10
∑
x=3

qx−1p = p[q2 + q3 + ⋯ + q9] = pq2[1 + q + ⋯ + q7]

= pq2 (1 − q
8)

1 − q
= q2(1 − q8) = ( 2

3
)
2
[1 − ( 2

3
)
8
].

For (c), it is a negative binomial situationwith k = 3. In (i), x = 5, k = 3, p = 1
3 , q = 2

3 and
the answer is

(
x − 1
k − 1

)pkqx−k = (
4
2
)( 1

3
)
3
( 2
3
)
2
= 24
35

.

In (ii), we need the sum:
10
∑
x=4

(
x − 1
k − 1

)pkqx−k

= ( 1
3
)
3
{(

3
2
)( 2

3
)
1
+ ⋯ + (

9
2
)( 2

3
)
7
}

= 1
27

{3( 2
3
) + 6( 2

3
)
2
+ 10( 2

3
)
3

+ 15( 2
3
)
4
+ 21( 2

3
)
5
+ 28( 2

3
)
6
+ 36( 2

3
)
7
}.

Example 5.3. Anexperiment on rabbits is designedby takingN = 20 identical rabbits.
But rabbits start dying out before the experiment is completed. Let n be the effective
final number. This sample size n has become a random quantity. n could be zero (all
rabbits died out), n could be 1, 2,… and could be N = 20 (no rabbit died). Let 0.1 be
the probability of a rabbit dying and suppose that this probability is the same for all
rabbits. Construct the probability law for n.

Solution 5.3. Here, n satisfies all the conditions for a binomial random variable with
probability of success p = 0.1 and the number of trials N = 20. Hence the probability
law for n is, denoted by Pn,

Pn = (N
n
)pnqN−n = (20

n
)(0.1)n(0.9)20−n, n = 0, 1,… , 20.

Example 5.4. A lunch counter in an office building caters to people working in the
building. Apart from regular lunches, the counter operator makes an exotic lunch
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packet every day. If the exotic packet is not sold on that day, then it is a total loss;
it cannot be stored or used again. From past experience, the operator found the daily
demand for this exotic packet as follows. It costs Rs 5 to make and she can sell it for
Rs 10.

(Demand,probability) = (0,0.1), (1,0.2), (2,0.2), (3,0.3), (4,0.1), (5,0.1).

There is no demand for more than 5. That is, the operator can sell, for example, the
3rd packet if the demand is for 3 or more. Howmany packets she should make so that
her expected profit is a maximum?

Solution 5.4. If she makes 1 packet, the probability that it can be sold is that the
demand on that day is for 1 or more packets. The probability for this is 0.1+ 0.2+ 0.2+
0.3 + 0.1 + 0.1 = 0.9. It costs Rs 5 and the expected revenue is Rs 10 × 0.9 = Rs9 and the
expected profit is Rs 4.

[As an expected value of a random variable, this is the following: Let y be her gain
or loss on a single packet. Then y takes the value +5 (profit) with probability 0.9 [if the
demand on that day is for one ormore] and y takes the value −5 (loss) with probability
0.1 [if the demand on that day is for less than one or zero]. Then the expected value of
y, E(y) = 5(0.9) − 5(0.1) = 4. Thus she has an expected profit of Rs 4.]

If she makes 2 packets, then the cost is 2× 5 = 10. She can sell the first packet with
probability 0.9 or make the expected revenue of Rs 9. She can sell the second packet
if there is demand for 2 or more or with the probability 0.2 + 0.3 + 0.1 + 0.1 = 0.7 and
make the expected revenue 10 × 0.7 = 7. Thus the total expected revenue is 9 + 7 = 16
and the expected profit is 16 − 10 = 6.

If she makes 3 packets, then she can sell the third packet with probability 0.3 +
0.1 + 0.1 = 0.5 and the expected revenue is 10 × 0.5 = 5. Thus the expected profit is
9 + 7 + 5 = 21 − 15(= 5 × 3) = 6.

If shemakes 4 packets, then she can sell the 4th packet with probability 0.1+0.1 =
0.2 and the expected revenue is 10 × 0.2 = 2 and the expected profit is 9 + 7 + 5 + 2 =
23 − 4 × 5 = 3.

If she makes 5 packets, then she can sell the 5th one with probability 0.1 and the
expected revenue is Rs 1, the total cost is 5× 5 = 25 and, therefore, there is an expected
loss of Rs 1. Hence she should make either 2 or 3 packets to maximize her profit.

5.6 Poisson probability law

We will derive this probability law as a limiting form of the binomial as well as a
process satisfying some conditions. This law is named after its inventor, S. Poisson,
a French mathematician. Consider a binomial probability law where the number of
trials n is very large and the probability of success p is very small but np = λ (Greek
letter lambda), a finite quantity. This situation can be called a situation of rare events,
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the number of trials is very large and the probability of success in each trial is very
small, something like a lightning strike, earthquake at a particular place, traffic acci-
dents on a certain stretch of a highway and so on. Let us see what happens if n→ ∞,
p→ 0, np = λ. Since we are assuming λ to be a finite quantity, we may replace one of
n or p in terms of λ. Let us substitute p = λ

n . Then

lim
n→∞

(
n
x
)px = 1

x!
lim
n→∞

n(n − 1)⋯(n − x + 1)( λ
n
)
x

= λx

x!
lim
n→∞

n
n

(n − 1)
n

⋯ (n − x + 1)
n

= λx

x!
1 × lim

n→∞
[1 − 1

n
] × ⋯ × lim

n→∞
[1 − x − 1

n
]

= λx

x!

since x is finite, there are only a finite number of factors, and we can use the formula
that the limit of a finite number of products is the product of the limits and each factor
here goes to 1. [If it involved an infinite number of factors, then we could not have
taken the limits on each factor.] Now let us examine the factor:

qn−x = (1 − p)n(1 − p)−x = (1 − λ
n
)
n
(1 − λ

n
)
−x

.

But

lim
n→∞

(1 − λ
n
)
n
= e−λ

from the definition of e, and

lim
n→∞

(1 − λ
n
)
−x

= 1

since the exponent −x is finite. Therefore,

lim
n→∞,p→0,np=λ

f2(x) = lim
n→∞,p→0,np=λ

(
n
x
)pxqn−x

=
{
{
{

λx
x! e
−λ , x = 0, 1,… , λ > 0

0, elsewhere.

Let us call the right side as f5(x). Let us see whether f5(x) is a probability function,
since we have done a limiting process on a binomial probability function. If you take
some sort of limits on a probability function, the limiting form need not remain as a
probability function. The total of f5(x) is given by

∑
x
f5(x) =

∞

∑
x=0

λx

x!
e−λ = e−λ

∞

∑
x=0

λx

x!
= e−λeλ = 1.
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Hence f5(x) is a probability function and it is known as the Poisson probability law.
λ is a parameter here.

Let us evaluateE(x), variance and themoment generating function for thePoisson
probability law:

E(x) =
∞

∑
x=0

x λ
x

x!
e−λ = e−λ

∞

∑
x=1

x λ
x

x!

since at x = 0 the right side is zero. Now we take out one lambda, cancel one x,
x
x! =

1
(x−1)! when x ≠ 0. Then we have

E(x) = λe−λ
∞

∑
x=1

λx−1

(x − 1)!

= λe−λ[1 + λ
1!

+ λ2

2!
+ ⋯] = λe−λeλ = λ. (5.13)

Thus, the mean value in the Poisson case is the parameter λ sitting in the probabil-
ity function. Since x! is sitting in the denominator, for computing E(x2), we will go
through the factorial moments or consider the identity

x2 = x(x − 1) + x

and proceed to evaluate E[x(x − 1)]. This procedure has already been done several
times before. We cancel x(x − 1) from x! since at x = 0, 1 the function on the right will
be zeros, and thus x only goes from x = 2 to infinity in the sum. Then we take out λ2.
That is,

E[x(x − 1)] =
∞

∑
x=0

x(x − 1)λ
x

x!
e−λ

= λ2e−λ
∞

∑
x=2

λx−2

(x − 2)!
= λ2e−λ[1 + λ

1!
+ λ2

2!
+ ⋯]

= λ2e−λeλ = λ2.

Then the variance

σ2 = E[x − E(x)]2 = E[x(x − 1)] + E[x] − [E(x)]2

= λ2 + λ − [λ]2 = λ. (5.14)

Thus it is interesting to see that the mean value and the variance are equal to λ in
the Poisson case. But this is not a unique property or a characterizing property of the
Poisson distribution. There are also other distributions satisfying this property that
the mean value is equal to the variance.

Let us compute the moment generating function in this case

M(t) = E[etx] =
∞

∑
x=0

e−λ λ
x

x!
etx
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= e−λ
∞

∑
x=0

(λet)x

x!
= e−λeλet

= eλ[et−1]. (5.15)

The last sum is obtained by observing that it is an exponential series with λet in the
exponent.

Example 5.5. The monthly traffic accidents on a stretch of a particular highway is
seen to be Poisson distributed with expected number of accidents 5. Four months are
selected at random. What is the probability (i) in all four months the number of acci-
dents is two or more per month; (ii) in at least one of the months the number of acci-
dents is exactly 3; (iii) the first three months had no accidents and the fourth month
had two accidents.

Solution 5.5. Let x be the number ofmonthly accidents on that stretch of the highway.
Then the probability function is given as, denoted by P(x),

P(x) =
{
{
{

5x
x! e
−5, x = 0, 1,…

0, elsewhere.

The parameter λ = 5 because it is given that the mean value is 5. The probability that
the number of accidents in a month is 2 or more, denoted by p1, is given by

p1 =
∞

∑
x=2

5x

x!
e−5 = 1 −

1
∑
x=0

5x

x!
e−5

since the total probability is 1. That is,

p1 = 1 − 50

0!
e−5 − 51

1!
e−5 = 1 − e−5[1 + 5] = 1 − 6e−5.

The answer to (i) is then p41 .
The probability for the number of accidents in amonth is exactly 3, denoted by p2,

is given by

p2 = 53

3!
e−5 = 125

6
e−5.

In (ii), it is a binomial situation with the number of trials n = 4 and probability of suc-
cess is p2. Hence the answer to (ii) is

4
∑
x=1

(
4
x
)px2 (1 − p2)4−x = 1 − (

4
0
)p02 (1 − p2)4−0 = 1 − (1 − 125

6
e−5)

4
.

Probability of having no accidents is

P(0) = 50

0!
e−5 = e−5.
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Probability of having exactly 2 accidents is 52
2! e
−5 = 25

2 e
−5. Hence the answer to (iii) is

[e−5]3[25
2
e−5] = 25

2
e−20.

5.6.1 Poisson probability law from a process

Consider an event taking place over time, such as the arrival of persons into a queue at
a checkout counter, arrival of cars into a service station for service, arrival of telephone
calls into a phone switchboard, floods in a river during rainy season, earthquakes over
the years at a particular place, eruption of a certain volcano over time and so on. Let
us assume that our event satisfies the following conditions:

(i) The occurrence of the event from time t to t +Δt, that is in the interval [t, t +Δt],
where Δt is a small increment in t, is proportional to the length of the interval or it is
αΔt, where α is a constant. Here, Δ (Greek capital letter delta) is not used as a product.
Δt is a notation standing for a small increment in t.

(ii) The probability of more than one occurrence of this event in [t, t +Δt] is negli-
gibly small and we take it as zero for all practical purposes, or it is assumed that the
interval can be subdivided to the extent that probability of more than one occurrence
in this small interval is negligible.

(iii) The occurrence or non-occurrence of this event in [t, t + Δt] does not depend
uponwhat happened in the interval [0, t]where 0 indicates the start of the observation
period. An illustration is given in Figure 5.2. If the event under observation is a flood
in a river during the rainy season, then start of the rainy season is taken as zero and
time may be counted in days or hours or in any convenient unit.

Figure 5.2: An event taking place over time.

Under the conditions (i), (ii), (iii) above, what is the probability of getting exactly x
occurrences of this event in time [0, t]? This probability function depends upon x and
the time t and let us denote it by f (x, t). Then the interpretations are the following:

f (x, t + Δt) = the probability of getting exactly x occurrences of the event in
time [0, t + Δt];

f (x − 1, t) = the probability of getting exactly x − 1 occurrences in time [0, t].
Exactly x occurrences in the interval 0 to t + Δt can happen in two mutually ex-

clusive ways of (a) exactly x − 1 occurrences in time 0 to t or in the interval [0, t], and
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one occurrence from t to t + Δt or in the interval [t, t + Δt] [probability for one occur-
rence is αΔt], or (b) exactly x occurrences in the interval [0, t] and no occurrence in the
interval [t, t + Δt] [probability for no occurrence is 1 − αΔt]. Therefore, from the total
probability law,

f (x, t + Δt) = f (x − 1, t)[αΔt] + f (x, t)[1 − αΔt].

We can rearrange the terms and write

f (x, t + Δt) − f (x, t)
Δt

= α[f (x − 1, t) − f (x, t)].

Taking the limitwhenΔt → 0,we get a differential equation in t or a partial differential
equation in t. That is,

𝜕
𝜕t
f (x, t) = α[f (x − 1, t) − f (x, t)]. (5.16)

Here, (5.16) is a differential equation in t whereas it is a difference equation in x. We
have to solve this difference-differential equation to obtain f (x, t). This can be solved
successively by taking values for x = 0 solving the equation for t, then x = 1 solving the
equation for t, and so on. The final result will be the following:

f (x, t) =
{
{
{

(αt)x
x! e
−αt , α > 0, 0 ≤ t < ∞, x = 0, 1,…

0, elsewhere,

or it is a Poisson probability law with the parameter λ = αt.

Example 5.6. Telephone calls are coming to an office switchboard at the rate of 0.5
calls per minute, time being measured in minutes. What is the probability that (a) in
a 10-minute interval (i) there are exactly 2 calls; (ii) there is no call; (iii) at least one
call; (b) if two 10-minute intervals are taken at random then (i) in both intervals there
are no calls; (ii) in one of the intervals there are exactly 2 calls?

Solution 5.6. Wewill assume that these telephone calls obey the conditions for Pois-
sonarrivals of calls or thePoissonprobability law is a goodmodel.Weare givenα = 0.5.
In (a) t = 10, then λ = 10 × 0.5 = 5 and the probability law P(x) is

P(x) =
{
{
{

5x
x! e
−5, x = 0, 1,…

0, elsewhere.

In (a)(i), we need the probability Pr{x = 2}.

Pr{x = 2} = 52

2!
e−5 =

25
2
e−5.
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In (a)(ii), we need the probability Pr{x = 0}.

Pr{x = 0} = 50

0!
e−5 = e−5.

In (a)(iii), we need Pr{x ≥ 1}.

Pr{x ≥ 1} = 1 − Pr{x = 0} = 1 − e−5.

In (b)(i), it is a case of two Bernoulli trials where the probability of success p1 is the
probability of havingno arrivals in a 10-minute interval or p1 = e−5.Wewant both trials
to result in successes, and hence the answer is

p21 = [e−5]2 = e−10.

In (b)(ii), we have two Bernoulli trials and the probability of success in each trial is p2
where p2 is the probability of having exactly 2 calls in a 10-minute interval. Then

p2 = 52

2!
e−5 = 25

2
e−5.

In (b)(ii), we need the probability of getting exactly one success in two Bernoulli trials.
Then it is given by

(
2
1
)p12(1 − p2)2−1 = 2[25

2
e−5][1 − 25

2
e−5].

Another probability law which is frequently used in probability and statistics is the
discrete hypergeometric law.

5.7 Discrete hypergeometric probability law

Let us consider a box containing two types of objects: one type is of a in number,which
we will call these a-type objects, and the other type is b in number, which we will call
these b-type objects. As an example, we can consider a box containing red and green
marbles and suppose that there are 10 green and 8 red marbles then we may consider
a = 10 and b = 8 or vice versa. Suppose that a subset of n items is taken at random
from this set of a+b objects. When we say “at random” it means that every subset of n
has the same chance of being taken or each subset gets a probability of 1

(a+bn )
because

there are (a+bn ) such subsets possible. This can also be done by taking one by one, at
random, without replacement. Both will lead to the same probabilities.

In this experiment, what is the probability that the sample of n items contains x
of a-type and n− x of b-type objects. Let this probability be denoted by f6(x). Note that
x of a-type can only come from a-type objects and this can be done in (ax ) ways. For
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each such selection of a-type objects, we can select n − x b-type objects in ( b
n−x ) ways.

Therefore, the number of choices favorable to the event is (ax )(
b

n−x ). Hence

f6(x) =
{{
{{
{

(ax )(
b

n−x )
(a+bn )

, x = 0, 1,… ,n or a; a,b = 1, 2,… , n = 1, 2,…

0, elsewhere.

This is known as the discrete hypergeometric probability law. a,b,n are parameters
here.

First, let us check to see the sum:

∑
x
f6(x) =

∑n,a
x=0 (ax )(

b
n−x )

(a+bn )
= 1

because, from Section 3.3 we have
n,a
∑
x=0

(
a
x
)(

b
n − x

) = (
a + b
n

) . (5.17)

Thus the total probability is 1 as can be expected. What are the mean values and vari-
ance in this case?

E(x) = 1
(a+bn )

n,a
∑
x=0

x(
a
x
)(

b
n − x

) .

When x = 0, the right side is zero, and hence the sum starts only at x = 1. Then one
may cancel one x from the x!. That is,

x(
a
x
) = x a!

x!(a − x)!
= a (a − 1)!

(x − 1)!((a − 1) − (x − 1))!
= a(

a − 1
x − 1

) .

Hence, taking the sum by putting y = x − 1 so that y goes from 0, and by using (5.17),
we have

a
n,a
∑
y=0

(
a − 1
y

)(
b

n − 1 − y
) = a(

a + b − 1
n − 1

) .

Now, dividing by (a+bn ) and simplifying we get

E(x) = na
a + b

. (5.18)

By using the same steps, the second factorial moment is given by

E[x(x − 1)] = n(n − 1)a(a − 1)
(a + b)(a + b − 1)

. (5.19)

Now, variance is available from the formula

Var(x) = E[x(x − 1)] + E(x) − [E(x)]2

= n(n − 1)a(a − 1)
(a + b)(a + b − 1)

+
na

(a + b)
−

n2a2

(a + b)2
. (5.20)
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Example 5.7. Froma set of 5 women and 8men a committee of 3 is selected at random
[this means all such subsets of 3 are given equal chances of being selected]. What is
the probability that the committee consists of (i) no woman; (ii) at least two women;
(iii) all women?

Solution 5.7. Let x be the number of women in the committee. Then x is distributed
according to a discrete hypergeometric probability law. In (i), we need Pr{x = 0}:

Pr{x = 0} =
(50 )(

8
3 )

(133 )
= (8)(7)(6)

(13)(12)(11)
= 28
143

.

In (ii), we need Pr{x = 2 or 3} = Pr{x = 2} + Pr{x = 3}. In (iii), we need Pr{x = 3}. Let us
compute these two probabilities:

Pr{x = 3} =
(53 )(

8
0 )

(133 )
= (5)(4)(3)

(13)(12)(11)
= 5
143

.

Pr{x = 2} = (52 )(
8
1 )

(133 )
= (5)(4)

(1)(2)
(8) (1)(2)(3)

(13)(12)(11)
= 40
143

.

Hence the answer in (ii) is 40
143 + 5

143 = 45
143 .

5.8 Other commonly used discrete distributions

Here, we list some other commonly used discrete distributions. Only the non-zero part
of the probability function is given and it should be understood that the function is
zero otherwise. In some of the probability functions, gamma functions, Γ(⋅) (Γ is the
Greek capital letter gamma) andbeta functions,B(⋅, ⋅) (B is theGreek capital letter beta)
appear. Hence we will list the integral representations of these functions here. Their
definitions will be given in the next chapter. Only these integral representations will
be sufficient to do problems on the following probability functions where gamma and
beta functions appear.

The integral representation for a gamma function, Γ(α), is the following:

Γ(α) = ∫
∞

0
xα−1e−xdx, ℜ(α) > 0. (5.21)

For the integral to converge, we need the condition that the real part of α (alpha) is
positive, ℜ(⋅) means the real part of (⋅).

Note 5.1. Usually in statistical problems the parameters are real but the integrals will
exist in the complex domain also, and hence the conditions arewritten in terms of real
parts of the complex parameters.

The beta function, B(α,β), can be written in terms of the gamma function. In the
following, we give the connection to gamma function and integral representations for
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beta functions:

B(α,β) = Γ(α)Γ(β)
Γ(α + β)

= ∫
1

0
xα−1(1 − x)β−1dx, (5.22)

= ∫
∞

0
yα−1(1 + y)−(α+β), ℜ(α) > 0, ℜ(β) > 0. (5.23)

For the convergence of the integrals in (5.22) and (5.23), we need the conditions
ℜ(α) > 0 and ℜ(β) > 0, (β is the Greek small letter beta). It may be noted that

B(α,β) = B(β,α). (5.24)

That is, the parameters α and β can be interchanged in the integrals:

f7(x) = (
n
x
) Γ(α + β)Γ(x + α)Γ(n + β − x)

Γ(α)Γ(β)Γ(n + α + β)

for x = 0, 1,… ,n; α > 0, β > 0 [Beta-binomial probability function].

f8(x) =
Γ(r + s)Γ(x + n − r − s)Γ(x)Γ(n)

Γ(r)Γ(s)Γ(x − r + 1)Γ(n − s)Γ(x + n)

for x = r, r + 1,…, s > 0, n > s; r a positive integer [Beta-Pascal probability function].

f9(x) =
m
∑
i=1

wi (
n
x
)pxi (1 − pi)n−x

for x = 0, 1,… ,n; 0 < pi < 1, wi ≥ 0, i = 1,… ,m; ∑m
i=1wi = 1 [Mixed binomial probability

function].

f10(x) =
(nx )px(1 − p)n−x

1 − (1 − p)n
,

for x = 1, 2,… ,n; 0 < p < 1; (truncated below x = 1) [Truncated binomial probability
function].

f11(x) =
(xβ)x−1

x!
e−xβ , x = 1, 2,… ; β > 0

[Borel probability law].

f12(x) =
r

(x − r)!
xx−r−1αx−re−αx ,

for x = r, r + 1,…; α > 0, where r is a positive integer [Borel–Tanner probability law].

f13(x) =
Γ(ν + x)Γ(λ)
Γ(λ + x)Γ(ν)

μx

1F1(ν;λ;μ)

for x = 0, 1, 2,…; ν > 0, λ > 0, μ > 0 where 1F1 is a confluent hypergeometric function
(ν is Greek letter nu; μ is Greek letter mu) [Confluent hypergeometric probability law].
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f14(x) =w1 (
N
x
)px1 (1 − p1)N−x +w2ϕ(x)

for x = 0, 1,… ,N; w2 = 1−w1, 0 <w1 < 1, 0 < p1 < 1 and ϕ(x) are some probability func-
tions [Dodge–Romig probability law].

f15(x) = (
N
x
)px [1 + (

N
1
)p + ⋯ + (

N
c
)pc]
−1

for x = 0, 1,… , c; 0 < p < 1; N , c positive integers [Engset probability law].

f16(x) =
a(x)θx

[∑x∈A a(x)θx]
, θ > 0

for a(x) > 0, x ∈ A = subset of reals [Generalized power series probability function].

f17(x) =
Γ(α + β)
Γ(α)Γ(β)

Γ(α + x − 1)Γ(β + 1)
Γ(α + β + x)

for x = 1, 2,…; α > 0, β > 0 [Compound geometric probability law].

f18(x) = e−λ
∞

∑
m=0

λm

m!
(
2m
x

)px(1 − p)2m−x

for x = 0, 1, 2,… , 2m; λ > 0, 0 < p < 1 [Hermite probability law].

f19(x) =
Γ(λ)θx

1F1(1;λ;θ)Γ(λ + x)

for x = 0, 1, 2,…; θ > 0, λ > 0 [Hyper-Poisson probability function].

f20(x) =
θx

βx
, 0 < θ < 1,

for x = 1, 2,… ,d where β = ∑d
x=1

θx
x [Truncated logarithmic series probability function].

f21(x) =
k
∑
i=1

wifi(x), 0 <wi < 1,
k
∑
i=1

wi = 1

where fi(x) is a general probability or density function for each i = 1,… ,k [General
mixed probability function].

f22(x) =
Γ(r + x)
x!Γ(r)

pr(1 − p)x

for x = 0, 1,…; 0 < p < 1, r > 0 [Negative binomial probability function, model-2].

f23(x) =
αa(α + 1)p−aΓ(p + x)

Γ(p)x!(α + 2)p+x 2F1(a,p + x;p; 1
α + 2

)

for x = 0, 1,…; a > 0, p > 0, α > 0 and 2F1 is a Gauss’ hypergeometric function [Gener-
alized negative binomial probability function].
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f24(x) =
cx

x!
e−λ
∞

∑
k=0

kx(λe−c)k

k!

for x = 0, 1,…; λ, c positive constants [Neyman type A probability function].

f25(x) = (
x + r − 1

x
)pr(1 − p)x

for x = 0, 1,…; 0 < p < 1; r a positive integer [Pascal probability law].

f26(x) = e−a
∞

∑
m=0

am

m!
(
nm
x

)px(1 − p)nm−x

for x = 0, 1,… ,nm; a > 0, 0 < p < 1; n,m positive integers [Poisson-binomial probability
function].

f27(x) =
μx

x![exp(μ) − 1]

for x = 1, 2,…; μ > 0 (truncated below x = 1) [Truncated Poisson probability function].

f28(x) = (
N
x
) Γ(α + β)Γ(α + x)Γ(β +N − x)

Γ(α)Γ(β)Γ(α + β +N)

for x = 0, 1,… ,N; α > 0, β > 0 [Polya probability law or Beta-binomial probability func-
tion].

f29(x) =
1
x!

Γ(x + h
d )

Γ( hd )
(1 + 1

d
)
−(h/d)

( 1
1 + d

)
x

for x = 0, 1,…; d > 0, h > 0 [Polya–Eggenberger probability function].

f30(x) =
1
n
, x = x1,… ,xn

[Discrete uniform probability function].

f31(x) =
exp[−(λ +ϕ)]

x!

∞

∑
k=0

(kθ +ϕ)x [λ exp(−θ)]
k

k!

for x = 0, 1,…; ϕ > 0, θ > 0, λ > 0 [Short’s probability law].

f32(x) =
1

[1 − P(0)]

∞

∑
t=x+1

P(t)
t

for x = 0, 1,…; where P(t) is any discrete probability function over the range t =
0, 1, 2,… [Ster’s probability function].

f33(x) = [ζ (k)xk]−1

for x = 1, 2,… where ζ (k) = ∑∞t=1 t
−k , k > 1 (ζ is the Greek letter zeta) [Zeta probability

function].
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Exercises 5
5.1. Compute E(x2) for the geometric probability law by summing up or by using the
definition, that is, by evaluating

E(x2) =
∞

∑
x=1

x2qx−1p.

5.2. Compute (i) E(x); (ii) E(x2); for the negative binomial probability law by using the
definition (by summing up).

5.3. Compute (i) E(x); (ii) E(x2); by using the technique used in the geometric proba-
bility law by differentiating the negative binomial probability law.

5.4. Compute E(x) and E(x2) by differentiating themoment generating function in the
Poisson probability case.

5.5. Compute E(x) and variance of x by using the moment generating function in the
binomial probability law.

5.6. Construct two examples of discrete probability functions where E(x) = Var(x).

5.7. Solve the difference-differential equation in (5.16) and show that the solution is
the probability function given therein.

5.8. Show that the functions f7(x) to f33(x) in Section 5.8 are all probability functions,
that is, the functions are non-negative and the sum in each case is 1.

5.9. For the probability functions in Exercise 5.8, evaluate the first twomoments about
the origin, that is, E(x) and E(x2), whenever they exist.

Truncation. In some practical problems, the general behavior of the discrete ran-
dom variable x may be according to a probability function f (x) but certain values
may not be admissible. In that case, we remove the total probability masses on the
non-admissible points, then re-weigh the remaining points to create a new probabil-
ity function. For example, in a binomial case suppose that the event of getting zero
success is not admissible. In this case, we remove the point x = 0. At x = 0, the prob-
ability is (n0 )p0(1 − p)n−0 = (1 − p)n. Therefore, the remaining mass is c0 = 1 − (1 − p)n.
Hence if we divide the remaining probabilities by c0 then the remaining points can
produce a truncated binomial probability law, which is

g(x) =
{
{
{

1
c0

(nx )px(1 − p)n−x , x = 1, 2,… ,n, 0 < p < 1
0, elsewhere.

Here, g(x) is called the truncated binomial probability function, truncated below x = 1
or at x = 0. Thus truncation is achieved by multiplying the probability function by an
appropriate constant c. In the above case, it is c = 1

c0
.
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5.10. Compute the truncation constant c so that cf (x) is a truncated probability func-
tion of f (x) in the following cases:
(i) Binomial probability function, truncated below x = 1 (Here, c = 1

c0
where c0 is

given above);
(ii) Binomial probability, truncated at x = n;
(iii) Poisson probability function, truncated below x = 1;
(iv) Poisson probability function, truncated below x = 2;
(v) Geometric probability function, truncated below x = 2;
(vi) Geometric probability function, truncated above x = 10.

Probability Generating Function. Consider a discrete random variable taking non-
zero probabilities at the points x = 0, 1,… and let f (x) be the probability function. Con-
sider the expected value of tx for some parameter t. Let us denote it by P(t). Then we
have

P(t) = E(tx) =
∞

∑
x=0

txf (x) (5.25)

where, for example, the probability that x takes the value 5 is Pr{x = 5} = f (5) or it is
the coefficient of t5 on the right side of (5.25). Thus the various probabilities, such as
Pr{x = 0},Pr{x = 1},… are generated by P(t) or they are available from the right side se-
ries in (5.25), provided the right side series is convergent. In the casewhen x = 0, 1, 2,…
with non-zero probabilities then P(t) in (5.25) is called the generating function for the
probability function f (x) of this random variable x. We can also notice further prop-
erties of this generating function. Suppose that the series on the right side in (5.25) or
P(t) is differentiable, then differentiate with respect to t and evaluate at t = 1, then we
get E(x). For example,

d
dt
P(t)|

t=1
= d
dt

∞

∑
x=0

txf (x)|
t=1

=
∞

∑
x=0

xtx−1f (x)|
t=1

=
∞

∑
x=0

xf (x) = E(x).

Successive derivatives evaluated at t = 1 will produce E(x), E[x(x− 1)], E[x(x− 1)(x− 2)]
and so on, when P(t) series is uniformly convergent and differentiable term by term.

5.11. Compute the (a) the probability generating function P(t), (b) E(x) by using P(t),
(c) E(x2) by using P(t) for the following cases: (i) Geometric probability law; (ii) Nega-
tive binomial probability law.

5.12. A gambler is betting on a dice game. Two dice will be rolled once. The gambler
puts in Rs 5 (His bet is Rs 5). If the same numbers turn up on the two dice, then the
gambler wins double his bet, that is, Rs 10, otherwise he loses his bet (Rs 5). Assuming
that the dice are balanced
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(i) What is the gambling house’s expected return per game from this gambler?
(ii) What is the probability of the gambler winning exactly five out of 10 such games?
(iii) What is the gambler’s expected return in 10 such games?

5.13. Cars are arriving at a service station at the rate of 0.1 per minute, time being
measured in minutes. Assuming a Poisson arrival of cars to this service station, what
is the probability that
(a) in a randomly selected twenty minute interval there are

(i) exactly 3 arrivals;
(ii) at least 2 arrivals;
(iii) no arrivals;

(b) if 5 such 20-minute intervals are selected at random then what is the probability
that in at least one of these intervals
(i) (a)(i) happens;
(ii) (a)(ii) happens;
(iii) (a)(iii) happens.

5.14. The number of floods in a local river during rainy season is known to follow a
Poisson distributionwith the expected number of floods 3.What is the probability that
(a) during one rainy season

(i) there are exactly 5 floods;
(ii) there is no flood;
(iii) at least one flood;

(b) if 3 rainy seasons are selected at random, then none of the seasons has
(i) (a)(i) happening;
(ii) (a)(ii) happening;
(iii) (a)(iii) happening;

(c) (i) (a)(i) happens for the first time at the 3rd season;
(ii) (a)(iii) happens for the second time at the 3rd season.

5.15. From a well-shuffled deck of 52 playing cards (13 spades, 13 clubs, 13 hearts,
13 diamonds) a hand of 8 cards is selected at random. What is the probability that the
hand contains (i) 5 spades? (ii) no spades? (iii) 5 spades and 3 hearts? (iv) 3 spades
2 clubs, 2 hearts, 1 diamond?





6 Commonly used density functions

6.1 Introduction

Here, we will deal with the continuous case. Somemost commonly used density func-
tionswill be discussed here and at the end a fewmore densities will be listed. The very
basic density function is the uniform or rectangular density as shown in Figure 6.1.
This was already introduced in Example 4.4 in Chapter 4 and themean value and vari-
ance were evaluated there. For the sake of completeness, we will list here again.

6.2 Rectangular or uniform density

f1(x) =
{
{
{

1
b−a , a ≤ x ≤ b
0, otherwise.

The graph looks like a rectangle, and hence it is also called a rectangular density. The
total probability mass 1 is uniformly distributed over the interval [a,b], b > a, and
hence it is called a uniform density.

Figure 6.1: Uniform or rectangular density.

The probability that the random variable x falls in the interval a < c ≤ x ≤ d < b is
marked in the graph. It is the area under the curve between the ordinates at x = c and
x = d. It was shown in Example 4.4. that

E(x) = b + a
2

and Var(x) = (b − a)2

12
. (6.1)

The moment generating function in this case is the following:

M(t) = E[etx] = ∫
b

a

etx

b − a
dx

= [ 1
t(b − a)

etx]
b

a
= [ebt − eat]

t(b − a)
, t ≠ 0. (6.2)

One can also obtain themoments by differentiating aswell as by expandingM(t) here.
For example, let us evaluate the first two moments by expandingM(t):

M(t) = 1
t(b − a)

{[1 + b t
1!

+ b2 t
2

2!
+ ⋯] − [1 + a t

1!
+ a2 t

2

2!
+ ⋯]}

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562545-006
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= 1
t(b − a)

{(b − a) t
1!

+ (b2 − a2) t
2

2!
+ (b3 − a3) t

3

3!
+ ⋯}

= 1 + (b2 − a2)
(b − a)

t
2!

+ (b3 − a3)
(b − a)

t2

3!
+ ⋯

= 1 + (b + a)
2

t
1!

+ (b2 + ab + a2)
3

t2

2!
+ ⋯.

Since
(b2 − a2)
(b − a)

= (b + a) and (b3 − a3)
(b − a)

= b2 + ab + a2

we have the coefficient of t1
1! as
(b+a)
2 and the coefficient of t2

2! as
(a2+ab+b2)

3 . Hence

E(x) = (a + b)
2

and E(x2) = (a2 + ab + b2)
3

(6.3)

in the uniform distribution.

Example 6.1. Example of a random cut or a point taken at random on a line segment
was considered in Chapters 1 and 2. Consider the problem involving areas. A girl is
throwing darts at a circular board of diameter 2 meters (2m). The aim is to hit the
center of the board. Assume that she has no experience and she may hit anywhere
on the board. What is the probability that she will hit a specified 1

2 × 1
2 square meters

region on the board?

Solution 6.1. Let dA be an infinitesimal area on the board around the point of hit. Due
to her lack of experience, wemay assume that the point of hit is uniformly distributed
over the area of the board. The area of the board is πr2 = π12 = π squaremeters, or πm2.
Then we have the density

f (A)dA =
{
{
{

dA
π , 0 ≤ A ≤ π
0, elsewhere.

The integral over the specified square will give the area of the square, which is,
1
2 × 1

2 = 1
4 m

2. Hence the required probability is

1
4
1
π

= 1
4π

.

Several densities are connected with a gamma function. Hence we define a gamma
function next.

Notation 6.1. Γ(α): gamma function.

Definition 6.1 (A gamma function). A gamma function, denoted by Γ(α), exists for
all values of α, positive, negative, rational irrational, complex values of α except for
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α = 0, −1, −2,…. A gamma function can be defined in many ways. Detailed defini-
tions and propertiesmay be seen from the book [2]. Butwhen defining densities, we
will need only an integral representation for a gamma function. Such an integral
representation is given below:

Γ(α) = ∫
∞

0
xα−1e−xdx, ℜ(α) > 0. (6.4)

This integral exists only for real value of α greater than zero. In statistical problems,
usually α is real and then the condition will become α > 0. Other integral represen-
tations are available for a gamma function, each with its own conditions. We will
make use of only (6.4) in this book. Two basic properties of the gamma function
that we will make use of are the following:

Γ(α) = (α − 1)Γ(α − 1) (6.5)

when Γ(α − 1) is defined. Continuing the process, we have

Γ(α) = (α − 1)(α − 2)⋯(α − r)Γ(α − r) (6.6)

when Γ(α− r) is defined. This property can be seen from the integral representation
in (6.4) by integrating by parts, by taking dv = e−x and u = xα−1 and then using the
formula ∫udv = uv − ∫ vdu [Verification is left to the student]. From (6.6), it follows
that if α is a positive integer, say, n = 1, 2,3,… then

Γ(n) = (n − 1)!, n = 1, 2,… . (6.7)

The second property that we will use is that

Γ( 1
2
) = √π. (6.8)

This will be proved only after considering joint distributions ofmore than one random
variable in the coming chapters. Hence the student may take the result for granted for
the time being. Note that the above results (6.5), (6.6) are valid for all α ≠ 0, −1, −2,…,
α need not be a positive number orℜ(α), when α is complex, need not be positive. For
example,

Γ(
5
2
) = (

5
2

− 1)(5
2

− 2)Γ(5
2

− 2)

= (3
2
)( 1

2
)Γ( 1

2
) = ( 3

4
)√π.

Γ( 1
2
) = (− 1

2
)(−3

2
)(−5

2
)Γ(−5

2
)

= − 15
8

Γ(−5
2
) ⇒

Γ(−
5
2
) = −

8
15

√π.
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Γ( 10
3

) = (7
3
)(4

3
)( 1

3
)Γ( 1

3
) = 28

27
Γ( 1

3
).

Γ(3.8) = (2.8)(1.8)(0.8)Γ(0.8).
Γ(1.3) = (0.3)Γ(0.3).
Γ(1.3) = (0.3)(−0.7)(−1.7)Γ(−1.7) = (0.357)Γ(−1.7) ⇒

Γ(−1.7) = Γ(1.3)
0.357

.

By using the above procedures, one can reduce any gamma function Γ(β), with β real,
to a Γ(α)where 0 < α ≤ 1, and Γ(α) is extensively tabulatedwhen 0 < α < 1, such numer-
ical tables are available. A density associated with a gamma function of (6.4) is called
a gamma density. A two-parameter gamma density is defined next.

6.3 A two-parameter gamma density

f2(x) =
{
{
{

1
βαΓ(α)x

α−1e−
x
β , 0 ≤ x < ∞, β > 0, α > 0

0, elsewhere.

Since the total probability is 1, we have

1 = ∫
∞

0
f2(x)dx ⇒

1 = ∫
∞

0

1
βαΓ(α)

e−
x
β dx ⇒

βα = ∫
∞

0

xα−1e−
x
β dx

Γ(α)
. (6.9)

This (6.9) is a very useful representation where the only conditions needed are β > 0
and α > 0, then we can replace βα by a gamma integral.

From Figure 6.2, note that the parameter β has a scaling effect, and hence β is
called the scale parameter and α is called the shape parameter in the gamma case
because α throws light on the shape of the density curve. Gamma density is one of the
main densities in probability and statistics. Many other densities are associated with
it, some of which will be listed later. An extended form of the two-parameter gamma
density is available by replacing x by |x| so that the mirror image of the graph is there
on the left of the y-axis also. An extended form of the gamma density function is then
given by

f ∗2 (x) = 1
2

1
βαΓ(α)

|x|α−1e−
|x|
β , −∞ < x < ∞, β > 0, α > 0.

One graph for one set of parameters α and β is given in Figure 6.3.
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Figure 6.2: Gamma density: (a) varying β, fixed α; (b) Varying α, fixed β.

Figure 6.3: An extended form of the gamma density.

Let us evaluate arbitrary (s− 1)-thmoment and themoment generating function of the
gamma density for x > 0. Observe that (s − 1)-th moment is also the Mellin transform
of the density function:

E[xs−1] = 1
βαΓ(α)

∫
∞

0
xα−1+s−1e−

x
β dx.

Substitute

y =
x
β

⇒ dx = βdy.

Then

E[xs−1] = ∫
∞

0

(βy)α+s−2

βαΓ(α)
e−yβdy

= βs−1

Γ(α)
∫
∞

0
y(α+s−1)−1e−ydy.

But this integral is a gamma function and it is

= βs−1 Γ(α + s − 1)
Γ(α)

, ℜ(α + s − 1) > 0. (6.10)

From this generalmoments,we can obtain all integermoments also. Put s = 2 to obtain
E(x) and s = 3 to get E(x2):
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E(x) = βs−1 Γ(α + s − 1)
Γ(α)

|
s=2

= βΓ(α + 1)
Γ(α)

= βαΓ(α)
Γ(α)

= αβ (6.11)

by using the formula (6.5).

E(x2) = β2 Γ(α + 2)
Γ(α)

= β2(α + 1)(α)Γ(α)
Γ(α)

= α(α + 1)β2. (6.12)

The reduction in the gamma is done by using (6.6). Then the variance for a gamma
random variable is given by

Var(x) = E[x2] − [E(x)]2 = α(α + 1)β2 − (αβ)2 = αβ2. (6.13)

Note that the mean value is αβ and the variance is αβ2, and hence if β = 1 then the
mean value is equal to the variance in this case also, just like the Poisson case as seen
from Chapter 5.

The moment generating functionM(t) in the gamma case is the following:

E[etx] = ∫
∞

0
etxf2(x)dx = 1

βαΓ(α)
∫
∞

0
etx−

x
β dx.

Put the exponent as −y = −[ 1β − t]x, which gives dy = [ 1β − t]dx and integrate to obtain

M(t) =
[ 1β − t]−α

βα
= (1 − βt)−α for (1 − βt) > 0. (6.14)

This condition is needed for the integral to be convergent, otherwise the exponent in
the integral can become positive and the integral will give +∞ or the integral diverges.
When a random variable x is gamma distributed with two parameter gamma density
as f2(x) above then we write x ∼ gamma(α,β) where

“x ∼ ” stands for “x is distributed as”

What is the probability that the gamma random variable x in f2(x) lies over the
interval [a,b], a > 0, b > a? This is given by the area under the gamma curve between
the ordinates at x = a and x = b. This can be obtained by integrating f2(x) from a to b.
This is shown in Figure 6.4.

The integral from a to b is the same as the integral from 0 to bminus the integral
from 0 to a. Let us see what is such an integral. For example, what is the integral from
0 to a:

∫
a

0
f2(x)dx = 1

βαΓ(α)
∫
a

0
xα−1e−

x
β dx

= ∫
a/β

0

yα−1

Γ(α)
e−ydy, y = x

β

= 1
Γ(α)

γ(α, a
β
) (6.15)
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where γ(⋅, ⋅) is the incomplete gamma and this incomplete gamma is tabulated and nu-
merical tables are available. Thus, for evaluating probabilities one has to use incom-
plete gamma tables if α ≠ 1. When α = 1, then it is an exponential density which can
be integrated and the probabilities can be evaluated directly. If α is a positive integer,
then also one can integrate by parts and obtain explicit forms.

Figure 6.4: Probability in the gamma case.

Some special cases of the gamma density are the following.

6.3.1 Exponential density

One parameter exponential density was dealt with in Chapters 3 and 4. This is avail-
able from the gamma density f2(x) by putting α = 1. That is,

f3(x) =
{
{
{

1
βe
− xβ , 0 ≤ x < ∞, β > 0

0, elsewhere.

The moments and moment generating function are available from the corresponding
quantities for the gamma case by putting α = 1. Exponential density is widely used as
a model to describe waiting time, such as waiting in a queue, waiting for a scheduled
bus etc. But it may not be a good model for all types of waiting times. If the waiting
time consists of several components of waiting times such as waiting for completing
a medical examination at a doctor’s office, which may consist of blood test, physi-
cal examination, checking weight and height, X-ray, etc., then the individual compo-
nents may be exponentially distributed but the total waiting time is usually gamma
distributed.

6.3.2 Chi-square density

In a gamma density when β = 2 and α = n
2 , n = 1, 2,…, then we obtain a chi-square

density with n degrees of freedom. The density is the following:
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f4(x) =
{
{
{

1
2
n
2 Γ( n2 )

x
n
2 −1e−

x
2 , 0 ≤ x < ∞, n = 1, 2,…

0, elsewhere.

The meaning of “degrees of freedom” will be given when we consider sampling dis-
tributions later on. For the time being, the student may take it as a parameter n in
f4(x), taking integer values 1, 2,…. Chi-square density is widely used in statistical de-
cision making such as testing of statistical hypotheses, model building, designing of
experiments, regression analysis, etc. In fact, this is one of the main distributions in
statistical inference. A chi-square random variable with k degrees of freedom is de-
noted by χ2k .

Notation 6.2. χ2k : chi-square with k degrees of freedom.

Definition 6.2 (Chi-square random variable). A chi-square random variable, with
k degrees of freedom is a gamma random variable with the parameters α = k

2 and
β = 2, k = 1, 2,….

Example 6.2. The waiting time for the first pregnancy among women in a certain
community from the timeofmarriageor cohabitation is found tobegammadistributed
with scale parameter β = 1 and the expected waiting time 3 months, time being mea-
sured in months. (i) If a freshly married woman from this community is selected at
random, what is the probability that she has to wait at least eight months before she
gets pregnant? (ii) If three freshly married women are selected at random from this
community, then what is the probability that at least two of them have to wait at least
eight months to get pregnant?

Solution 6.2. The expected value in the gamma case is found to be αβ and if β = 1
then α is given to be 3. Waiting for at least eight months means that the waiting time
t ≥ 8. Hence we need p = Pr{t ≥ 8}. That is,

p = Pr{t ≥ 8} = ∫
∞

8

1
Γ(3)

x3−1e−tdt

=
1
2
∫
∞

8
x2e−xdx

since βα = 1, Γ(3) = 2! = 2. Since α is a positive integer, we can integrate by parts by
taking dv = e−x and u as x2. That is,

p = 1
2
∫
∞

8
x2e−xdx

= 1
2
{−[x2e−x]∞8 + 2∫

∞

8
xe−xdx}

=
1
2
{64e−8 − 2[xe−x]∞8 − 2[e−x]∞8
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= 1
2
82e−8 = 41e−8.

This answers (i). For answering (ii), we consider three Bernoulli trials with probability
of success p above and the required probability is the probability that the number of
successes is 2 or 3. That is,

3
∑
x=2

(
3
x
)px(1 − p)3−x = (

3
2
)p2(1 − p) + (

3
3
)p3 = 3p2(1 − p) + p3 = p2(3 − 2p).

Another density, having connection to a gamma function is the generalized gamma
density.

6.4 Generalized gamma density

f5(x) =
{
{
{

cxα−1e−bxδ , b > 0, α > 0, δ > 0, x ≥ 0
0, elsewhere

where c is the normalizing constant, which can be evaluated by using a gamma inte-
gral. Make the substitution

y = bxδ ⇒ x = ( y
b
)
1/δ

⇒ dx = 1
δ

1
b1/δ

y(1/δ)−1dy.

The above transformations are valid since x > 0. The limits will remain the same.

∫
∞

0
xα−1e−bxδdx = 1

δ
1

b(α/δ)
∫
∞

0
y

α
δ −1e−ydy

= δ−1b−
α
δ Γ(α

δ
). (6.16)

The conditions α > 0, δ > 0 are already satisfied. Since the total integral is 1 (total
probability) the normalizing constant

c =
δb

α
δ

Γ( αδ )
. (6.17)

This is one generalized form of the gamma density. One form was introduced in Sec-
tion 6.4. The form above in Section 6.4, is usually known in the literature as the gen-
eralized gamma density. When δ = 1, we have the two-parameter gamma family.
When α = δ, we have a popular density known as theWeibull density, which is also
available by using a power transformation in an exponential density. When α = δ, the
normalizing constant in (6.17) becomes c = δb. When α = 3, δ = 2, we have one form
ofMaxwell–Boltzmann density in physics. When δ = 1, α an integer we have Erlang
density. When δ = 2, α = 2, we have the Rayleigh density. Many more such densities
are particular cases of a generalized gamma density.
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6.4.1 Weibull density

This is the special case of the generalized gamma density where δ = α.

f6(x) =
{
{
{

δbxδ−1e−bxδ , b > 0, δ > 0, 0 ≤ x < ∞

0, elsewhere.

This density is widely used as a model in many practical problems. Over a thousand
research papers are available on the application of this model.

Another function associated with a gamma function is the beta function.

Notation 6.3. B(α,β): Beta function.

Definition 6.3. A beta function B(α,β) is defined as

B(α,β) = Γ(α)Γ(β)
Γ(α + β)

, ℜ(α) > 0, ℜ(β) > 0. (6.18)

As in the case of gamma function, beta function can also be given integral represen-
tations.

B(α,β) = ∫
1

0
xα−1(1 − x)β−1dx, ℜ(α) > 0, ℜ(β) > 0

= ∫
1

0
yβ−1(1 − y)α−1dy, ℜ(α) > 0, ℜ(β) > 0

= B(β,α). (6.19)

The second integral is available from the first by putting y = 1 − x. These two integrals
are called type-1 beta integrals.

B(α,β) = ∫
∞

0
zα−1(1 + z)−(α+β)dx, ℜ(α) > 0, ℜ(β) > 0

= ∫
∞

0
uβ−1(1 + u)−(α+β)dy, ℜ(α) > 0, ℜ(β) > 0

= B(β,α). (6.20)

These are called type-2 beta integrals.

Integrals in (6.20) can also be obtained from (6.19) by using the substitution
z = x

1−x and the last integral from (6.20) by the substitution u = 1
z . Transformation of

variables will be discussed after introducing joint distributions in the next chapter.
One variable transformation will be discussed at the end of the present chapter. Con-
nections of beta integrals to gamma integral will be considered after introducing joint
distributions. We will introduce beta densities associated with these beta integrals.
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6.5 Beta density

There are two types, type-1, and type-2 which is also called “inverted beta density”.
But we will use the terminology “type-2 beta” instead of inverted beta. The type-1 beta
density is associated with the type-1 beta integral.

f7(x) =
{
{
{

Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1, 0 ≤ x ≤ 1, α > 0, β > 0
0, otherwise.

A family of densities is available for various values of the parameters α and β. When
β = 1, it behaves like xα−1 and when α = 1 it is of the form (1 − x)β−1, and both of these
are power functions. A few of them are shown in Figure 6.5.

Figure 6.5: Type-1 beta densities.

Let us evaluate an arbitrary h-th moment of a type-1 beta random variable.

E[xh] = ∫
1

0
xhf7(x)dx = Γ(α + β)

Γ(α)Γ(β)
∫
1

0
x(α+h)−1(1 − x)β−1dx

which is available from type-1 beta integral by replacing α by α + h. That is,

E[xh] =
Γ(α + β)
Γ(α)Γ(β)

Γ(α + h)Γ(β)
Γ(α + h + β)

, ℜ(α + h) > 0

=
Γ(α + h)
Γ(α)

Γ(α + β)
Γ(α + β + h)

, ℜ(α + h) > 0. (6.21)

If h is real, then it is possible to have some negative moments existing such that
α + h > 0. If α = 5.8, then h can be down to −5.8 but not equal to −5.8. When h = s − 1,
we have the Mellin transform of the density f7(x). The moment generating function
will go into a series unless α and β are positive integers. Hencewewill not consider the
moment generating function here. [For obtaining the series, expand etx and integrate
term by term. It will go into a hypergeometric series of the 2F1 type.] From (6.21), the
first two moments are available by putting h = 1 and h = 2 and then simplifying by
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using the formulae (6.5) and (6.6), and they the following, by observing that:

Γ(α + 1)
Γ(α)

= αΓ(α)
Γ(α)

= α

and Γ(α + 2)
Γ(α)

= α(α + 1)

and similarly for other gamma ratios. That is,

E[x] = Γ(α + 1)
Γ(α)

Γ(α + β)
Γ(α + β + 1)

= α
α + β

. (6.22)

E[x2] = Γ(α + 2)
Γ(α)

Γ(α + β)
Γ(α + β + 2)

= α(α + 1)
(α + β)(α + β + 1)

. (6.23)

By using (6.22) and (6.23), one can evaluate the variance of a type-1 beta random vari-
able. The type-2 beta density is associated with the type-2 beta integral and it is the
following:

f8(x) =
{
{
{

Γ(α+β)
Γ(α)Γ(β)x

α−1(1 + x)−(α+β), α > 0, β > 0, x ≥ 0
0, otherwise.

Various shapes are there for various values of α and β, a few are shown in Figure 6.6.

Figure 6.6: Family of type-2 beta densities.

In a type-2 beta density if we make a transformation x = m
n F, m,n = 1, 2,…, then we

get the F-density or the variance ratio density, which is one of the main densities in
statistical applications. Both type-1 and type-2 beta random variables are connected
to gamma random variables. Let us evaluate the h-th moment for an arbitrary h in the
type-2 beta case.

E[xh] = Γ(α + β)
Γ(α)Γ(β)

∫
∞

0
xα+h−1(1 + x)−(α+β)dx
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which is available from a type-2 beta integral by replacing α by α + h and β by β − h

= Γ(α + β)
Γ(α)Γ(β)

Γ(α + h)Γ(β − h)
Γ(α + β)

= Γ(α + h)
Γ(α)

Γ(β − h)
Γ(β)

, ℜ(α + h) > 0, ℜ(β − h) > 0. (6.24)

Thus, the effective condition on h is that −ℜ(α) < ℜ(h) < ℜ(β). If α,β,h are real, then
−α < h < β. Thus only a few moments in this interval will exist. Outside that, the mo-
ments will not exist. Let us look into the first two moments. Observe that

Γ(α + 1)
Γ(α)

= α;

Γ(α + 2)
Γ(α)

= α(α + 1);

Γ(β − 1)
Γ(β)

= 1
β − 1

, β ≠ 1;

Γ(β − 2)
Γ(β)

= 1
(β − 1)(β − 2)

, β ≠ 1, 2.

Hence

E[x] = Γ(α + 1)
Γ(α)

Γ(β − 1)
Γ(β)

= α
(β − 1)

, β ≠ 1. (6.25)

E[x2] = Γ(α + 2)
Γ(α)

Γ(β − 2)
Γ(β)

= α(α + 1)
(β − 1)(β − 2)

, β ≠ 1, 2. (6.26)

By using (6.25) and (6.26), one can compute the variance of a type-2 beta random vari-
able.

Example 6.3. The proportion of people who are politically conscious from village to
village in Tamilnadu is seen to be type-1 beta distributed with the parameters α = 2.5
and β = 3.5, that is, x ∼ type-1 beta(α = 2.5,β = 3.5). If a village is selected at random,
what is the probability that the proportion of politically conscious people in this vil-
lage is below 0.2.

Solution 6.3. The required probability, say p, is available from the area under the
curve between the ordinates at x = 0 and x = 0.2 or from the integral

p = Γ(6)
Γ(2.5)Γ(3.5)

∫
0.2

0
x2.5−1(1 − x)3.5−1dx

= Γ(6)
Γ(2.5)Γ(3.5)

∫
0.2

0
x1.5(1 − x)2.5dx.

The gammas can be simplified.
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Γ(6) = 5! = 120.

Γ(2.5) = Γ(5
2
) = (3

2
)( 1

2
)Γ( 1

2
) = 3

4
√π.

Γ(3.5) = (5
2
)(3

2
)( 1

2
)Γ( 1

2
) = 15

8
√π.

Therefore,

Γ(6)
Γ(2.5)Γ(3.5)

= 256
3π

.

But the integral part cannot be explicitly evaluated. If β was a positive integer, then
we could have expanded (1 − x)β−1 by using a binomial expansion and integrate term
by term to produce a sum of a finite number of terms. If α was a positive integer, then
one could have transformed x = 1 − y [the limits will change] and expanded (1 − y)α−1,
which would have also produced a finite sum. Our exponents here are α − 1 = 1.5 and
β − 1 = 2.5, not integers. Then what we can do is either expand (1 − x)2.5 by using a
binomial expansion, then integrate term by term, whichwill give a convergent infinite
series or one can use what is known as the incomplete beta tables. Integrals of the
type

Ba(α,β) = ∫
a

0
xα−1(1 − x)β−1dx (6.27)

are tabulated for various values of a,α,β, called incomplete beta tables, or use a pro-
gram such as Maple or Mathematica, which will produce the numerical answer also.
In (6.27), if we expand (1 − x)β−1, integrate term by term, then we will get a hypergeo-
metric series of the 2F1 type. We will leave the final computation as an exercise to the
students.

6.6 Laplace density

A density which is a goodmodel to describe simple input-output situations, opposing
forces, creation of sand dunes etc is the Laplace density or double exponential density:

f9(x) =
{
{
{

ce−θ|x|, −∞ < x < ∞, θ > 0
0, elsewhere

where c is the normalizing constant. Let us evaluate c. Note that

|x| =
{
{
{

−x for x < 0
x for x ≥ 0.

The total probability or the total integral should be 1. Therefore,
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1 = c∫
∞

−∞
e−θ|x|dx = c∫

0

−∞
e−θ|x|dx + c∫

∞

0
e−θ|x|dx

= c∫
0

−∞
e−θ(−x)dx + c∫

∞

0
e−θxdx = c∫

∞

0
e−θydy + c∫

∞

0
e−θxdx

by changing y = −x in the first integral

1 = 2c∫
∞

0
e−θtdt = 2c[− 1

θ
e−θt]
∞

0
= 2c

θ
.

Therefore, c = θ/2. The graph of the density is given in Figure 6.7.

Figure 6.7: Laplace density.

Laplace density is widely used in non-Gaussian stochastic processes and time series
models also.

Example 6.4. For a Laplace density with parameter θ = 2, compute the probability
over the interval [−3, 2].

Solution 6.4. From the graph in Figure 6.7, note that Laplace density is a symmetric
density, symmetric about x = 0. Hence

Pr{−3 ≤ x ≤ 2} = ∫
2

−3
e−2|x|dx

= ∫
0

−3
e−2|x|dx + ∫

2

0
e2|x|dx

= ∫
3

0
e−2xdx + ∫

2

0
e−2xdx

= [− 1
2
e−2x]

3

0
+ [−

1
2
e−2x]

2

0

= 1
2
[1 − e−6] + 1

2
[1 − e−4] = 1 − 1

2
[e−6 + e−4].

6.7 Gaussian density or normal density

The most widely used density is the Gaussian density, which is also called the normal
density. [This is another unfortunate technical term. This does not mean that other
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densities are abnormal or this is some standard density and others are abberations.]
The density is the following:

f10(x) = ce−
(x−μ)2

2σ2 , −∞ < x < ∞

for −∞ < μ < ∞, σ > 0 where μ (Greek letter mu) and σ (Greek letter sigma) are param-
eters, and c is the normalizing constant.

Let us compute the normalizing constant c, the mean value and the variance.
First, make a substitution

u = x − μ
σ

⇒ du = 1
σ
dx.

The total probability is 1 and, therefore,

1 = c∫
∞

−∞
e−
(x−μ)2

2σ2 dx = cσ∫
∞

−∞
e−

u2
2 du = 2cσ∫

∞

0
e−

u2
2 du,

since it is an even and exponentially decaying function. Hence

1 = cσ√2∫
∞

0
v

1
2−1e−vdv

by putting v = u2
2 ⇒ du = √22 v

1
2−1dv

1 = cσ√2Γ( 1
2
) = cσ√2π ⇒ c = 1

σ√2π
.

For computing themean value and variancewemake the same substitution, y = x−μ
σ ⇒

dx = σdy and x = μ + σy. Then the mean value,

E[x] = ∫
∞

−∞

x
σ√2π

e−
(x−μ)2

2σ2 dx

= μ∫
∞

−∞

1
√2π

e−
y2
2 dy + σ∫

∞

−∞

y
√2π

e−
y2
2 dy

= μ + 0 = μ

because the first integral is the total probability in a Gaussian density with μ = 0 and
σ2 = 1 and the second is an integral over an odd function, where each piece gives con-
vergent integrals, and hence zero. Thus the parameter μ sitting in the density is the
mean value of the Gaussian random variable. Now, let us compute variance, by using
the following substitutions y = x−μ

σ and u = y2
2 :

Var(x) = E[x − E(x)]2 = E[x − μ]2

= ∫
∞

−∞

[x − μ]2

σ√2π
e−
(x−μ)2

2σ2 dx = σ2 ∫
∞

−∞

y2
√2π

e−
y2
2 dy
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by using the substitution y = x−μ
σ . Then

Var(x) = 2σ2
√2π

∫
∞

0
y2e−

y2
2 dy

by using the property of even functions, and it is

= σ2 ∫
∞

0

u
1
2−1

√π
e−udu = σ2

by using the substitution u = y2
2 , by observing that the integral is Γ( 12 ) = √π. Hence

the second parameter sitting in the Gaussian density is the variance, and σ2 is the
standard notation for the variance.

For convenience, we use the following standard notations:
x ∼ N(μ,σ2): x is distributed as a Gaussian or normal distribution with the mean

value μ and variance σ2. For example, x ∼ N(3,5) means normal with mean value 3
and variance 5.

x ∼ N(0,σ2): x is normally distributed with mean value zero and variance σ2;
x ∼ N(0, 1): x is normally distributedwithmeanvalue zero andvarianceunity. This

is also called a standard normal distribution and its density will be of the form:

f (x) = 1
√2π

e−
x2
2 , −∞ < x < ∞. (6.28)

The graph of a N(μ,σ2) will be of the form as depicted in Figure 6.8.

Figure 6.8: Left: N(μ,σ2); Right: N(0, 1).

In the graphs, we have marked the points 1σ or one standard deviation away from the
mean value, two standard deviations away from the mean value and three standard
deviations away from the mean value. These intervals are very important in decision
making situations. The N(μ,σ2) curve is symmetric about x = μ and there are points
of inflexion at x = μ − σ and x = μ + σ. The N(0, 1) curve is symmetric about x = 0 and
points of inflexion at x = ±1. Definite integrals of the form

∫
a

0
f (x)dx or ∫

a

−∞
f (x)dx
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are not available because the indefinite integral∫e−t2dt is not available. But numerical
tables of the standard normal density are available. These are called normal tables.
You may find tables of the type:

∫
a

−∞

1
√2π

e−
z2
2 dz or ∫

b

0

1
√2π

e−
z2
2 dz.

Probability on any interval in the standard normal case can be computed by using one
of the above forms of the normal tables. For example

∫
2

−3

1
√2π

e−
x2
2 dx = ∫

0

−3
[⋅]dx + ∫

2

0
[⋅]dx

= ∫
3

0
[⋅]dx + ∫

2

0
[⋅]dx

due to symmetry and both these integrals can be read from the tables.
From the normal probability tables, we can see that approximately 65% of the

probability is within one standard deviation of the mean value, approximately 95% of
the area is within two standard deviations of the mean value and approximately 99%
area is within three standard deviations of themean value. As probability statements,
we have the following:

Pr{μ − σ < x < μ + σ} = Pr{|x − μ| ≤ σ} = Pr{|x − μ
σ

| ≤ 1}

≈ 0.65. (6.29)

Pr{μ − 2σ < x < μ + 2σ} = Pr{|x − μ| ≤ 2σ} = Pr{|x − μ
σ

| ≤ 2}

≈ 0.95. (6.30)

Pr{μ − 3σ < x < μ + 3σ} = Pr{|x − μ| ≤ 3σ} = Pr{|x − μ
σ

| ≤ 3}

≈ 0.99. (6.31)

These three observations (6.29), (6.30), (6.31) are very important in testing of statistical
hypotheses and in making “confidence statements” on the parameter μ.

Example 6.5. It is found that the monthly incomes of working females in a city are
approximately normally distributed with mean value Rs 10 000 and standard devia-
tion Rs 2 000. (i) What is the range of incomes, around the mean value, where 95% of
the working females can be found? (ii) If a working female is picked at random from
this city, what is the probability that her income is between Rs 8 000 and Rs 14 000?

Solution 6.5. Approximately 95% of incomes, around the mean value, can be found
in the range μ − 2σ < x < μ + 2σ when x denotes the monthly income. The range is

[10000 − 2 × 2000, 10000 + 2 × 2000] = [6000, 14000].
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This answers (i). For (ii), we need the probability Pr{8000 < x < 14000}. We will stan-
dardize x.

Standardization of a random variable x means to consider the random variable y =
x−E(x)
√Var(x) =

x−μ
σ so that the new variable y is such that E(y) = 0 and Var(y) = 1.

For (ii), denoting the standardized x as z we have

Pr{8000 < x < 14000}

= Pr{8000 − 10000
2000

< x − μ
σ

< 14000 − 10000
2000

}

= Pr{−1 < z < 2} = Pr{−1 < z < 0} + Pr{0 < z < 2}
= Pr{0 < z < 1} + Pr{0 < z < 2} from symmetry
= 0.325 + 0.475 = 0.8 approximately.

The probabilities are read from standard normal tables.

6.7.1 Moment generating function of the normal density

Since the Gaussian density is one of the most important densities in statistical and
probability literature, the moment generating function in the Gaussian case is also
very important. Again, using the same notation

M(t) = E[etx] = 1
σ√2π

∫
∞

−∞
etx−

1
2σ2
(x−μ)2dx.

Make the transformation y = x−μ
σ , then dy = 1

σdx and the limits will remain the same,
−∞ < y < ∞. Then x = μ + σy. The exponent in the integral above, simplifies to the
following:

tx −
1
2σ2

(x − μ)2 = t(μ + σy) − y2

2

= tμ − 1
2
[y2 − 2σty]

= tμ −
1
2
[y2 − 2σty + σ2t2 − σ2t2]

= tμ − 1
2
[(y − σt)2] + t2σ2

2
.

Substituting these and replacing dx
σ by dy we have

M(t) = etμ+
t2σ2
2 ∫
∞

−∞

e−
1
2 (y−σt)

2

√2π
dy.

The integral part can be looked upon as the total probability, which is 1, from a normal
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density with parameters tσ and 1. Therefore,

M(t) = etμ+
t2σ2
2 . (6.32)

That is,

x ∼ N(μ,σ2) ⇒ M(t) = exp[tμ + t2σ2

2
].

x ∼ N(0,σ2) ⇒ M(t) = exp[ t
2σ2

2
].

x ∼ N(0, 1) ⇒ M(t) = exp[ t
2

2
].

The characteristic function of the Gaussian random variable or Gaussian or normal
density is obtained by replacing t by it, i = √−1. Denoting the characteristic function
by ϕ(t), we have

ϕ(t) = exp[itμ − t2σ2

2
] (6.33)

for the normal or Gaussian case. When x ∼ N(0, 1), the standard normal, then its char-
acteristic function is

ϕ(t) = exp[− t
2

2
]. (6.34)

From themoment generating function (6.32) or from the characteristic function (6.33),
one property is obvious. What is the distribution of a linear function of a normal ran-
dom variable? Let x ∼ N(μ,σ2) and let y = ax + b, a ≠ 0, where a and b are constants.
Then the moment generating function (sometimes abbreviated as mgf) of y, denoted
byMy(t), is given by

My(t) = E[ety] = E[et(ax+b)] = etbE[e(at)x]

= exp[tb + {(at)μ + (at)2 σ
2

2
}]

= exp[t(aμ + b) + t2

2
(a2σ2)], a ≠ 0.

But this is the mgf of a normal variable with parameters aμ + b = E[y] = E[ax + b] and
a2σ2 = Var(y) = Var(ax + b). Therefore, every linear function of a normal variable is
again a normal variable.

Result 6.1. If x ∼ N(μ,σ2) then y = ax + b, a ≠ 0, ∼N(aμ + b,a2σ2).

Note 6.1. When a = 0, then themgf is etb, which is themgf of a degenerate random
variable with the whole probability mass 1 at the point x = b (Observe that b can be
zero also).
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For example,

x ∼ N(μ = 2,σ2 = 5) ⇒ y = −3x + 4 ∼ N(−2,45).
x ∼ N(μ = −4,σ2 = 1) ⇒ y = −2x + 7 ∼ N(15,4).
x ∼ N(μ = 0,σ2 = 1) ⇒ y = 3x + 4 ∼ N(4,9).

Let us see what happens if we take the n-th power of this mgf for a normal random
variable. That is,

M(t) = etμ+
t2σ2
2 ⇒

[M(t)]n = [etμ+
t2σ2
2 ]n = etnμ+

t2
2 n(σ)

2
.

But this is the mgf of a normal or Gaussian variable with the parameters nμ and nσ2.
If the corresponding random variable is denoted by u then u ∼ N(nμ,nσ2). This is a
property associated with “infinite divisibility” of a random variable, which will be
discussed after considering independence of random variables in the next chapter.
Observe that ifMx(t) is the mgf of x then [Mx(t)]n does not mean the mgf of xn.

[Mx(t)]
n ≠Mxn (t).

We have seen the infinite divisibility property for a gamma random variable also. If z
is a two parameter gamma random variable, then we have seen that its mgf, denoted
byMz(t), is (1 − βt)−α. Therefore,

[Mz(t)]
n = [(1 − βt)−α]n = (1 − βt)−nα ,

which is the mgf of a gamma variable with the shape parameter nα and scale param-
eter β.

6.8 Transformation of variables

Here, we consider the problem of finding the probability or density of a function g(x)
of a random variable x, given the probability or density function of the random vari-
able x. As an example, suppose that we know that the waiting time at a certain queue
is exponentially distributed with the expected waiting time one hour. Suppose that
for a person waiting at this queue it costs him Rs 500 per hour of time lost plus the
transportation cost of Rs 40. This means, if t is the actual waiting time then his loss
is g(t) = 40 + 500t. Knowing the distribution of t [known to be exponential here] we
want the distribution of 40+ 500t. As another example, suppose that a working girl is
appearing for an interview for promotion. If x is the number of correct answers given,
then her salary is likely to be x2 + Rs2000 (fringe benefits at the next position). Here,
x is a binomial random variable and we want the distribution of y = 2000 + x2. Prob-
lems of this type will be examined here. First, let us examine discrete cases. If the



154 | 6 Commonly used density functions

probability function of x is given and if we need the probability function of y = g(x),
some function of x, then the problem is answered if we can compute the probability
for each value g(x) takes, knowing the probability function of x. Substitute the values
of x, for which there are non-zero probabilities, into g(x) and evaluate the correspond-
ing probabilities. Then we have the answer. This will be illustrated with an example.

Example 6.6. Suppose x has the probability function:

f (x) =

{{{{{{
{{{{{{
{

0.25, x = −1
0.25, x = 1
0.5, x = 0
0, elsewhere.

Compute the probability function of (i) y = x2; (ii) y = 3 + 2x + 5x2.

Solution 6.6. (i) When x = −1, y = x2 = 1 with probability 0.25. When x = 1, y = x2 = 1
with probability 0.25. No other x-value gives y = 1. Hence the probability associated
with y = 1 is 0.25 + 0.25 = 0.5. When x = 0, y = x2 = 0 with probability 0.5. This com-
pletes the computations and hence the probability function of y, denoted by h1(y) is
the following:

h1(y) =
{{{
{{{
{

0.5, y = 1
0.5, y = 0
0, elsewhere.

For (ii) also the procedure is the same. For x = −1, y = 3+ 2x+5x2 = 3+ 2(−1)+5(−1)2 = 6
with probability 0.25. When x = 1, y = 3 + 2x + 5x2 = 3 + 2(1) + 5(1)2 = 10 with probabil-
ity 0.25. When x = 0, y = 3 + 2x + 5x2 = 3 + 2(0) + 5(0)2 = 3 with probability 0.5. Hence
the probability function of y, denoted by h2(y), is the following:

h2(y) =

{{{{{{
{{{{{{
{

0.25, y = 6
0.25, y = 10
0.5, y = 3
0, elsewhere.

Whatever be the function g(x) of x the procedure is the same in the discrete case.

For the continuous case, the procedure is different. We have to look into the Jaco-
bian of the transformation, whichmeans that we need a one-to-one function. Let x be
a continuous random variable and let g(x) be a one-to-one function of x over a given
interval. Some situations are shown in Figure 6.9. In (a), we have an increasing func-
tion, which is one-to-one. In (b), we have a decreasing function, which is one-to-one.
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Figure 6.9: (a) increasing, (b) decreasing, (c) increasing/decreasing in each sub-interval.

In (c), we can subdivide the interval into two pieces where in each piece the function
is one-to-one, and hence we can apply the procedure for each piece separately.

Let the distribution functions (cumulative density) of x and y = g(x) be denoted
by Fx(x) and Fy(y), respectively. Then

Pr{x ≤ a} = Fx(a) and Pr{y ≤ b} = Fy(b).

If the function y = g(x) is increasing as in Figure 6.9 (a), then as the point on the x-axis
moves to the right or as x increases the corresponding point on the y-axis moves up or
y also increases. In this case,

Pr{x ≤ a} = Pr{y ≤ b = g(a)} = Pr{y ≤ g(a)} ⇒ Fx(a) = Fy(g(a)). (6.35)

We can differentiate to get the density function. Observe that d
dxFx(x) = f1(x) where

f1(x) is the density function of x and
d
dyFy(y) = f2(y) where f2(y) is the density of y. Let

us differentiate (6.35) on both sides with respect to a. Then on the left side we should
get the density of x evaluated at x = a. That is,

f1(a) =
d
da

Fx(a) =
d
da

Fy(g(a))

=
d
dg

Fy(g(a)) ×
d
da

g(a) ⇒

f1(a) = f2(g(a))g′(a) ⇒

f1(x) = f2(y) ×
dy
dx

. (6.36)

This is the connection between the densities of x and y when y is an increasing func-
tion of x. Now, let us see what happens if y is a decreasing function of x as in Fig-
ure 6.9 (b). Observe that when a point is moving to the right on the x-axis (increasing)
the corresponding point on the y-axis is decreasing. Hence the connection between
the probabilities is the following:

Pr{x ≤ a} = Pr{y ≥ b = g(a)} = 1 − Pr{y ≤ g(a)} ⇒

Fx(a) = 1 − Fy(g(a)).



156 | 6 Commonly used density functions

Differentiating both sides with respect to a we have

f1(a) =
d
da

Fx(a) = − d
da

Fy(g(a))

= − d
dg

Fy(g(a)) × d
da

g(a) ⇒

f1(a) = −f2(g(a))
d
da

g(a).

That is,

f1(x) = −f2(y)
dy
dx

. (6.37)

Thus, when y is a decreasing function of x then the formula is (6.37). Note that when
y is decreasing, dy

dx will be negative, and thus the right side will be positive all the
time. Thus, in general, the formula is (6.36), and when y is decreasing then multiply
the right side by −1. In practical computations, this minus sign is automatically taken
care of in the limits of integration and hence the formula to be remembered is (6.36)
and take the correct limits of integration.

Example 6.7. Let x be a continuous random variable with density f (x) and distribu-
tion function Fx(x), which is a function of x. Consider the transformation y = Fx(x)
[This transformation is called the probability integral transformation, which is the ba-
sis for the area called statistical simulation and also the basis for generating random
numbers or taking a random sample from a given distribution. Evaluate the density
of y.

Solution 6.7. This is a one-to-one transformation. y is an increasing (non-decreasing)
function of x. Applying the formula (6.36), we have

f1(x) = f2(y)
dy
dx

⇒

f1(x) = f2(y)
d
dx

Fx(x) = f2(y)f1(x) ⇒

1 = f2(y).

That is, y is uniformly distributed on the interval [0, 1]. Thus, through a probability
integral transformation any density can be brought to a uniform density over [0, 1].
This is the importance of this transformation.

Example 6.8. Let x be exponentially distributed with mean value 5. Let y = 2 + 3x.
Compute the density of y.

Solution 6.8. When x goes from 0 to ∞, y = 2 + 3x is an increasing function of x.
Hence we can use the formula (6.36). dy

dx = 3 and x = y−2
3 . Also when x = 0, y = 2 and
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when x → ∞, y → ∞. Therefore,

f1(x) = f2(y) × 3 ⇒ f2(y) =
1
3
f1(

y − 2
3

) = 1
15
e−
(y−2)
15 ⇒

f2(y) =
{
{
{

1
15e
− (y−2)15 , 2 ≤ y < ∞

0, elsewhere.

Thus y is a relocated re-scaled exponential random variable.

Example 6.9. Let x be a standard normal variable and let y = x2. Compute the density
of y.

Solution 6.9. Here, x goes from −∞ to ∞, and hence y = x2 is not a one-to-one func-
tion in the whole range. But in the interval −∞ < x < 0 (the function is strictly decreas-
ing), and in the interval 0 < x < ∞ (the function is strictly increasing) the function
y = x2 is one-to-one in each of these intervals. Hence we can apply formula (6.36) in
the interval 0 < x < ∞ and (6.37) in the other interval −∞ < x < 0. The curve y = x2 is
shown in Figure 6.10.

Figure 6.10: y = x2.

For positive x, y = x2 ⇒ x = y
1
2 ⇒ dx

dy = 1
2y
− 12 . Let the piece of the standard normal den-

sity in the interval 0 < x < ∞ be denoted by f11(x), that is,

f11(x) =
{
{
{

1
√2π e
− x

2
2 , 0 ≤ x < ∞

0, elsewhere

so that f1(x) = f11(x) + f12(x), where f12(x) is the corresponding piece of N(0, 1) density
over −∞ < x < 0, and the corresponding piece of the density of y be denoted by f21(y).
Then from (6.36)

f21(y) =
1
2
y

1
2−1

e−
y
2

√2π
, 0 ≤ y < ∞

= 1
2

1
2

1
2 Γ( 12 )

y
1
2−1e−

y
2 .
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From the symmetry of y and due to f1(x) being an even function, f22(y) corresponding
to f12(x) also gives exactly the same function from (6.37). Hence

f2(y) =
{
{
{

1
2
1
2 Γ( 12 )

y
1
2−1e−

y
2 , 0 ≤ y < ∞

0, elsewhere.

But this is a gammadensitywith parameters α = 1
2 and β = 2 or it is a chi-square density

with one degree of freedom; see Section 6.3.2.

Result 6.2. When x is standard normal, then y = x2 is a chi-square with one degree
of freedom or

x ∼ N(0, 1) ⇒ y = x2 ∼ χ21 .

Another method of showing that when x ∼ N(0, 1) then y = x2 ∼ χ21 or a chi-square
variable with one degree of freedom is to use the distribution function of y itself.
The distribution function of y, denoted by Fy(z) = Pr{y ≤ z, z > 0} is such that gy(z) =
d
dzFy(z) where gy(z) is the density of y, evaluated at y = z. Note that

Fy(z) = Pr{y ≤ z, z > 0} = Pr{x2 ≤ z} = Pr{|x| ≤ √z}
= Pr{−√z ≤ x ≤ √z} = Fx(√z) − Fx(−√z)

where Fx(⋅) is the distribution function of x, and the density of x, denoted by fx(z) =
d
dzFx(z). Therefore, differentiating the above with respect to z we have

gy(z) =
d
dz

Fy(z) =
d
dz

[Fx(√z) − Fx(−√z)]

= fx(√z)
1
2
z

1
2−1 + fx(−√z) 1

2
z

1
2−1 = z

1
2−1

√2π
e−

z
2

= 1
2

1
2 Γ( 12 )

z
1
2−1e−

z
2 , 0 ≤ z < ∞

and zero elsewhere, which is the density of a chi-square random variable with one
degree of freedom or a gamma variable with the parameters (α = 1

2 ,β = 2).

Example 6.10. Let x ∼ N(0, 1) and let y = 5x2 − 3. Compute the density of y.

Solution 6.10. Let u = x2. Then we have from Example 6.9 that u is a chi-square vari-
able with one degree of freedom. Let the density of u be fu(u). Then

fu(u) =
{
{
{

1
2
1
2 Γ( 12 )

u
1
2−1e−

u
2 , 0 ≤ u < ∞

0, elsewhere
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But y to u is a one to one transformation. y = 5u − 3⇒ u = y+3
5 , dy = 5du, 0 ≤ u < ∞ ⇒

−3 ≤ y < ∞. Therefore, if the density of y is denoted by fy(y) then

fy(y) =
{
{
{

1
(5)2

1
2 Γ( 12 )

( y+35 )
1
2−1e−

1
2 (

y+3
5 ), −3 ≤ y < ∞

0, elsewhere.

6.9 A note on skewness and kurtosis

Skewness is often misinterpreted as asymmetry in a distribution. Skewness is associ-
ated with the median. In a continuous case, Pr{x ≤ M} = Pr{x ≥ M} = 1

2 or probability
to the left of the median pointM is the same as the probability to the right ofM. If the
range of x to the right ofM is not equal to the range of x to the left ofM, then there is
possibility of skewness. If the probability 0.5 on one side of the point M is stretched
out compared to the other side, then the density is skewed to the stretched outer side.
A density curve can be asymmetric but need not be skewed. Some possibilities are
marked in Figure 6.11.

Figure 6.11: Symmetric, asymmetric, skewed to right, skewed to left densities.

A scale-free measure based on the third central moment, such as

s =
μ3

[μ2]
3
2

=
μ3
σ3

(6.38)

where μ3 = E[x − E(x)]3, μ2 = E[x − E(x)]2 = σ2, is often used to measure skewness. But
s can only measure asymmetry rather than skewness. But

s1 =
E[x −M]3

E[x −M]2
3
2

(6.39)

can measure skewness to some extent whereM is the median. If s1 > 0, then one may
say that the density is skewed to the right and if s1 < 0 then skewed to the left. We
shall not elaborate on this aspect further because the measures s or s1 is not a unique
property associated with any shape. Kurtosis has something to do with peakedness
or flatness of a density curve or probability function. When we say more flat or more
peaked then there has to be a standard item to compare with. The normal (Gaussian)



160 | 6 Commonly used density functions

density curve is takenas the standard for comparisonpurposes. For aGaussiandensity
when we compute the ratio,

k = E[x − E(x)]4

[E(x − E(x))2]2
=
μ4
μ22

(6.40)

then it is k = 3 for the Gaussian case. Hence the comparison is made with this num-
ber 3. For a given distribution if k > 3, then we say that the distribution if lepto-kurtic
(more peaked) and if k < 3, then we say that the distribution is plati-kurtic (more flat)
as shown in Figure 6.12.

Figure 6.12: Left: normal; Middle: lepto-kurtic; Right: plati-kurtic.

But the items s, s1,k given above are not characterizing quantities for distributions. In
other words, these measures do not uniquely determine (characterize) distributions
or shapes. Hence no unique conclusions can be made by using these measures. We
have already seen that a property such as mean value μ being equal to variance σ2

is enjoyed by the Poisson random variable as well as by a gamma random variable
with the scale parameter β = 1. Hence it is not a characteristic property of any random
variable. Similarly, for a Gaussian random variable k in (6.40) is 3. But k = 3 is not
a characteristic property of the Gaussian density. Hence the concepts behind it and
comparison with 3 do not havemuch significance. Hence, nowadays, the students are
unlikely to find discussion of skewness and kurtosis in modern probability/statistics
books.

Note 6.2. In Chapter 5, we derived most of the discrete probability functions by look-
ing at experimental situations satisfying some conditions. When it came to densities,
for continuous randomvariables,we couldnot list experimental situations, other than
for the case of uniformdistribution.Are there experimental situations fromwhereden-
sities could be derived? The answer is in the affirmative. The derivation of the densities
from the basic assumptions to the final densities involve the concepts of joint distribu-
tions, statistical independence, etc. of random variables. Hence wewill consider such
problems after discussing joint distributions.
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6.10 Mathai’s pathway model

A very general density with a switching mechanism, introduced by Mathai [5] has the
following form in the particular case of real scalar variables: [The above paper [5] is
on rectangular matrix variate functions.]

gx(x) = c|x|γ−1[1 − a(1 − q)|x|δ]
η
1−q (6.41)

for a > 0, δ > 0, η > 0, γ > 0, −∞ < x < ∞, and 1 − a(1 − q)|x|δ > 0, and zero elsewhere,
where c is the normalizing constant. A particular case of (6.41) for x > 0 is the follow-
ing:

g1(x) = c1xγ−1[1 − a(1 − q)xδ]
η
1−q (6.42)

for a > 0, δ > 0, γ > 0, η > 0, 1 − a(1 − q)xδ > 0. Here, x will be in a finite range with
a non-zero function for q < 1. Observe that when q < 1 then the density in (6.42) stays
in the generalized type-1 beta family. Generalized type-1 beta in the sense that if y is
type-1 beta as described in Section 6.5 then consider a transformation y = a(1 − q)xδ

then the density of x will reduce to the form in (6.42).
When q > 1, then 1 − q = −(q − 1) and the density, denoted by g2(x), has the form

g2(x) = c2xγ−1[1 + a(q − 1)xδ]−
η
q−1 (6.43)

for 0 ≤ x < ∞, a > 0, δ > 0, η > 0, q > 1, γ > 0, and zero elsewhere, where c2 is the
normalizing constant. The form in (6.43) is a generalized type-2 beta family in the sense
if y is type-2 beta as in Section 6.5 then consider a transformation y = a(q − 1)xδ then x
will have the density of the form in (6.43).

Now considering the limiting process of q going to 1 either from the left or from the
right. From the property, coming from the definition of the mathematical constant e,
that

lim
n→∞

(1 + x
n
)
n
= ex

we have

lim
q→1−

g1(x) = lim
q→1+

g1(x) = g3(x)

where

g3(x) = c3xγ−1e−aηx
δ
, (6.44)

for 0 ≤ x < ∞, a > 0, η > 0, δ,γ > 0 and zero elsewhere. This is the generalized gamma
density. In the pathway model, q is called the pathway parameter because through q
one can go from a generalized type-1 beta family of densities to a generalized type-2
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beta family of densities to a generalized gamma family. Thus all these families of func-
tions are connected through this pathway parameter q. By making the substitution
y = a(1 − q)xδ in (6.42), y = a(q − 1)xδ in (6.43) and y = axδ in (6.44) and then integrat-
ing out by using type-1 beta, type-2 beta and gamma integrals respectively, one can
compute the normalizing constants c1, c2, c3. [This evaluation is given as an exercise
to the students.]

6.10.1 Logistic model

A very popular density in industrial applications is logistic model or logistic density.
Let us denote it by f (x).

f (x) = ex

(1 + ex)2
= e−x

(1 + e−x)2
, −∞ < x < ∞. (6.45)

Note that the shape of the curve corresponds to a Gaussian density but with thicker
tails at both ends. In situations where the tail probabilities are bigger than the corre-
sponding areas from a standard normal density, then this logistic model is used. We
will look at some interesting connections to other densities. Let us consider a type-2
beta density with the parameters α > 0 and β > 0 or with the density

g(x) = Γ(α + β)
Γ(α)Γ(β)

xα−1(1 + x)−(α+β), 0 ≤ x < ∞, α > 0, β > 0 (6.46)

and zero elsewhere. Let us make the transformation x = ey or x = e−y then −∞ < y < ∞
and the density of y, denoted by g1(y), is given by

g1(y) =
Γ(α)Γ(β)
Γ(α + β)

eαy

(1 + ey)α+β
= Γ(α + β)

Γ(α)Γ(β)
e−βy

(1 + e−y)α+β
(6.47)

for α > 0, β > 0, −∞ < y < ∞. Note that for α = 1, β = 1, (6.47) reduces to (6.45) the lo-
gistic density. This (6.47) is the generalized logistic density introduced by this author
and his co-workers and available from a type-2 beta density by a simple transforma-
tion. If we put x = m

n z, α = m
2 , β = n

2 in (6.46), then the density of z is the F-density
or variance ratio density. If a power transformation is used in (6.46), that is, if we re-
place x by atρ, ρ > 0, a > 0, then (6.46) will lead to a particular case of the pathway
density in Section 6.10 for q > 1. For all the models described in Sections 6.1 to 6.11,
one can look at power transformations and exponentiation. That is, replace x by ayρ,
a > 0, ρ > 0 or x by e−y , then we end up with very interesting models which are useful
when models are constructed for given data, see the effects of such transformations
from [7]. There are other classes of densities associated with Mittag–Leffler functions.
These functions naturally arise in fractional calculus, especially in the solutions of
fractional differential equations. Such models may be seen from [6].
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6.11 Some more commonly used density functions

In the following list, only the non-zero parts of the densities are given. It is understood
that the functions are zeros outside the ranges listed therein.

f11(x) =
4
π
sin−1 √x, 0 < x < 1

[Arc-sine density].

f12(θ) =
2Γ(p1 + p2)
Γ(p1)Γ(p2)

(sinθ)2p1−1(cosθ)2p2−1

for 0 < θ < π/2, p1 > 0, p2 > 0 [Beta type-1 polar density].

f13(x) = cx
s(2m+s+1)

2 −1(1 − x
s
)

s(2n+s−1)
2 −1

for 0 < x < s,m > 0, n > 0,

c = Γ(s(2m + n + s + 1)
s
s
2 (2m+s+1)Γ( s(2m+s+1)2 )Γ( s(2n+s+1)2 )

[Beta type-1, three-parameter density].

f15(x) =
Γ(α + β)
Γ(α)Γ(β)

e−
λ2
2 xα−1(1 − x)β−1

× 1F1(α + β;α; λ
2x
2

)

for 0 < x < 1, λ > 0, α > 0, β > 0 and 1F1 is a confluent hypergeometric function [Beta
type-1 non-central density].

f16(x) = cx
s(2m+s+1)

2 −1(1 + x
s
)
− s(2m+2n+s+1)2 −1

for 0 ≤ x < ∞, s > 0,m > 0, n > 0,

c =
Γ( s(2m+2n+s+1)2 + 1)

s
s(2m+s+1)

2 Γ( s(2m+s+1)2 )Γ(sn + 1)

[Beta type-2 three-parameter density].

f17(x) = e−
λ2
2

Γ(α + β)
Γ(α)Γ(β)

xα−1(1 + x)−(α+β)

× 1F1(α + β;α; λ
2

2
x

1 + x
)

for 0 ≤ x < ∞, α > 0, β > 0, λ > 0 [Beta type-2 non-central density].
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f18(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1bβ

(x + b)α+β

for α > 0, β > 0, b > 0, 0 ≤ x < ∞ [Beta type-2 inverted density].

f19(x) = [2πI0(k)]
−1ek cos 2(x−β)

for 0 < x ≤ π, 0 ≤ β ≤ π, 0 ≤ k < ∞ where I0(k) is a Bessel function [Circular normal
density; also see bimodal density].

f20(x) =
(1 − ρ)

1
2

2π(1 − ρ sin 2x)

for ρ2 < 1, 0 < x ≤ π [Bimodal density].

f21(x) =
1

c[−1 + exp(α + βx)]

for 0 ≤ x < ∞, β > 0, eα > 1, c = 1
β ln(

eα
eα−1 ) [Bose–Einstein density].

f22(x) =
Δ

π[Δ2 + (x − μ)2]

for −∞ < x < ∞, Δ > 0, −∞ < μ < ∞ [Cauchy density].

f23(x) =
(1 − σ2)

2π[1 + σ2 − 2σ cosx]

for 0 < x ≤ 2π, 0 < σ ≤ 1 [Cauchy wrapped up density].

f24(x) =
2

π[1 + x2]

for 0 < x < ∞ [Cauchy folded density].

f25(x) =
2( n2 )

n
2

σnΓ( n2 )
xn−1e−

nx2

2σ2

for x ≥ 0, σ > 0, n a positive integer [Chi density].

f26(x) = e−
μ2

2σ2

∞

∑
r=0

1
r!

( μ2

2σ2
)x

k
2 +r−1

e−
x
2

Γ( k2 + r)

for x ≥ 0,−∞ < μ < ∞, σ > 0, k apositive integer [Non-central chi-square density; μ = 0
gives chi-square density; see also gamma density].

f27(x) =
xp−1

apΓ(p)
e−

x
a

for x ≥ 0, a > 0, p a positive integer [Erlang density; see also gamma density].
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f28(x) =
α
2
e−α|x|, −∞ < x < ∞, α > 0

[Exponential – bilateral density or Laplace density ; with x replaced by x − c we get
exponential-double density].

f29(x) = αa(α + 1)p−a[Γ(p)]−1xp−1 exp[−(α + 1)x]1F1(a;p;x)

for 0 ≤ x < ∞, a > 0, p > 0, α > 0 [Exponential – generalized density].

f30(x) =
e−x

(e−a − e−b)

for a ≤ x ≤ b, a > 0, b > 0 [Exponential – truncated density].

f31(x) =
1
β
e−

1
β (x−λ) for λ ≤ x < ∞,

0 < β < ∞, −∞ < λ < ∞ [Exponential – two-parameter density].

f32(x) =
1
β
exp[−y − exp(−y)] for − ∞ < x < ∞, 0 < β < ∞,

−∞ < λ < ∞, y = x−λ
β [Extreme value, first asymptotic density].

f33(x) =
k
ν
( ν
x
)
k+1

exp[−( ν
x
)
k
]

for x ≥ 0, ν,k > 0 [Extreme value, second asymptotic density].

f34(x) =
k

(−ν)
(x
ν
)
k−1

e−(
x
ν )

k

for x < 0, ν > 0, k > 1 [Extreme value, third asymptotic density].

f35(x) =
1
λ
exp[−(

exp(x) − 1
λ

) + x]

for x ≥ 0, λ > 0 [Extreme value, modified density].

f36(x) =
Γ(m+n2 )

Γ(m2 )Γ( n2 )
(m
n

)
m
2 x

m
2 −1

(1 + m
n x)

m+n
2

for x ≥ 0,m,n positive integers [Fisher’s F-density].

f37(x) = e−
λ2
2

Γ(m+n2 )
Γ(m2 )Γ( n2 )

y
m
2 −1

(1 + y)
m+n
2 1F1(

m+n
2 ; m2 ; λ

2

2
y
1+y )

for x ≥ 0, λ > 0,m,n positive integers, x = n
my [F–non-central density].
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f37(x) = [c{1 + exp(α + βx)}]−1

for 0 ≤ x < ∞, α ≠ 0, β > 0, c = ln( 1+e
α

eα ) [Fermi–Dirac density].

f38(x) =
k

2 sinhk
ek cosθ sinθ,

for 0 < θ ≤ π, k > 0 [Fisher’s angular density].

f39(x) =
√k
√2π

exp[− k
2 (b − ln(x − a))2]

(x − a)
for k > 0, a < x < ∞, a > 0,

−∞ < b < ∞ [Galton’s density or Log-normal density].

f40(x) =
∞

∑
j=1

cjHj(x)ϕ(x)

for −∞ < x < ∞, where ϕ(x) is the standard normal density and Hj(x) is the Cheby-
shev–Hermite polynomial of degree j in x defined by (−1)j d

j

dxjϕ(x) =Hj(x)ϕ(x) and cj =
1
j! ∫
∞
−∞

Hj(x)f (x)dx [Gram–Charlier type A density].

f41(x) = (mg
KT

)e−
(mgx)
(KT)

for x ≥ 0,m > 0, g > 0, T > 0 [Helley’s density].

f42(x) =
n

1
2 (n−1)

σ2
1
2 (n−3)Γ( n−12 )

( x
σ
)
n−2

e−(nx2/(2σ2))

for 0 ≤ x < ∞, σ > 0, n a positive integer [Helmert density].

f43(x) = [π coshx]−1

for −∞ < x < ∞ [Hyperbolic cosine density].

f44(x) = p−x

for e−p ≤ x ≤ 1, p > 0 [Hyperbolic truncated density].

f45(x) =
(λ)

1
2

(2πx3)
1
2
exp[−λ(x − μ)2

(2xμ)2
]

for x > 0, λ,μ > 0 [Inverse Gaussian density].

f46(x) =
exp[− 1

β (x − α)]

β[1 + exp(− 1
β (x − α)]2

for −∞ < x < ∞, β > 0, −∞ < α < ∞ [Logistic density].

f47(x) =
1

xσ√2π
exp[−(lnx − μ)2/(2σ2)]

for x > 0, σ > 0, −∞ < μ < ∞ [Log normal density].
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f48(x) =
4

√π
β

3
2 x2 exp(−βx2)

for x ≥ 0, β > 0 [Maxwell–Boltzmann density].

f49(x) =
α
x0

(x0
x

)
α+1

for x ≥ x0, α > 0 [Pareto density].

d
dx

f50(x) =
(x − a)f50(x)

b0 + b1x + b2x2

where f50(x) is the density function. The explicit solutions are classified into types
I–XII according to the nature of roots of b0 + b1x + b2x2 = 0 [Pearson family].

f51(x) =
x
α2

exp[− 1
2
(x/α)2]

for x ≥ 0, α > 0 [Rayleigh density].

f52(x) =
β exp[α + βx]

[1 + exp(α + βx)]2

for −∞ < x < ∞, β > 0, −∞ < α < ∞ [Sech square density].

f53(x) =
Γ( 12 (ν + 1))
√νπΓ( ν2 )

(1 + x2

ν
)
− 12 (ν+1)

for −∞ < x < ∞, ν a positive integer [Student-t density].

f54(x) =
1
a
(1 − |x|

a
) for |x| ≤ a, a > 0

[Triangular density; there are several modifications of this density].

f55(x) = [2πI0(k)]
−1ek cos(x−β) for 0 < x ≤ 2π,

0 ≤ β ≤ 2π, 0 ≤ k < ∞ where Io(k) is a Bessel function [Von Mises density].

f56(x) =m(x − α)m−1θ−1 exp[− 1
θ
(x − α)m]

for x ≥ α, θ > 0, m > 0, α > 0 [Weibull three parameter density; for α = 0, we have the
usual Weibull density, which is a special case of generalized gamma].

Exercises 6
6.1. Evaluate E(x) and E(x2) for the uniform density by differentiating the moment
generating function in (6.2).
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6.2. Obtain E(x), E(x2), thereby the variance of the gamma random variable by using
the moment generating functionM(t) in (6.14), (i) by expandingM(t); (ii) by differen-
tiatingM(t).

6.3. Expand the exponential part in the incomplete gamma integral γ(α;a), integrate
term by term and obtain the series as a 1F1 hypergeometric series.

6.4. Expand the factor (1 − x)β−1 in the incomplete beta integral in (6.27), integrate
term by term and obtain a 2F1 hypergeometric series.

6.5. Show that the functions f11(x) to f55(x) given in Section 6.11 are all densities, that
is, show that the functions are non-negative and the total integral is 1 in each case.

6.6. For the functions in Exercise 6.5, compute (1) E(x), (2) Var(x); (3) the moment
generating function of x, whenever these exist.

6.7. For the functions in Exercise 6.5 compute (1) theMellin transform; (2) the Laplace
transform wherever they exist and wherever the variable is positive. Give the condi-
tions of existence.

6.8. Let f (x) be a real-valued density function of the real random variable x. Let y be
another real variable. Consider the functional equation

f (x)f (y) = f (√x2 + y2)

where f is an arbitrary function. By solving this functional equation, show that f (x) is
a Gaussian density with E(x) = μ = 0.

6.9. For the Exercise in 6.8, let z be a real variable and let the functional equation be

f (x)f (y)f (z) = f (√x2 + y2 + z2).

Show that the solution gives a Gaussian density with E(x) = μ = 0.

6.10. Shannon’s entropy, which is a measure of uncertainty in a distribution and
which has wide range of applications in many areas, especially in physics, is given by

S = −c∫
∞

−∞
[ln f (x)]f (x)dx

where c is a constant and f (x) is a non-negative integrable function. Show that if S is
maximized over all densities under the conditions (1) (i) ∫∞

−∞
f (x)dx = 1 then the result-

ing density is a uniform density; (2) Show that under the conditions (i) and (ii) E(x) =
is given or fixed over all functional f then the resulting density is the exponential den-
sity; (3) Show that under the conditions (i), (ii) and (iii) E(x2) = a given quantity, then
the resulting density is a Gaussian density. [Hint: Use calculus of variations].
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6.11. The residual effect x of two opposing forces behaves like small positive or nega-
tive residual effect having high probabilities and larger residual effect having smaller
probabilities. A Laplace density is found to be a good model. For a Laplace density
of the form f (x) = ce−β|x|, −∞ < x < ∞, where c is the normalizing constant, compute
(1) Pr{−5 < x ≤ 3}; (2) E(x); (3) moment generating function of x.

6.12. If x ∼ N(μ = 2,σ2 = 5) derive the densities of (1) y1 = 2x; (2) y2 = 2x + 5; (3) y3 = 3x2

when μ = 0, σ2 = 1; (4) y4 = 2 + 3x2 when μ = 0, σ2 = 1, by using transformation of
variables.

6.13. If x ∼ gamma(α = 3,β = 2) derive the density of (1) y1 = 4x3; (2) y2 = 4x3 + 3 by
using transformation of variables.

6.14. Under a probability integral transformation, an exponential variable x with ex-
pected value E(x) = 3 makes y a uniformly distributed variable over [0, 1]. What is the
x value corresponding to (1) y = 0.2; (2) y = 0.6.

6.15. If Mx(t) is the moment generating function of a random variable x, is [Mx(t)]
1
n ,

n = 2,3,… a moment generating function for some random variable? List at least two
random variables where this happens, from among the random variables discussed
in this chapter.

6.16. Let x be a type-1 beta random variable with parameters (α,β). Let (1) y = x
1−x ;

(2) z = 1−x
x ; (3) u = 1 − x. By using transformation of variables, show that y and z are

type-2 betadistributedwithparameters (α,β) and (β,α), respectively, and that u is type-
1 beta distributed with parameters (β,α).

6.17. Let x be a type-2 beta random variable with parameters (α,β). Let (1) y = x
1+x ;

(2) z = 1
1+x ; (3) u = 1

x . By using transformation of variables show that y and z are type-1
beta distributed with the parameters (α,β) and (β,α), respectively, and that u is type-2
beta distributed with the parameters (β,α).

6.18. By using themoment generating function show that if x is normally distributed,
that is, x ∼ N(μ,σ2), then y = ax + b is normally distributed, where a and b are con-
stants. What is the distribution of y when a = 0?

6.19. If x is binomial with parameters (n = 10,p = 0.6) and y is Poissonwith parameter
λ = 5, evaluate the probability functions of u = 2x + 3 and v = 3y − 5.

6.20. Evaluate the probability generating function, E(tx), for (1) Poisson probability
law, (2) geometric probability law; (3) negative binomial probability law.

6.21. Consider a Poisson arrival of points on a line or occurrence of an event over time
according to a Poissonprobability lawas in (5.16)with the rate of arrival α. Let x denote
the waiting time for the first occurrence. Then the probability Pr{x > t} = probability
that the number of occurrence is zero = e−αt , t > 0. Hence Pr{x ≤ t} = 1 − e−αt , t > 0,
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whichmeans x has an exponential distribution. If y is the waiting time before the r-th
occurrence of the event, then show that y has a gamma density with parameter (r, 1α ).

6.22. Let a random variable x have density function f (x) and distribution function
F(x) then the hazard rate λ(x) is defined as λ(x) = f (x)

1−F(x) . Compute the hazard ratewhen
x has (i) exponential density; (ii) Weibull density; (iii) logistic density.



7 Joint distributions

7.1 Introduction

There are many practical situations where we have pairs of random variables. Exam-
ples are many in nature. (x,y) with x = blood pressure of a patient before adminis-
tering a drug, y = blood pressure after administering that drug; (x,y) with x = height,
y = weight of an individual; (x,y) with x = waiting time for an interview, y = the inter-
view time; (x,y)with x = amount of fertilizer applied, y = yield of tapioca, etc. In these
examples, both variables x and y are continuous variables and they have some joint
distributions. Let us consider the following cases: (x,y) with x = number of questions
attempted in an examination, y = number of correct answers; (x,y) with x = the num-
ber of local floods, y = number of houses damaged; (x,y)with x = number of monthly
traffic accidents on a particular road, y = the number of associated injuries, etc. These
are all pairs where both x and y are discrete. Now, consider the situations such as the
following: (x,y) with x = number of monthly accidents, y = the amount of compensa-
tion paid; (x,y)with x = number of computer breakdowns, y = the duration of working
hours lost, etc. These are pairs of variables where one of them is discrete and the other
is continuous.Wewill consider joint distributions involving pairs of variables first and
then we will extend the theory to joint distributions of many real scalar variables.

We will introduce the functions as mathematical quantities first and then we will
look into experimental situations where such probabilitymodels will be appropriate.

Definition 7.1 (Joint probability/density function). A function f (x,y) is called a
joint probability/density function of the random variables x and y if the following
two conditions are satisfied:
(i) f (x,y) ≥ 0 for all real values of x and y;
(ii) ∫∞
−∞

∫∞
−∞

f (x,y)dx ∧ dy = 1 if x and y are continuous, where ∧ product of differ-
entials is explained in Module 4;
∑−∞<x<∞∑−∞<y<∞ f (x,y) = 1 if x and y are discrete. (Sum up the discrete vari-
able and integrate the continuous variable in the mixed case.)

Note 7.1. The wedge product or skew symmetric product of differentials is defined
by the equation

dy ∧ dx = −dx ∧ dy

so that dx ∧ dx = 0. Applications in computing Jacobians of transformations and
more details are given in Module 4.

f (x1,… ,xk) is the joint probability/density function of the random variables
x1,… ,xk if the following conditions are satisfied:

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562545-007
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(i) f (x1,… ,xk) ≥ 0 for all real values of x1,… ,xk ;
(ii) ∫x1

⋯∫xk
f (x1,… ,xk)dx1 ∧ ⋯ ∧ dxk = 1 if all variables are continuous;

∑x1
⋯∑xk

f (x1,… ,xk) = 1 if all variables are discrete. (Sum up the discrete vari-
ables and integrate the continuous variables in the mixed case.)

Example 7.1. Check whether the following are joint probability functions: f (x,y) is
given in the table for non-zero values and f (x,y) = 0 elsewhere.

x = 0 x = 1 Sum

y = 1 1
10

1
10

2
10

y = −1 2
10

1
10

3
10

y = 2 3
10

2
10

5
10

Sum 6
10

4
10 1

This can also be stated as follows:

f (x = 0,y = 1) = f (0, 1) = 1
10

,

f (0, −1) = 2
10

, f (0, 2) = 3
10

, f (1, 1) = 1
10

,

f (1, −1) = 1
10

, f (1, 2) = 2
10

and f (x,y) is zero elsewhere.

This can also be written as

Pr{x = 0,y = 1} = 1
10

, Pr{x = 0,y = −1} = 2
10

,

Pr{x = 0,y = 2} = 3
10

, Pr{x = 1,y = 1} = 1
10

,

Pr{x = 1,y = −1} = 1
10

, Pr{x = 1,y = 2} = 2
10

and f (x,y) = 0 for all other x and y.

Solution 7.1. Since f (x,y) here is non-negative for all x and y and since the total
∑x ∑y f (x,y) = 1, f (x,y) is a joint probability function of two random variables x and y.

Example 7.2. In Example 7.1, compute the following: (1) The probability function of
x alone, which is also called the marginal probability function of x; (2) the marginal
probability function of y; (3) Pr{x > 0,y > 1}; (4) Pr{x > 0,y ≤ −1}; (5) Pr{x + y = 2}.

Solution 7.2. (1) Pr{x = 0} means all probabilities where this condition x = 0 is satis-
fied. This is available as the sum of the probabilities in the column corresponding to
x = 0or from themarginal sum,which is 6

10 . Similarly, Pr{x = 1} = 4
10 . Thus themarginal
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probability function of x, namely f1(x), is available from the marginal sum as

f1(x) =
{{{
{{{
{

6/10, x = 0
4/10, x = 1
0, elsewhere.

(2) Similarly, the probability function of y is available from the marginal sum, given
by

f2(y) =

{{{{{{
{{{{{{
{

2/10, y = 1
3/10, y = −1
5/10, y = 2
0, elsewhere.

(3)

Pr{x > 0,y > −1} = Pr{x = 1,y = 1} + Pr{x = 1,y = 2} = 1
10

+ 2
10

= 3
10

.

(4)

Pr{x > 0,y ≤ −1} = Pr{x = 1,y = −1} = 1
10

.

For computing the probability for x+y, first compute the possible values x+y can take
with non-zero probabilities. Possible values of x + y are 1, −1, 2,0,3.

Pr{x + y = 1} = Pr{x = 0,y = 1} = 1
10

Pr{x + y = −1} = Pr{x = 0,y = −1} = 2
10

Pr{x + y = 0} = Pr{x = 1,y = −1} = 1
10

Pr{x + y = 3} = Pr{x = 1,y = 2} = 2
10

Similarly, for (5),

Pr{x + y = 2} = Pr{x = 1,y = 1} + Pr{x = 0,y = 2} = 1
10

+ 3
10

= 4
10

.

Example 7.3. For the probability function in Example 7.1 compute the following:
(1) Graph the function f (x,y); (2) What is the probability function of x given that
y = −1?

Solution 7.3. (1) It is a 3-dimensional graph.
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Figure 7.1: Joint probability function.

At the points marked in Figure 7.1, there are points up at heights equal to the probabil-
ities or the z-coordinates are the probabilities.

(2) At y = −1, there are two points (y = −1,x = 0) and (y = −1,x = 1), with the re-
spective probabilities 2

10 at x = 0 and 1
10 at x = 1, thus a total of 3

10 . Hence a probability
function can be created by dividing by the total.

f (x given y = −1) =
{{{
{{{
{

( 2
10 )/(

3
10 ), x = 0

( 1
10 )/(

3
10 ), x = 1

0, elsewhere

=
{{{
{{{
{

2/3, x = 0
1/3, x = 1
0, elsewhere.

Example 7.4. Evaluate c so that f (x,y), given below, is a density function and then
compute the marginal density functions of x and y.

f (x,y) =
{
{
{

c(x + y), 0 ≤ x ≤ 1,0 ≤ y ≤ 1
0, elsewhere.

Solution 7.4. Since f (x,y) is defined on a continuum of points in the square {(x,y) ∣
0 ≤ x ≤ 1,0 ≤ y ≤ 1} it is a non-negative function if c > 0. The total integral is given by

∫
1

x=0
∫
1

y=0
c(x + y)dx ∧ dy = c∫

1

x=0
[∫

1

y=0
(x + y)dy]dx

= c∫
1

x=0
[xy +

y2

2
]
1

0
dx = c∫

1

x=0
(x + 1

2
)dx

= c[x
2

2
+ x
2
]
1

0
= 1 ⇒ c = 1.

(2) Density of x alone is available by integrating out y from the joint density, which
is available from the above steps. That is, the marginal density of x is given by

f1(x) =
{
{
{

x + 1
2 , 0 ≤ x ≤ 1

0, elsewhere.
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From symmetry, it follows that the marginal density of y is given by

f2(y) =
{
{
{

y + 1
2 , 0 ≤ y ≤ 1

0, elsewhere.

Exercises 7.1
7.1.1. Check whether the following are probability functions:

(1) f (−1, 1) = c
20

, f (−1, 2) = 1
20

, f (−1,3) = 2
20

,

f (0, 1) = 2
20

, f (0, 2) = 3
20

, f (0,3) = 8
20

and

f (x,y) = 0, elsewhere.
(2) f (−2,0) = 1 and

f (x,y) = 0, elsewhere.

(3) f (3, 1) = 1
5
, f (3, 2) = − 2

5
, f (0, 1) = 3

5
,

f (0, 2) = 3
5

and

f (x,y) = 0, elsewhere.

7.1.2. Check whether the following are density functions:

(1) f (x,y) =
{
{
{

e−
1
2 (y−2x−3)

2

√2π , −∞ < y < ∞, 0 ≤ x ≤ 1,
0, elsewhere.

(2) f (x,y) =
{
{
{

c
x2 e
−3(y−2x−3)2 , −∞ < y < ∞, 1 ≤ x < ∞, c = constant

0, elsewhere.

(3) f (x,y) =
{
{
{

1
√2π e
−x− 12 (y−2x−3)

2
, −∞ < y < ∞, 0 ≤ x < ∞

0, elsewhere.

7.1.3. If f (x,y) = ce−(αx2+βxy+γy2), −∞ < x < ∞, −∞ < y < ∞ is a density then find the
conditions on α,β,γ and then evaluate c.

7.1.4. Can the following function be a joint density function (give reasons):

f (x,y) =
{
{
{

ex−y , 0 ≤ x < ∞, 0 ≤ y < ∞

0, elsewhere.

7.1.5. Can the following be a density function (give reasons):

f (x,y) = ce−(2x2+6xy+3y2), −∞ < x < ∞, −∞ < y < ∞

where c is a positive constant.
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7.1.6. For Exercise 7.1.1 (1) compute the following: (1) Pr{x = −1,y = 1}; (2) Pr{x < 0,
y > 2}; (3) Pr{x ≤ −2,y ≥ 0}.

7.1.7. For Exercise 7.1.1 (2) compute the following probabilities: (1) Pr{x = −2}; (2)
Pr{y = 0}; (3) Pr{x ≤ −2}; (4) Pr{x = −2,y ≥ 0}.

7.1.8. A balanced die is rolled 3 times. Let x1 be the number of times 1 appears and x2
be the number of times 2 appears. Work out the joint probability function of x1 and x2.

7.1.9. A box contains 10 red, 12 green and 14 white identical marbles. Marbles are
picked at random, one by one, without replacement. 8 such marbles are picked. Let
x1 be the number of red marbles, x2 be the number of green marbles obtained out of
these 8 marbles. Construct the joint probability function of x1 and x2.

7.1.10. In Exercise 7.1.9, compute the probability Pr{x1 ≥ 8,x2 = 5}.

7.2 Marginal and conditional probability/density functions

Definition 7.2 (Marginal Probability/Density Functions). If we have f (x1,… ,xk)
as a joint probability/density function of the random variables x1,… ,xk , then the
joint marginal probability/density function of any subset of x1,… ,xk , for example,
x1,… ,xr , r < k, is available by summing up/integrating out the other variables. The
marginal probability/density of x1,… ,xk , denoted by f1,…,r(x1,… ,xr), is given by

f1,…,r(x1,… ,xr) = ∑
xr+1

⋯∑
xk
f (x1,… ,xk)

when xr+1,… ,xk are discrete, and

= ∫
xr+1

⋯∫
xk
f (x1,… ,xk)dxr+1 ∧ ⋯ ∧ dxk

when xr+1,… ,xk are continuous. In themixed cases, sumover the discrete variables
and integrate over the continuous variables.

Notation 7.1. x|y or x|(y = b) ⇒ x given y or y is fixed at y = b. The notation is a
vertical bar and not x/y or x

y .

g1(x|y) = density of x given y;
g1(x|y = b) = density of x given y = b.

Definition 7.3. The conditional probability/density function of x, given y = b, is
defined by the following:
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g1(x|y = b) = f (x,y)
f2(y)

|
y=b

= joint density
marginal density of y

|
y=b

(7.1)

provided f2(b) ≠ 0. Similarly, the conditional density of y given x is given by

g2(y|x = a) = f (x,y)
f1(x)

|
x=a

(7.2)

provided f1(a) ≠ 0.

Example 7.5. Verify that the following f (x,y) is a density. Then evaluate (1) the
marginal densities; (2) the conditional density of x given y = 0.8; (3) the conditional
density of y, given x = 0.3, where

f (x,y) =
{
{
{

2, 0 ≤ x ≤ y ≤ 1
0, elsewhere.

Solution 7.5. The density is a flat plane over the triangular region as given in Fig-
ure 7.2.

The triangular region can be represented as one of the following:

{(x,y) ∣ 0 ≤ x ≤ y ≤ 1} = {(x,y) ∣ 0 ≤ x ≤ y & 0 ≤ y ≤ 1}
= {(x,y) ∣ x ≤ y ≤ 1& 0 ≤ x ≤ 1}.

Figure 7.2: Triangular region for a joint density.

The elementary strips of integration are shown in Figure 7.2. The marginal density of
f (x,y) is given by

f1(x) = ∫
y
f (x,y)dy = ∫

1

y=x
2dy

=
{
{
{

2(1 − x), 0 ≤ x ≤ 1
0, elsewhere.
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The marginal density of y is given by

f2(y) = ∫
x
f (x,y)dx = ∫

y

x=0
2dx

=
{
{
{

2y, 0 ≤ y ≤ 1
0, elsewhere.

Note that

∫
1

0
f1(x) = ∫

1

0
2(1 − x)dx = 2[x − x2

2
]
1

0
= 1.

Hence

∫
x
∫
y
f (x,y)dx ∧ dy = 1.

Therefore, f (x,y) is a joint density function. Here, the ordinate f (x,y) = 2, which is
bigger than 1. But the probabilities are the volumes under the surface z = f (x,y) (it is a
3-dimensional surface) and the ordinate does not matter. The ordinate can be bigger
or less than 1 but the volumes have to be less than or equal to 1. The total volume here,
which is the total integral, is 1, and hence it is a density function.

(2) The conditional density of x given y, g1(x|y), is then

g1(x|y) =
f (x,y)
f2(y)

and

g1(x|y = 0.8) = f (x,y)
f2(y)

|
(y=0.8)

= 2
2y

|
(y=0.8)

=
{
{
{

1
0.8 , 0 ≤ x ≤ 0.8
0, elsewhere.

(1)

The conditional density of y given x, is

g2(y|x = 0.3) = f (x,y)
f1(x)

|
x=0.3

=
2

2(1 − x)
|
x=0.3

= 1
1 − 0.3

{
{
{

1
0.7 , 0.3 ≤ y ≤ 1
0, elsewhere.

Observe that in the conditional space x varies from 0 to 0.8, whereas in the marginal
space x varies from 0 to 1. Similarly, in the conditional space y varies from 0.3 to 1,
whereas in the marginal space y varies from 0 to 1.
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7.2.1 Geometrical interpretations of marginal and conditional distributions

What are the geometrical interpretations of joint density, conditional densities,
marginal densities, etc.?

When f (x,y) ≥ 0 for all x and y and continuous, it means a surface sitting over the
(x,y)-plane, something like a hill sitting on a plain ground. If f (x,y) could be negative
also, dipping below the (x,y)-plane then it will be like a ship in the ocean, taking the
ocean surface as the (x,y)-plane. Then the portion of the ship’s hull dipping below
the water level represents f (x,y) < 0. Our densities are non-negative for all (x,y), and
hence when there are only two variables x and y then it is like a hill z = f (x,y) sitting
on the plain ground.

What is the geometry of the conditional density of y given x = a?
Note that x = a is a point in 1-space (line), it is a line in 2-space (plane) but a plane

in 3-space, parallel to the (y, z)-plane. When this plane cuts the hill the whole hill
tops will be traced on this plane. If the total area under this curve is made unity, then
this is the conditional density of y given x = a or g2(y|x = a). In Figure 7.3, we have
z = 1

2π e
− 12 (x

2+y2), −∞ < x,y < ∞; z = (1 + x)e−(1+x)y , 0 ≤ x ≤ 1, 0 ≤ y < ∞.

Figure 7.3: Surface cut by a plane.

What is the geometry of marginal densities?
Suppose that you use a giant bulldozer and push all the earth and stones of the

hill from both sides of the (x, z)-plane and then pile up on the (x, z)-plane like a “pap-
padam”. If we assume the total area under this pile-up as one unit, then we have
the marginal density of x. Similar interpretation for the marginal density of y, pileup
on the (y, z)-plane. In the discrete case, such pile-ups are already available from the
marginal totals, as seen earlier.

In higher dimensions, we cannot see the geometry or visualize but algebraic
evaluations are possible. In fact, we can only see 3-dimensional objects. We cannot
see zero-dimensional (point), one-dimensional (line), 2-dimensional (plane), 4 and
higher dimensional objects. But 0, 1, 2 dimensional objects can be visualized. You
see a point, line or the surface of the blackboard only because of the thickness or as
3-dimensional objects.
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Example 7.6. For the following function f (x1,x2), (1) evaluate the normalizing con-
stant; (2) the conditional density of x1 given x2 = 0.7; (3) the conditional probability
for x1 > 0.2 given that x2 = 0.7; (4) the conditional probability for x1 > 0.2 given that
x2 < 0.7, where

f (x1,x2) =
{
{
{

c(x1 + x2), 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1
0, elsewhere.

Solution 7.6. (1) For evaluating c, we should compute the total probability, which is
the total integral, and equate to 1.

1 = c∫
1

x1=0
∫
1

x2=0
(x1 + x2)dx1 ∧ dx2

= c∫
1

x1=0
[∫

1

x2=0
(x1 + x2)dx2]dx1

= c∫
1

0
[x1x2 + x22

2
]
1

0
dx1 = c∫

1

0
[x1 +

1
2
]dx1

= c[x
2
1
2

+ x1
2

]
1

0
= c ⇒ c = 1.

Hence f (x1,x2) is a density since it is already a non-negative function.
(2) Themarginal density of x2 is available by integrating out x1 from the joint den-

sity. That is,

f2(x2) = ∫
1

x1=0
(x1 + x2)dx1 =

{
{
{

x2 + 1
2 , 0 ≤ x2 ≤ 1

0, elsewhere.

Hence the conditional density of x1 given x2, is given by

g1(x1|x2) =
f (x1,x2)
f2(x2)

= (x1 + x2)
x2 + 1

2

for 0 ≤ x1 ≤ 1 and for all given x2. Therefore,

g1(x1|x2 = 0.7) = x1 + x2
x2 + 1

2
|
x2=0.7

=
{
{
{

x1+0.7
1.2 , 0 ≤ x1 ≤ 1

0, elsewhere.

Note that the ranges of x1 and x2 do not depend on each other, not like in Example 7.5,
and hence in the conditional space also x2 ranges over [0, 1]. [The student may ver-
ify that g1(x1|x2 = 0.7), as given above, is a density function by evaluating the total
probability and verifying it to be 1.]

(3) Pr{x1 > 0.2|x2 = 0.7} is the probability for x1 > 0.2 in the conditional density.
That is,
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Pr{x1 > 0.2|x2 = 0.7} = ∫
1

0.2
g1(x1|x2 = 0.7)dx1 = ∫

1

0.2

x1 + 0.7
1.2

dx1

= 1
1.2

[x
2
1
2

+ 0.7x1]
1

0.2
≈ 0.87.

(4) This does not come from the conditional density g1(x1|x2). Let A be the event
that x1 > 0.2 and B be the event that x2 < 0.7. Then

A ∩ B = {(x1,x2) ∣ 0.2 < x1 < 1,0 ≤ x2 < 0.7}.

These events are marked in Figure 7.4.

Figure 7.4: Events A,B,A ∩ B.

Probabilities of A and B can be computed either from the marginal densities or from
the joint density.

P(A ∩ B) = ∫
1

x1=0.2
∫
0.7

x2=0
(x1 + x2)dx1 ∧ dx2

= ∫
1

x1=0.2
[∫

0.7

x2=0
(x1 + x2)dx2]dx1

= ∫
1

x1=0.2
[x1x2 + x22

2
]
0.7

0
dx1 = ∫

1

x1=0.2
[0.7x1 +

0.49
2

]dx1

= [0.7x
2
1
2

+ 0.49
2

x1]
1

0.2
= 0.532.

P(B) = Pr{0 ≤ x2 < 0.7} = ∫
1

x1=0
∫
0.7

x2=0
(x1 + x2)dx1 ∧ dx2

= ∫
0.7

x2=0
(x2 + 1

2
)dx2 = [x

2
2
2

+ x2
2

]
0.7

0

= 0.595.

Therefore,

P(A|B) = P(A ∩ B)
P(B)

= 0.532
0.595

≈ 0.89.

From the definition of conditional probability/density function, we may note one
interesting property:
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g1(x|y) =
f (x,y)
f2(y)

, f2(y) ≠ 0.

This shows that we can always have a decomposition of the joint density as product
of conditional and marginal densities.

f (x,y) = g1(x|y)f2(y), f2(y) ≠ 0
= g2(y|x)f1(x), f1(x) ≠ 0 (7.3)

where f1(x) and f2(y) are the marginal densities and g1(x|y) and g2(y|x) are the condi-
tional densities. If there are k variables x1,… ,xk and if we look at the conditional joint
density of x1,… ,xr given xr+1,… ,xk , then also we have the decomposition

f (x1,… ,xk) = g(x1,… ,xr |xr+1,… ,xk)f2(xr+1,… ,xk) (7.4)

where f2(xr+1,… ,xk) ≠ 0. Another observation one canmake from (7.3) and (7.4) is that
if the conditional probability/density functions do not depend on the conditions or
free of y and x, that is, if g1(x|y) = f1(x) = themarginal probability/density of x itself and
g2(y|x) = f2(y) = the marginal probability/density of y itself, then we have the product
probability property

f (x,y) = f1(x)f2(y)

and this is also called statistical independence of the random variables x and y.

Exercises 7.2
7.2.1. Compute (1) marginal probability functions; conditional probability functions
of (2) x given y = 1; (3) y given x = −1, in Exercise 7.1.1 (1).

7.2.2. Compute the marginal and conditional probability functions, for all values of
the conditioned variables, in Exercise 7.1.1 (2).

7.2.3. Construct the conditional density of y given x and the marginal density of x in
Exercise 7.1.2 (1). What is the marginal density of y here?

7.2.4. Repeat Exercise 7.2.3 for the function in Exercise 7.1.2 (2), if possible.

7.2.5. Repeat Exercise 7.2.3 for the function in Exercise 7.1.2 (3), if possible.

7.3 Statistical independence of random variables

Definition 7.4 (Statistical independence). Let f (x1,… ,xk) be the joint probability/
density function of the real randomvariables x1,… ,xk and let f1(x1), f2(x2),… , fk(xk)
be the marginal probability/density functions of the individual variables. Let them
satisfy the condition
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f (x1,… ,xk) = f1(x1)⋯ fk(xk) (7.5)

for all x1,… ,xk for which fi(xi) ≠ 0, i = 1,… ,k then x1,… ,xk are said to be statisti-
cally independently distributed or x1,… ,xk are said to satisfy the product probability
property.

Because of the term “independent” this concept is often misused in applications.
The variables depend on each other heavily through the product probability prop-
erty (7.5). The phrase “independent” is used in the sense that if we look at the con-
ditional probability/density function then the function does not depend on the condi-
tions imposed. In this sense “independent of the conditions” or does not depend on
the observation made. Variables may not satisfy the property in (7.5) individually but
in two sets or groups the variablesmay have the property in (7.5). That is, suppose that

f (x1,… ,xk) = f1(x1,… ,xr)f2(xr+1,… ,xk) (7.6)

then we say that the two sets {x1,… ,xr} and {xr+1,… ,xk} of variables are statistically
independently distributed. If the property (7.6) holds in two such sets, that does not
imply that the property (7.5) holds on individual variables. But if (7.5) holds then, of
course, (7.6) will hold, not vice versa.

Example 7.7. If the following function

f (x1,x2,x3) =
{
{
{

ce−2x1−x2−4x3 , 0 ≤ xj < ∞, j = 1, 2,3
0, elsewhere

is a density function then compute (1) c; (2) density of x1 given x2 = 5, x3 = 2; (3) prob-
ability that x1 ≤ 10 given that x2 = 5, x3 = 2.

Solution 7.7.

1 = c∫
∞

x1=0
∫
∞

x2=0
∫
∞

x3=0
e−2x1−x2−4x3dx1 ∧ dx2 ∧ dx3

= c∫
∞

x1=0
∫
∞

x2=0
e−2x1−x2[∫

∞

x3=0
e−4x3dx3]dx1 ∧ dx2.

But

∫
∞

0
e−4x3dx3 = [−

1
4
e−4x3]

∞

0
= 1
4
.

Similarly, the integral over x1 gives
1
2 and the integral over x2 gives 1. Hence

1 = c
4 × 2

⇒ c = 8.

(2) Here, we want the conditional density of x1 given x2 and x3. The joint marginal
density of x2 and x3 is available by integrating out x1 from f (x1,x2,x3). Denoting by
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f23(x2,x3) = ∫
∞

x1=0
8e−2x1−x2−4x3dx1 = 8e−x2−4x3 ∫

∞

0
e−2x1dx1

=
{
{
{

4e−x2−4x3 , 0 ≤ xj < ∞, j = 2,3
0, elsewhere.

Hence the conditional density of x1, given x2,x3, denoted by g1(x1|x2,x3), is available
as

g1(x1|x2,x3) =
f (x1,x2,x3)
f23(x2,x3)

|
x2=5,x3=2

=
8exp[−2x1 − x2 − 4x3]

4exp[−x2 − 4x3]
|
x2=5,x3=2

= 2e−2x1 , 0 ≤ x1 < ∞.

In other words, this function is free of the conditions x2 = 5, x3 = 2. In fact, this condi-
tional density of x1 is the marginal density of x1 itself. It is easily seen here that

f (x1,x2,x3) = f1(x1)f2(x2)f3(x3)

the product of the marginal densities or the variables x1,x2,x3 are statistically inde-
pendently distributed.

Statistical independence can also be defined in terms of joint distribution func-
tion, joint moment generating function, etc. We have defined the concept assuming
the existence of the probability/density functions. In some cases, the moment gener-
ating function may be defined but the density may not exist. Lévy distribution and
singular normal are examples.

Definition 7.5 (Joint distribution function). The cumulative probability/density
function in x1,… ,xk is denoted by Fx1,…,xk (a1,… ,ak) and it is the following:

Fx1,…,xk (a1,… ,ak) = Pr{x1 ≤ a1,… ,xk ≤ ak} (7.7)

for all real values of a1,… ,ak .

If the right side of (7.7) can be evaluated, then we say that we have the joint dis-
tribution function for the random variables x1,… ,xk . In terms of probability/density
functions

Fx1,…,xk (a1,… ,ak) = ∑
−∞<x1≤a1

⋯ ∑
−∞<xk≤ak

f (x1,… ,xk)

when x1,… ,xk are discrete, and it is

= ∫
a1

−∞
⋯∫

ak

−∞
f (x1,… ,xk)dx1 ∧ ⋯ ∧ dxk (7.8)

when x1,… ,xk are continuous. For the mixed cases, sum up over discrete variables
and integrate over the continuous variables.
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Note thatwhen the randomvariables x1,… ,xk are independently distributed, that
is, when the joint density is the product of the marginal densities then the joint distri-
bution function factorizes into product of individual distribution functions. That is,

Fx1,…,xk (a1,… ,ak) = Fx1 (a1)⋯Fxk (ak) (7.9)

where Fxi (ai) is the distribution function or cumulative probability/density function
of xi, evaluated at xi = ai, i = 1,… ,k. One can use (7.9) as the definition of statistical
independence then the joint distribution function becomes the product of the individ-
ual distribution functions. Then from (7.9), (7.5) will follow. Example 7.7 is a casewhere
the variables are independently distributed.

Exercises 7.3
7.3.1. If f (x1,x2,x3) = c(x1 + x2 + x3), 0 ≤ xi ≤ 1, i = 1, 2,3 and f (x1,x2,x3) = 0 elsewhere
is a density function then (1): evaluate c; (2): show that the variables here are not
independently distributed.

7.3.2. If the following is the non-zero part of a joint density then evaluate (1) the nor-
malizing constant c and list the conditions needed on the parameters; (2) themarginal
densities of x1 and x2; (3) show that x1 and x2 are not independently distributed.

f (x1,x2) = cxα−11 xα2−12 (1 − x1 − x2)α3−1

for 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, x1 + x2 ≤ 1.

7.3.3. Do the same Exercise 7.3.2 if the function is the following:

f (x1,x2) = cxα1−11 xα2−12 (1 + x1 + x2)−(α1+α2+α3)

for 0 ≤ x1 < ∞, 0 ≤ x2 < ∞.

7.3.4. Do the same Exercise 7.3.2 if the function is the following:

f (x1,x2) = cxα−11 (x1 + x2)β1 (1 − x1 − x2)α3−1

for 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, x1 + x2 ≤ 1.

7.3.5. Do the same Exercise 7.3.2 if the function is the following:

f (x1,x2) = cxα1−11 (x1 + x2)β1 (1 + x1 + x2)−γ

for 0 ≤ x1 < ∞, 0 ≤ x2 < ∞.

7.4 Expected value

The definition of expected values in the joint distribution is also parallel to that in
the one variable case. Let f (x1,… ,xk) be the joint probability/density function of real
random variables x1,… ,xk . Let ψ(x1,… ,xk) be a function of x1,… ,xk .
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Notation 7.2. E[ψ(x1,… ,xk)]: expected value of ψ(x1,… ,xk).

Definition 7.6 (Expected value).

E[ψ(x1,… ,xk)] = ∑
−∞<x1<∞

⋯ ∑
−∞<xk<∞

ψ(x1,… ,xk)f (x1,… ,xk)

if x1,… ,xk are discrete;

= ∫
∞

−∞
⋯∫
∞

−∞
ψ(x1,… ,xk)f (x1,… ,xk)dx1 ∧ ⋯ ∧ dxk

if x1,… ,xk are continuous. For the mixed cases, integrate over the continuous vari-
ables and sum up over the discrete variables.

Example 7.8. Compute (1) E(xy); (2) E{[x − E(x)][y − E(y)]}; (3) E[x] for the following
probability function:

f (0, −1) = 1
5
; f (0, 1) = 2

5
;

f (1, −1) = 1
5
; f (1, 1) = 1

5
;

and f (x,y) = 0 elsewhere.

Solution 7.8. Since both the variables x and y here are discrete we will sum up.
(1) Expected value of xymeans, take the values that x can takewith non-zero prob-

abilities and the corresponding y values, multiply together and then multiply by the
corresponding probabilities and add up all such sums. For example, when x takes the
value 0 and y takes the value −1 the corresponding probability is 1

5 . Hence this term
is (0)(−1)( 15 ) = 0. That is, E(xy) = (0)(−1)( 15 ) + (0)(1)( 25 ) + (1)(−1)( 15 ) + (1)(1)( 15 ) + 0 = 0.
Thus E[xy] in this example is zero.

(2) For computing the second expected value, we need E[x] and E[y]. We can com-
pute these from either the marginal probability functions or from the joint probability
function. The marginal probability function of x is given by

f1(x) = ∑
y
f (x,y) =

{{{
{{{
{

3/5, x = 0
2/5, x = 1
0, elsewhere.

Therefore,

E[x] = (0)(3
5
) + (1)( 2

5
) = 2

5
.

If this is to be computed by using the joint probability function, then take one x value
and then add up all the corresponding probabilities, multiply and add up. That is,
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E[x] = ∑
x

∑
y
xf (x,y) = ∑

x
[∑
y
xf (x,y)] = ∑

x
xf1(x)

= (0)( 1
5

+ 2
5
) + (1)( 1

5
+ 1
5
) = 2

5
.

Similarly, E[y] = (−1)( 25 ) + (1)( 35 ) =
1
5 . Now, we can compute

E{[x − E(x)][y − E(y)]} = E{[x − 2
5
][y − 1

5
]}.

Now put a value x takes, put the corresponding y value and multiply by the corre-
sponding probability and add up all such quantities.

E{[x − 2
5
][x − 1

5
]} = ∑

x
∑
y
[x − 2

5
][y − 1

5
]f (x,y)

= [0 − 2
5
][−1 − 1

5
]( 1

5
) + [0 − 2

5
][1 − 1

5
]( 2

5
)

+ [1 − 2
5
][−1 − 1

5
]( 1

5
) + [1 − 2

5
][1 − 1

5
]( 1

5
)

= 12
53

− 16
53

− 18
53

+ 12
53

= − 2
25

,

which is also equal to

E[xy] − E(x)E(y) = 0 − ( 2
5
)( 1

5
) = − 2

25

in this case. In fact, this is a general result.

Notation 7.3. Cov(x,y): covariance between x and y.

Definition 7.7 (Covariance). The covariance between two real scalar random vari-
ables x and y is defined as

Cov(x,y) = E{[x − E(x)][y − E(y)]} ≡ E[xy] − E(x)E(y). (7.10)

The equivalence can be seen by observing the following: Once the expected value is
taken it is a constant (does not depend on the variables any more); expected value of
a constant times a function is constant times the expected value; expected value of
a sum is the sum of the expected values as long as the expected values exist. These
properties, analogous to the corresponding properties in the one variable case, will
follow from the definition itself. Opening up

[x − μ1][y − μ2] = xy − μ1y − μ2x + μ1μ2

where μ1 = E(x) and μ2 = E(y) are constants. Now taking the expected values we have
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Cov(x,y) = E{[x − E(x)][y − E(y)]}
= E{[x − μ1][y − μ2]} = E{xy − μ1y − μ2x + μ1μ2}
= E(xy) − μ1E(y) − μ2E(x) + μ1μ2
= E(xy) − μ1μ2 − μ1μ2 + μ1μ2
= E(xy) − μ1μ2 = E(xy) − E(x)E(y).

This result holds when both x and y are continuous, both are discrete, one is continu-
ous and the other is discrete, whenever the expected values exist.

What is this measure of covariance? We have seen that in the one variable case,
standard deviation can be interpreted as a “measure of scatter” or “dispersion” in the
single variable x, and the square of the standard deviation is the variance. Analogous
to variance, covariance measures the scatter or joint dispersion or angular dis-
persion or joint scatter in the point (x,y) or the joint variation of the coordinates
x and y, so that when x = y then the covariance becomes the variance in x. For ex-
ample, if (x,y) = (x1,y1),… , (xp,yp)with probabilities

1
n at each point then E(x) = x̄ and

E(y) = ȳ, Cov(x,y) = ∑n
j=1(xj − x̄)(yj − ȳ)/n but if the angle between the two vectors is θ

then

cosθ = Cov(x,y)
√Var(x)√Var(y)

. (7.11)

Thus, covariance measures the angular dispersion between the random variables x
and y

Example 7.9. For the following continuous case evaluate (1) Cov(x,y); (2) E(x2 +
xy − y2):

f (x,y)
{
{
{

2, 0 ≤ x ≤ y ≤ 1
0, elsewhere.

Solution 7.9. This density function was handled before and the marginal densities
were already evaluated. For computing E(x2) and E(y2), we will use the marginal den-
sities, which are

f1(x) = 2(1 − x), 0 ≤ x ≤ 1

and zero elsewhere, and

f2(y) = 2y, 0 ≤ y ≤ 1

and zero elsewhere. Hence

E(x2) = ∫
x
x2f1(x)dx = ∫

1

0
(x2)2(1 − x)dx

= 2[x
3

3
− x4

4
]
1

0
= 1
6
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and

E(y2) = ∫
y
(y2)f2(y)dy = ∫

1

0
(y2)2(y)dy

= 2[y
4

4
]
1

0
= 1
2
.

For computing E(xy), we have to use double integrals. Either we can integrate out y
first from x ≤ y ≤ 1 and then x from 0 ≤ x ≤ 1 or integrate out x first from 0 ≤ x ≤ y and
then y from 0 ≤ y ≤ 1. Therefore,

E(xy) = ∫
1

y=0
(y)[∫

y

x=0
2(x)dx]dy

= ∫
1

0
y[y2]dy = [y

4

4
]
1

0
= 1
4
.

Now we need E(x) and E(y).

E(x) = ∫
x
xf1(x)dx = ∫

1

0
(x)2(1 − x)dx = 1

3

and

E(y) = ∫
y
(y)f2(y)dy = ∫

1

0
y(2y)dy = 2

3
.

Therefore, (1)

Cov(x,y) = E(xy) − E(x)E(y) = 1
4

− ( 1
3
)( 2

3
) = 1

36
.

and (2)

E[x2 + xy − y2] = E(x2) + E(xy) − E(y2) = 1
6

+ 1
4

− 1
2

= − 1
12

.

7.4.1 Some properties of expected values

Some properties parallel to the ones in the one variable case are the following. These
follow from the definition itself.

Result 7.1.

E(c) = c

where c is a constant, with respect to the variables x1,… ,xk for which the joint distri-
bution is used to compute the expected values.
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Result 7.2.
E[cψ(x1,… ,xk)] = cE[ψ(x1,… ,xk)]

whenever the expected value exists, where c is a constant.

Result 7.3.

E[aψ1(x1,… ,xk) + bψ2(x1,… ,xk)] = aE[ψ1(x1,… ,xk)] + bE[ψ2(x1,… ,xk)]

whenever the expected values exist, where a and b are constants, and ψ1 and ψ2 are
two functions of x1,… ,xk .

[Here, we have a linear combination of two functions. The result holds for a finite
number of such linear combinations but need not hold for an infinite sum.]

Result 7.4. Let ψ1(x1),ψ2(x2),… ,ψk(xk) be functions of x1,…xk alone, then the ex-
pected value of a product of finite number of such factors is the product of the ex-
pected values, when the variables are independently distributed. That is,

E[ψ1(x1)ψ2(x2)⋯ψk(xk)] = E[ψ1(x1)]E[ψ2(x2)]⋯E[ψk(xk)]

whenever x1,… ,xk are independently distributed.

The proof is trivial because when the variables are independently distributed the
product probability property will hold and the joint probability/density function will
factorize into product of individual probability/density functions then the sum or in-
tegral will apply to each factor.

One consequence of this result is that if the variables are independently dis-
tributed then the covariance between them is zero but the converse need not be
true. Covariance being zero does not imply that the variables are independently dis-
tributed.

Result 7.5. When x and y are independently distributed, Cov(x,y) = 0, but the con-
verse need not be true. That is,

Cov(x,y) = 0

when x and y are independently distributed.

Theproof is trivial.When the variables are independentlydistributed the expected
value of a product is the product of the expected values. Therefore,

E[(x − E(x))(y − E(y))] = E[x − E(x)]E[y − E(y)].

But for any random variable E[x − E(x)] = E(x) − E(x) = 0, and hence the result.
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Example 7.10. For the following joint probability function, show that Cov(x,y) = 0
but the variables are not independently distributed.

f (0, −1) = 3
10

, f (0, 1) = 2
10

, f (1, −1) = 1
10

, f (2, 1) = 0,

f (2, −1) = 1
10

, f (1, 1) = 3
10

and f (x,y) = 0 elsewhere.

Solution 7.10. The marginal probability function of y is given by the marginal sum,
that is,

f2(y) =
{{{
{{{
{

1/2, y = −1
1/2, y = 1
0, elsewhere.

Hence E[y] = (−1) 12 + (1) 12 = 0. Also

E(xy) = (0)(−1)( 3
10

) + (0)(1)( 2
10

) + (1)(−1)( 1
10

)

+ (2)(1)(0) + (2)(−1)( 1
10

) + (1)(1)( 3
10

) = 0.

But, for example,

Pr{x = 1,y = −1} = 1
10

; Pr{x = 1} = 4
10

; Pr{y = −1} = 1
2
.

Therefore, Pr{x = 1,y = −1) ≠ Pr{x = 1}Pr{y = −1}, and hence the variables x and y are
not independently distributed.

Note 7.4. If the product probability property does not hold even for one point, then
the variables are not independently distributed. Hence to show that two variables
are not independently distributed, one has to comeupwith at least one pointwhere
the product probability property does not hold.

7.4.2 Joint moment generating function

Notation 7.4. M(T) =M(t1,… , tk): Joint moment generating function.

Definition 7.8 (Joint moment generating function). The joint moment generating
function is defined as the expected value of a linear function in the exponent. That
is,
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M(t1,… , tk) = E[et1x1+⋯+tkxk ]

where t1,… , tk are arbitrary parameters, provided the expected value exists.

From the joint moment generating function M(t1,… , tk), the individual moment
generating functions (mgf) are available by putting the other tj ’s zeros. For example,
the joint mgf of the first r variables, r < k, is available by putting tr+1 = 0 = ⋯ = tk ,
or it is M(t1,… , tr ,0,… ,0). Also the joint integer moments, usually known as prod-
uct moments, of the type E[xr11 ⋯xrkk ] where rj = 0, 1, 2,…, j = 1,… ,k are available from
M(t1,… , tk) by expansion, when M(t1,… , tk) admits a power series expansion or by
differentiation whenM(t1,… , tk) is differentiable. That is,

E(xr11 ⋯xrkk ) = 𝜕r1+⋯+rk

𝜕tr11 ⋯𝜕trkk
M(t1,… , tk)|

t1=0,…,tk=0

= coefficient of
tr11 ⋯ trkk
r1!⋯ rk !

in the expansion ofM(t1,… , tk) around (t1 = 0,… , tk = 0), for rj = 0, 1,…, j = 1,… ,k.
Sometimes it is convenient to use the vector,matrix notation. Let the prime denote

a transpose and let T′ = (t1,… , tk) then we may also represent the joint moment gen-
erating function as either M(T) or M(T′) according to convenience. One immediate
consequence of statistical independence is that the joint moment generating function
will factorize into individual moment generating functions. This will be stated as a re-
sult but it follows from the fact that when the variables are independently distributed
the joint probability/density or joint distribution function factorizes into individual
probability/density or distribution functions.

Result 7.6. When the real random variables x1,… ,xk are independently distributed,
then the joint moment generating function, when it exists, factorizes into the product
of individual moment generating functions. That is,

M(t1,… , tk) =Mx1 (t1)⋯Mxk (tk) (7.12)

where Mxj (tj), j = 1,… ,k are the individual moment generating functions.

One may use (7.12) as the definition of statistical independence. Then the product
property of probability/density functions and distribution functions can be shown to
follow from (7.12). Thus either one can define statistical independence through prob-
ability/density functions, distribution functions, moment generating functions, char-
acteristic functions, etc.

Note 7.5. The joint characteristic function is available from the jointmoment gener-
ating function formula by replacing tj by itj, i = √−1, j = 1,… ,k. Moment generating
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function needs not exist all of the time but the characteristic function will always
exist.

Note 7.6. The joint Laplace transform is available by replacing tj of the joint mo-
ment generating function by −tj, j = 1,… ,k for positive variables xj > 0, j = 1,… ,k.
The joint Mellin transform for positive variables is available as the expected value
E[xs1−11 ⋯xsk−1k ], whenever it exists, when x1,… ,xk are positive random variables,
where s1,… , sk are complex parameters.

Example 7.11. Let x1,… ,xk be independently distributed normal variables with pa-
rameters (μ1,σ21 ),… , (μk ,σ2k). Let a1,… ,ak be real constants. Find the distribution of
the linear function u = a1x1 + ⋯ + akxk .

Solution 7.11. Let us compute the moment generating function of u if it exists.

Mu(t) = E[etu] = E[et(a1x1+⋯+akxk)]

=
k

∏
j=1

Mxj (ajt)

due to product probability property (PPP) or statistical independence of the variables,
whereMxj (t) is the moment generating function of xj . Since xj is normally distributed
we have ajxj ∼ N(ajμj ,a2j σ2j ) and, therefore,

Mxj (ajt) = exp[tajμj +
t2

2
a2j σ2j ].

Hence the product becomes

Mu(t) =
k

∏
j=1

{exp[tajμj +
t2

2
a2j σ2j ]}

= exp[t(
k
∑
j=1

ajμj) +
t2

2
(

k
∑
j=1

a2j σ2j )]

which is the moment generating function of a normal variable. Therefore, u is nor-
mally distributed with the parameters ∑k

j=1 μjaj = E[u] and ∑k
j=1 a

2
j σ2j = Var(u).

Definition 7.9 (Independently and identically distributed variables (iid) or a simple
random sample). A collection x1,… ,xn of real random variables, which are inde-
pendently and identically distributed with the common probability/density func-
tion f (x), is called a simple random sample of size n from the population designated
by f (x).
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A population can be described by a random variable, such as “a normal popula-
tion”, “an exponential population”, “a Bernoulli population”, etc., or by a probabil-
ity/density function or by a distribution (cumulative probability/density) function or
by a characteristic function, etc. Thus a simple random sample is a collection of ran-
dom variables and not a set of numbers, as oftenmisinterpreted. The phrase “simple”
is used because there are also other types of random samples such as systematic sam-
ples, multistage samples, stratified samples, etc. Here, we are considering only simple
random samples.

When the variables satisfy PPP or are independently distributed the joint proba-
bility/density function (if it exists) is the product of the marginal probability/density
functions, or the joint distribution function (our randomvariables are defined in terms
of distribution functions) factorizes into product of individual distribution functions
or the joint characteristic function factorizes into product of individual characteristic
functions (always exist) or the joint moment generating function (if it exists) factor-
izes into individual moment generating functions. Identically distributed means that
the functional forms and the parameters are the same for all the probability/density
functions, distribution functions, etc.

As an example, if x1 and x2 are iid exponentially distributed variables then the
joint density, denoted by f (x1,x2), is given by

f (x1,x2) =
1
θ2
e−

x1
θ −

x2
θ

for 0 ≤ x1 < ∞, 0 ≤ x2 < ∞, θ > 0, and zero elsewhere. Thus the functional forms and
the parameters in x1 and x2 are the same. Of course, the variables x1 and x2 are two
different variables and do not put x1 = x2 = x.

Example 7.12. Let x1,… ,xn be iid variables. Let u = x1 + ⋯ + xn and v = x̄ = x1+⋯+xn
n .

Then show that (1) if xj is gamma random variable then u and v are gamma random
variables; (2) if xj is normal random variable then u and v are normal random vari-
ables, or gamma and normal variables are infinitely divisible.

Solution 7.12. Let M(t) be the moment generating function of xj . If the variables are
iid, then all have the same moment generating functionM(t). Then

Mu(t) =
n

∏
j=1

Mxj (t) due to statistical independence

= [M(t)]n due to identical distribution.

When xj is gammadistributedwith the shape parameter α and scale parameter β, then
the moment generating function

M(t) = (1 − βt)−α

and, therefore,
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[M(t)]n = (1 − βt)−nα

which means that u is gamma distributed with parameters nα and β. Also note that if
y is a gamma random variable with the moment generating function

My(t) = (1 − βt)−α

then

My(t) = [{My(t)}
1
n ]n

whereMy(t) = (1 − βt)−α, {My(t)}1/n = (1 − βt)−
α
n are both moment generating functions

of gamma variables. In other words, a given gamma variable y can be looked upon as
the sum of iid gamma variables. In other words, a gamma variable is infinitely divisi-
ble. From the same procedure above, note that v is also gamma distributed.

(2) If xj ∼ N(μ,σ2) (normally distributed) then

Mu(t) = [Mxj (t)]
n = et(nμ)+

t2
2 (nσ

2)

which means that u is normally distributed with the parameters nμ and nσ2. On the
other hand,

Mxj (t) = [{Mxj (t)}
1
n ]n

where {Mxj (t)}
1
n is again the moment generating function of a normal with parame-

ters μ
n and σ2

n . In other words, a normal variable can be decomposed into sum of iid
normal variables and hence a normal variable is “infinitely divisible”. From the same
procedure above, note that v is also normally distributed.

Definition 7.10 (Infinite divisibility). If a real random variable can be decomposed
into the sum of iid variables belonging to the same family, then the variable is said
to be infinitely divisible. Equivalently, let ϕx(t) be the characteristic function of x
and if [ϕx(t)]

1
n is also a characteristic function belonging to the same family of func-

tions as ϕx(t), then x is said to be infinitely divisible.

The concept of infinite divisibility of random variables is very important in prob-
ability theory, stochastic process, time series, etc.

7.4.3 Linear functions of random variables

In many applications, we need the distribution of linear functions of random vari-
ables, and hence we will consider variances of linear functions and covariance be-
tween linear functions. Let x1,… ,xk be k random variables with Var(xj) = σ2j = σjj and
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covariance between xi and xj denoted by σij and the matrix of variances and covari-
ances by Σ = (σij). Let u = a1x1 + ⋯ + amxm and v = b1x1 + ⋯ + bnxn where a1,… ,am,
b1,… ,bn are constants, something like a1 = 1, a2 = −3, a3 = 2, m = 3 so that u = x1 −
3x2 + 2x3; b1 = 1, b2 = −1, n = 2 so that v = x1 − x2. Before looking at the variances, let us
examine some of the representations possible.

u = a1x1 + ⋯ + amxm = a′X = X′a

where a prime denotes the transpose, a and X are column vectors, whose transposes
are

a′ = (a1,… ,am), X′ = (x1,… ,xm).

Also, recall the square of a sum and its various representations

[
k
∑
j=1

cj]
2

= (c1 + ⋯ + ck)2 =
k
∑
i=1

k
∑
j=1

cicj

=
k
∑
j=1

c2j + ∑
i≠j
cicj =

k
∑
j=1

c2j + 2∑
i<j
cicj

=
k
∑
j=1

c2j + 2∑
i>j
cicj (7.13)

where, for example, ∑i>j, means the double sum over i and j subject to the condition
i > j. Now let us see what are the variances of u and v and what is the covariance be-
tween u and v. We use the basic definitions. By definition,

Var(u) = E[u − E(u)]2 = E[a′(X − E(X)]2.

Since a′[X − E(X)] is a scalar quantity, it is also equal to its transpose. Therefore, we
may write

E[a′(X − E(X)]2 = E[{a′(X − E(X))}{a′(X − E(X))}′]

= E[{a′(X − E(X))}{X − E(X)}′a]
= a′E[(X − E(X))(X − E(X))′]a = a′Σa. (7.14)

That is, the variance of a linear function is a quadratic form:

Var(a′X) = a′Σa = [a1,… ,am]
[[[[

[

σ11 σ12 … σ1m
σ21 σ22 … σ2m
⋮ ⋮ ⋮ ⋮
σm1 σm2 … σmm

]]]]

]

[[[[

[

a1
a2
⋮
am

]]]]

]

. (7.15)

Writing it by using (7.13) or without using matrix notation, we have the following:

Var(u) =
m
∑
j=1

a2j Var(xj) + 2∑
i<j
aiaj Cov(xi ,xj)
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=
m
∑
j=1

a2j σjj + 2∑
i<j
aiajσij

=
m
∑
j=1

a2j Var(xj) when x1,… ,xm are non-correlated;

Var(x̄) =
m
∑
j=1

1
m2 Var(xj) =

σ2

m
= Var(x̄) when x1,… ,xm are iid. (7.16)

Those who are familiar with quadratic forms may use the most convenient form in
(7.14), and others may use the form in (7.16). Note that the matrix Σ in (7.15) is at least
positive semi-definite, since it is coming from the form BB′ for some matrix B.

Let y1,… ,yn be another set of variables and let v = b1y1 + ⋯ + bnyn = b′Y with
b′ = (b1,… ,bn) and Y′ = (y1,… ,yn). Then from (7.14) it follows that

Var(v) = Var(b′Y) = b′Σyb (7.17)

where Σy is the covariance matrix in Y . The covariance between u = a′X and v = b′Y
is then available as

Cov(u, v) = E[(u − E(u))((v − E(v))] = a′E[(X − E(X))(Y − E(Y))]b′

= a′Σx,yb′ (7.18)

where Σx,y is them × nmatrix

E
{{
{{
{

[[

[

x1 − E(x1)
⋮

xm − E(xm)

]]

]

[y1 − E(y1),… ,yn − E(yn)]
}}
}}
}

(7.19)

and if Cov(v,u) is considered then we have

Cov(v,u) = b′Σ′x,ya. (7.20)

When we have two linear forms in the same variables x1,… ,xk , that is, u = a1x1 + ⋯ +
akxk and v = b1x1 + ⋯ + bkxk then the covariance between u and v is available from
(7.17) by putting X = Y ,m = n = k or

Cov(u, v) = a′Σb = b′Σa. (7.21)

Example 7.13. Compute the (1) Variance of u; (2) Variance of v; (3) covariance between
u and v, where u = 2x1 − x2, v = x1 + x2, Var(x1) = 1, Var(x2) = 2, Cov(x1,x2) = 1.

Solution 7.13. (1)

Var(u) = 4Var(x1) +Var(x2) − 4Cov(x1,x2) = 4(1) + (2) − 4(1) = 2.
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(2)

Var(v) = Var(x1) +Var(x2) + 2Cov(x1,x2) = (1) + (2) + 2(1) = 5.

The covariance matrix in this case is

Σ = [
1 1
1 2

]

and hence the covariance between u and v, by using the formula

a′Σb = [2, −1] [1 1
1 2

][
1
1
] = 1.

This can also be computed as

Cov(x1,x2) = Cov(2x1 − x2,x1 + x2)
= 2Var(x1) + 2Cov(x1,x2) − Cov(x1,x2) −Var(x2)
= 2(1) + 2(1) − (1) − (2) = 1.

What are the answers if Cov(x1,x2) = 2?

Note 7.7. If the students have tried to answer the question at the end of Solu-
tion 7.13, then they may have noticed that it is not possible to have a covariance
between x1,x2 as 2 if the variances are 1 and 2. The reason is that the covariance
matrix, or the variance-covariance matrix has to be at least positive semi-definite
when real. If we put Cov(x1,x2) in the above example as 2, then the diagonal ele-
ments are positive but the determinant is negative and the matrix is indefinite and
hence it cannot be a covariance matrix.

Sometimes the following notation is also used in the literature.

Notation 7.5. When X is a p × 1 vector the notation Cov(X) means the variance-
covariancematrix or covariancematrix in X, whichwe already denoted by Σ = (σij).

Definition 7.11 (Correlation coefficient). A scale-free measure of covariance be-
tween two real scalar random variables x and y is called correlation coefficient and
it is denoted by ρ or ρxy and it is defined as

ρ = Cov(x,y)
√Var(x)Var(y)

, Var(x) ≠ 0, Var(y) ≠ 0. (7.22)

When the covariance is divided by the standard deviations, then the measure has
become scale-free because covariance is available only in terms of the units of mea-
surements of x and y. Since covariance measures joint scatter in x and y or the scatter
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or dispersion in the point (x,y), this correlation also can measure only the joint varia-
tion. Because of the phrase “correlation” people think that ρ canmeasure relationship
between x and y. This is wrong. It cannot measure relationship between x and y.

7.4.4 Some basic properties of the correlation coefficient

Note that the correlation coefficient is defined only for non-degenerate random vari-
ables.

Result 7.7. Whatever be the non-degenerate random variables x and y,

− 1 ≤ ρ ≤ 1. (7.23)

The proof is very trivial. Consider two new random variables u = x
σ1

+ y
σ2

and
v = x

σ1
− y

σ2
where σ1 and σ2 are the standard deviations of x and y, respectively.

Var(u) = Var( x
σ1

) +Var( y
σ2

) + 2Cov( x
σ1

, y
σ2

)

= Var(x)
σ21

+ Var(y)
σ22

+ 2Cov(x,y)
σ1σ2

= 1 + 1 + 2ρ

= 2(1 + ρ)

since Cov(x,y) = ρσ1σ2. But the variance of any real random variable is non-negative.
Hence 2(1 + ρ) ≥ 0⇒ ρ ≥ −1. Similarly, Var(v) = 2(1 − ρ) ≥ 0⇒ ρ ≤ 1 or −1 ≤ ρ ≤ 1.

Result 7.8. Let u = ax + b, a ≠ 0 and v = cy + d, c ≠ 0 where a,b, c,d are constants.
Let ρxy and ρuv denote the correlation coefficient between x and y, and u and v, re-
spectively. Then

ρuv = ac
|ac|

ρxy = ±ρxy .

Result 7.9.

ρxy = ±1 if and only if y = ax + b, a ≠ 0,

a linear function of x almost surely.

Thus the only value of ρ, which can be given a physical interpretation, is for ρ = ±1
and no other point can be given a physical interpretation. Since

|ρ| ≤ 1 ⇒ Cov(x,y) ≤ σ1σ2



200 | 7 Joint distributions

where σ1 and σ2 are the standard deviations. [This is also Cauchy–Schwarz inequality.]
Thus if the standard deviations are known then the covariance cannot be arbitrary,
it has to be less than or equal to the product of the standard deviations. This is an
important point to remember in practical applications.

Exercises 7.4
7.4.1. Let x ∼ N(0, 1), a standard normal variable. Let y = a + bx + cx2, c ≠ 0 be a
quadratic function of x. Compute the correlation between x and y here and write it as
a function of b and c. By selecting b and c show that, while a perfect mathematical
relationship existing between x and y, as given above, ρ can be made zero, very small
|ρ|, very large |ρ| (nearly −1 or 1, but not equal to ±1). Thus it ismeaningless to interpret
relationship between x and y based on the magnitude or sign of ρ.

7.4.2. By using Exercise 7.4.1 show that the following statements are incorrect: “ρ > 0
means increasing values of x go with increasing values of y or decreasing values of
x go with decreasing values of y”; “ρ < 0 means the increasing values of x go with
decreasing values of y or vice versa;” “ρ near to 1 or −1 means near linearity between
x and y”.

7.4.3. Compute (1) covariance between x and y; (2) E[xy2]; (3) ρ for the following dis-
crete probability function:

f (0, −1) = 1
5
, f (0, 1) = 2

5
, f (1, −1) = 1

5
, f (1, 1) = 1

5
and f (x,y) = 0 elsewhere.

7.4.4. Compute (1) Cov(x,y); (2) E[x3y2]; (3) ρ for the following density function:

f (x,y) = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

and f (x,y) = 0 elsewhere.

7.4.5. Let x1,… ,xn be a simple random sample of size n from a gamma population
with parameters (α,β). Let x̄ = (x1 + ⋯ + xn)/n. (1) Compute the moment generating
function of x̄; (2) Show that ∑n

j=1 xj as well as x̄ are gamma distributed. (3) Compute
the moment generating function of u = x̄−E[x̄]

√Var(x̄) .

7.4.6. (1) Show that u in Exercise 7.4.5 is a re-located, re-scaled gamma random vari-
able for every n. (2) Show also that when n→ ∞, u goes to a standard normal variable.

7.4.7. Going for an interview consists of t1 = time taken for travel to the venue, t2 =
waiting to be called for interview and t3 = the actual interview time, thus the total
time spent for the interview is t = t1 + t2 + t3. It is known from previous experience that
t1, t2, t3 are independently gamma distributedwith scale parameter β = 2 and E[t1] = 6,
E[t2] = 8, E[t3] = 6. What is the distribution of t, work out its density.
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7.4.8. Let x1,x2 be iid random variables from a uniform population over [0, 1]. Com-
pute the following probabilities without computing the density of x1 + x2; (1) Pr{x1 +
x2 ≤ 1}; (2) Pr{x̄ ≤ 2

3 }; (3) Pr{x
2
1 + x22 ≤ 1}.

7.4.9. If the real scalar variables x and y are independently distributed, are the fol-
lowing variables independently distributed? (1) u = ax and v = by where a and b are
constants; (2) u = ax + b and v = cy + d where a,b, c,d are constants.

7.5 Conditional expectations

Conditional expectations are the expected values in the conditional distributions.
In many of the applications such as model building, statistical prediction problems,
Bayesian analysis, etc. conditional expectations play vital roles. Hence we will give a
brief introduction to conditional expectations here. Two results which are basic will
be listed first.

Result 7.10. Whenever all the following expected values exist,

E[y] = Ex[E(y|x)] (7.24)

and

Var(y) = Var[E(y|x)] + E[Var(y|x)]. (7.25)

In (7.24), the first expectation, E(y|x), is in the conditional space of y for all given x,
and then this is treated as a function of x and then expectation is taken with respect
to x. Thus the outside expectation is in themarginal space of x. But (7.25) says that the
variance of any variable y is the sum of the expected value of a conditional variance
and the variance of a conditional expectation under the assumption that there is a
joint distribution of x and y and the expected values exist.

Both (7.24) and (7.25) follow from the definition of expected values and conditional
distributions. For the sake of illustration, (7.24) will be proved here for the continuous
case. The proof of this for the discrete case and mixed cases and the proof of (7.25) are
left as exercises to the students.

E(y|x) = ∫
y
yg(y|x)dy = ∫

y
y f (x,y)
f1(x)

dy

where g(y|x) is the conditional density of y given x, f (x,y) is the joint density and f1(x)
is the marginal density of x. Now, treating the above as a function of x let us take the
expected value in the marginal space of x. This is available by multiplying with the
density of x and integrating out. That is,

E[E(y|x)] = ∫
x
[∫

y
y f (x,y)
f1(x)

dy]f1(x)dx
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= ∫
y
y[∫

x
f (x,y)dx]dy

after canceling the non-zero part of f1(x)

E[E(y|x)] = ∫
y
yf2(y)dy = E[y].

Note that when we integrate out x from f (x,y) we get the marginal density f2(y) of y.
The proofs for the caseswhenboth x and y discrete or one discrete and one continuous
are parallel, and hence left to the students. In computing the above expected values,
we assumed the existence of the joint and marginal densities and the existence of the
expected values.

Example 7.14. For the following joint density,

f (x,y) = 1
√2π

e−
1
2 (y−2−3x)

2

for −∞ < y < ∞, 0 ≤ x ≤ 1 and f (x,y) = 0 elsewhere, compute (1): E[y]; (2): Var(y).

Solution 7.14. From the given statement, it is clear that x has a uniform distribution
over [0, 1] (available by integrating out y from the joint density) or with the density

f1(x) = 1, 0 ≤ x ≤ 1

and f1(x) = 0 elsewhere. We can compute the mean value and variance of x from this
marginal density. That is,

E[x] = ∫
1

0
xdx = 1

2
and similarly Var(x) = 1

12
.

If we divide the given function by f1(x), we should get the conditional density of y
given x, denoted by g(y|x). That is,

g(y|x) = 1
√2π

e−
1
2 (y−2−3x)

2
, −∞ < y < ∞

or y|x ∼ N(μ = 2+ 3x,σ2 = 1), that is, the conditional density of y given x is normal with
mean value 2 + 3x and variance 1. Therefore, the conditional expectation of y given
x or the conditional mean value, which is the expected value of y in the conditional
density of y, given x, is

E(y|x) = 2 + 3x, (i)

and the conditional variance or the variance in the conditional density, in this case is
Var(y|x) = 1.

Then the expected value of this conditional expectation (expectation is taken in
themarginal space x) and the variance of this conditional expectation are respectively
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E[E(y|x)] = E[2 + 3x] = 2 + E[x] = 2 + 3
2

= 7
2

(ii)

Var[E(y|x)] = Var[2 + 3x] = 32 Var(x) = 9
12

= 3
4
. (iii)

In order to get the marginal density of y, from the joint density f (x,y), one has to inte-
grate out x. Here, the integral is over [0, 1] since x is uniformly distributed. Hence no
analytic form for the marginal density of y is available from our joint density. But we
can compute E(y) and Var(y) by using Result 7.10. From (ii) above,

E[y] = E[E(y|x)] = 7
2
.

and

Var(y) = E[Var(y|x)] +Var[E(y|x)] = E[1] + 3
4

= 7
4
.

Example 7.15. For the following joint density,

f (x,y) = 1
x2√2π

e−
1
2 (y−2−3x)

2

for −∞ < y < ∞, 1 ≤ x < ∞ and f (x,y) = 0 elsewhere, compute (1) E(y); (2) Var(y).

Solution 7.15. The situation is similar to Example 7.14. Here, the marginal density is
given by (available by integrating out y from the joint density)

f1(x) =
1
x2

, 1 ≤ x < ∞

and zero elsewhere. Therefore, the conditional density of y given x, which is f (x,y)/
f1(x), is given by the normal density part, excluding 1

x2 . Therefore,

y|x ∼ N(μ = 2 + 3x,σ2 = 1)

which gives

E(y|x) = 2 + 3x and Var(y|x) = 1. (i)

In order to compute E(y) and Var(y) by using Result 7.10, we need to compute E(x) and
Var(x). Then

E(x) = 0 + ∫
∞

1

x
x2
dx = ∫

∞

1

1
x
dx = [lnx]∞1 = ∞.

Therefore, E(x) does not exist, and hence Result 7.10 cannot be used to calculate E(y)
and Var(y).

Note 7.8. If E(x) does not exist, then all higher moments E(xα), α ≥ 1 will not exist.
If E(xm) does not exist, but all lower moments up tom exist then also all moments
E(xβ), β ≥m will not exist.
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7.5.1 Conditional expectation and prediction problem

An important use of the conditional expectation is in the area of prediction. An agri-
culturist may want to predict the yield of tapioca under a certain chemical fertilizer
and would like to answer a question such as what will be the yield if 200 grams of
that fertilizer is used? Here, let y be the yield and x be the amount of fertilizer used.
Then the question is: what is the predicted yield y if x is fixed at 200, or given x = 200?
As another example, someone may be trying to reduce weight by exercise. Here, y is
the reduction in weight and x is the number of hours spent on daily exercise. What is
likely to be the reduction y if the exercise is 30 minutes daily, or x = 30, x being mea-
sured in minutes? As another example, suppose we want to look at the cost of living
index. Cost of living for a household in a certain township depends on many items
such as per unit price of rice, say x1, per unit price of vegetables, x2, per unit price of
milk, x3, transportation cost x4 etc. If cost of living is denoted by y, then it depends on
many variables, x1,… ,xk . What is the best function g(x1,… ,xk) to predict y, where g
is some function and we want the best function. We would like to use this function to
predict y at preassigned values of x1,… ,xk , something like answering a question such
as: What is the cost of living if price per kilogram of rice is Rs 20, price per kilogram of
vegetables is Rs 15, etc. or at preassigned values of x1 = 20, x2 = 15, etc.

Theoretically, any function of x1,… ,xk can be used as a predictor but our predic-
tionmay be far off from the true value. If an arbitrary function g(x1,… ,xk), such as g =
1 + x1 + 2x2, is used to predict y then the error ϵ in this prediction is ϵ = y − g(x1,… ,xk)
or g(x1,… ,xk) − y. One criterion that one can use to come up with a good function
as a predictor is to minimize the distance between y and g. A mathematical distance
between the random variable y and g(x1 = a1,… ,xk = ak), where a1,… ,ak are the pre-
assigned values of x1,… ,xk , is

{E[y − g(x1 = a1,… ,xk = ak)]
2}

1
2 . (i)

But minimization of (i), over all possible functions g is equivalent to minimizing its
square or minimizing

E[y − g]2 (7.26)

over all g. Since g is evaluated at given points x1 = a1,… ,xk = ak , it is equivalent to
minimizing E[y − a]2 for arbitrary a. This is already done in Chapter 3 and we have
seen that the best value of a is given by a = E(y) at given values of x1,… ,xk . Hence the
best predictor is the conditional expectation of y given x1,… ,xk .

min
g

E[y − g(x1 = a1,… ,xk = ak)]
2 ⇒ g = E[y|x1,… ,xk]. (7.27)

Therefore, the conditional expectation of y given x1,… ,xk is the “best” predictor of y
at preassigned values of x1,… ,xk , best in the sense of minimizing themean (expected
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value) square error or in the minimum mean square sense. If other measures of “dis-
tance” are used, then we will come up with other rules (other functions). Since the
mean squared error is a mathematically convenient form, (7.27) is taken as the “best”
predictor.

Note that it may be possible to evaluate a conditional expectation if we have the
joint distribution or at least the conditional distribution. In a practical situation, usu-
ally neither the joint distribution nor the conditional distributionmay be available. In
that case, we may try to estimate the prediction function by imposing desirable con-
ditions.

Example 7.16. In villages across a state, it is found that the proportion x1 of people
having health problems and the proportion x2 of people who are overweight (weight
over the prescribed value by health standards) have a joint distribution given by the
density

f (x1,x2) = x1 + x2, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

and zero elsewhere. (1) Construct the best predictor of x1 the proportion of peoplewith
health problems, by using x2 the proportion of overweight people. (2) What is the pre-
dicted value of x1 if a village selected at random has 30% of overweight people.

Solution 7.16. We have already evaluated the marginal and conditional densities in
this case. The conditional density of x1 given x2, denoted by g1(x1|x2), is given by

g1(x1|x2) =
x1 + x2
x2 + 1

2
, 0 ≤ x1 ≤ 1

and zero elsewhere. Hence the conditional expectation is

E[x1|x2) =
1

x2 + 1
2
∫
1

0
x1(x1 + x2)dx1

=
1
3 + x2

2
x2 + 1

2

is the best predictor of x1 at preassigned values of x2. (2) The best predicted value of
x1 at x2 = 0.3 is then given by

1
3 + x2

2
x2 + 1

2
|
x2=0.3

=
29
48

.

Here, the joint density was available. Now, wewill consider a case where we have only
a conditional density.

Example 7.17. The waiting time t at a bus stop is known to be exponentially dis-
tributed but the expected waiting time is a function of the delay t1 due to traffic con-
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gestion on the way. The conditional density of t given t1 is known to be of the form

g(t|t1) =
1

3 + 2t1
e−

t
3+2t1 , 0 ≤ t < ∞

and zero elsewhere. (1) Construct the best predictor function of t1 for predicting t;
(2) What is the best predicted t if the traffic congestion delay is 5 minutes, time be-
ing measured in minutes.

Solution 7.17. For an exponential density, it was seen that the expected value is the
parameter itself. Hence

E(t|t1) = 3 + 2t1

is the best predictor of t at given values of t1. For t1 = 5, the best predicted value is
3 + 2(5) = 13 minutes.

7.5.2 Regression

The word “regression” means to regress or to go back. This name came in because the
original problem considered was to say something about ancestors by studying the
offsprings. But now a days, “regression” means the area of predicting one variable by
using one or more other variables. We have already seen that if we use the criterion
of minimummean square error then the conditional expectation is the best predictor
function. Hence regression is defined as the conditional expectation.

Definition 7.12 (Regression of y on x1,… ,xk ). The regression of y on x1,… ,xk is the
best predictor function for y, best in the minimum mean square sense, at preas-
signed values of x1,… ,xk and it is defined as the conditional expectation of y given
x1,… ,xk or E[y|x1,… ,xk], which is a function of x1,… ,xk .

Regression analysis is an area which is often misused and misinterpreted in sta-
tistical analysis. Regression is often misinterpreted as model building by using the
methodof least squares. It is not amodel buildingproblembut it is a search for the best
predictor. Since regression is defined as a conditional expectation, regression analy-
sis is done in the conditional space, the whole joint space of all the variables is not
necessary to do regression analysis. But for correlation analysis we need the whole
space of joint distributions and thus correlation analysis and regression analysis are
not one and the same. As seen above, the best predictor or regression function can
be constructed if either the joint distribution is available or the conditional distribu-
tion is available. We have done examples of both. If we do not have either the joint
distribution or the conditional distribution, then the regression function cannot be
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evaluated. But sometime we may have some idea about the conditional expectation
that at given values of x1,… ,xk may have a certain functional form for the expected
value of y, such as a linear function of x1,… ,xk or a polynomial type function, etc. In
that case, we may try to estimate that regression function by the help of the method
of least squares. This aspect will be considered in later chapters, and hence further
discussion will not be attempted here.

Exercises 7.5
7.5.1. Prove (7.24) for the discrete case and (7.25) for both discrete and continuous
cases.

7.5.2. For the joint density of x and y,

f (x,y) = 1
1 + x

e−
y
1+x , 0 ≤ y < ∞, 0 ≤ x ≤ 1

and f (x,y) = 0 elsewhere, compute (1) E(y); (2) Var(y|x); (3) Var(y); (4) the marginal
density of y.

7.5.3. For the joint density

f (x,y) = 2
(1 + x)x3

e−
y
1+x

for 0 ≤ y < ∞, 1 ≤ x < ∞ and zero elsewhere, compute (1) E(y); (2) Var(y|x); (3) Var(y);
(4) the marginal density of y.

7.5.4. Construct an example of a joint density of x and y where E(y|x) = 1+ x + 2x2 and
(a) E(y) exists but E(y2) does not exist; (b) E(y) does not exist.

7.5.5. Construct the regression function of x1 on x2,x3 and show that it is free of the
regressed variables x2 and x3 in the following joint density, why is it free of x2 and x3?

f (x1,x2,x3) = ce−2x1−5x2−3x3

for 0 ≤ x1,x2,x3 < ∞ and zero elsewhere.

7.6 Bayesian procedure

Another area which is based on the conditional distribution is Bayesian procedures
and Bayesian inference. The name suggests that it has something to do with Bayes’
theorem, which was considered in Chapter 2, which had to do with inverse reasoning
or going from the effect to cause. After observing an event, we are asking about the
cause for the occurrence of that event. Here, we look at the same Bayes’ rule in terms
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of random variables. Let f (x,y) be the joint density/probability function of two ran-
dom variables. Let f1(x) and f2(y) be the marginal density/probability functions and
g1(x|y) and g2(y|x) be the conditional density/probability functions. Then we have the
following relations:

g1(x|y) =
f (x,y)
f2(y)

= g2(y|x)f1(x)
f2(y)

⇒

g2(y|x) =
g1(x|y)f2(y)

f1(x)
. (7.28)

Let us interpret (7.28) in terms of one variable and one parameter. Let y be a parameter
in a probability/density function of a real scalar random variable x, something like x
at a fixed θ may be an exponential density

g1(x|θ) = θe−θx , 0 ≤ x < ∞, θ > 0

and g1(x|θ) = 0 elsewhere. But θ may have its own distribution. Suppose that θ has a
gamma density with known shape parameter α and scale parameter β. Then

f2(θ) =
1

Γ(α)βα
θα−1e−

θ
β .

Then (7.28) in this context becomes

g2(θ|x) =
g1(x|θ)f2(θ)

f1(x)
= f (x,θ)

f1(x)
. (7.29)

How do we get the marginal density of x, namely f1(x), from the joint density f (x,θ) of
x and θ, simply integrate out or sum up the other variable, namely θ. That is,

f1(x) = ∫
θ
f (x,θ)dθ = ∫

θ
g1(x|θ)f2(θ)dθ (continuous case)

= ∑
θ
f (x,θ) = ∑

θ
g1(x|θ)f2(θ) (discrete case).

Here, g1(x|θ) is the conditional probability/density function of x given θ and f1(x) is the
unconditional probability/density function of x. Thus (7.29) can be looked upon as a
connectionbetweenconditional andunconditional probability/density functions of x.
As far as θ is concerned, f2(θ) is the prior probability/density of θ whereas g2(θ|x) is
the posterior, in the sense of after observing x, probability/density function of θ. Then
what is the best predictor, best in the minimum mean square sense, of θ in the light
of the given observation on x? We have seen from Section 7.5 that it is the conditional
expectation. That is,

E(θ|x) = best predictor of θ, given x
= Bayes’ predictor of θ.
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In the example of x|θ being an exponential variable and θ being a gamma variable,
we have the following computations:

f (x,θ) = g1(x|θ)f2(θ)

= θe−θx × 1
βαΓ(α)

θα−1e−
θ
β = 1

βαΓ(α)
θαe−θ(x+

1
β )

f1(x) = ∫
θ
f (x,θ)dθ = 1

βαΓ(α)
∫
∞

0
θαe−θ(x+

1
β )dθ

=
Γ(α + 1)(x + 1

β )
−(α+1)

βαΓ(α)
. (7.30)

This is the unconditional density of x in this case. The posterior density of θ is given
by

g2(θ|x) =
f (x,θ)
f1(x)

=
(x + 1

β )
α+1

Γ(α + 1)
θαe−θ(x+

1
β )

for 0 < θ < ∞ and g2(θ|x) = 0 elsewhere.
What is the best predictor of θ in the presence of an observation on x or at given x?

It is the conditional expectation of θ, given x. In the above example,

E(θ|x) = ∫
θ
θg2(θ|x)dθ =

(x + 1
β )

α+1

Γ(α + 1)
∫
∞

θ=0
θα+1e−θ(x+

1
β )dθ

=
(x + 1

β )
α+1

Γ(α + 1)
(x + 1

β
)
−(α+2)

Γ(α + 2) = αβ + β
1 + βx

. (7.31)

What is the mean value of θ before observing x? It is E(θ) from the prior density of θ,
which is E(θ) = αβ. Thus the mean value αβ is changed to αβ+β

1+βx in the presence of an
observation on x.

Example 7.18. If a student is selected at random from a last year high school class or
from the community of such last year high school classes, then the probability p that
he/she will answer a question correctly depends upon the background preparation,
exposure to the topic, basic intelligence, etc. For one student, this probability p may
be 0.8, for another it may be 0.3, for another it may be 0.9, etc. This p is a varying
quantity. p may have its own distribution. If a student is selected at random, then p
for this student is a fixed quantity. If 10 questions of similar types are askedwhat is the
chance that there will be x correct answers, something like 8 correct answers? Assume
that p has a prior type-1 beta distribution with known parameters α and β.

Solution 7.18. Using the standard notation, the probability function of x for a given
p is binomial:

g1(x|p) = (
n
x
)px(1 − p)n−x , x = 0, 1,… ,n; 0 < p < 1
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and zero elsewhere. In our example, there are 10 questions, then n = 10, with the prob-
ability of the correct answer is p and the number of correct answers is x = 8. We as-
sumed that p has a prior type-1 beta density. Then the joint probability function of x
and p, denoted by f (x,p) is given by

f (x,p) = g1(x|p)f2(p)

= Γ(α + β)
Γ(α)Γ(β)

pα−1(1 − p)β−1 (n
x
)px(1 − p)n−x

for α > 0, β > 0, x = 0, 1,… ,n; 0 < p < 1 and zero elsewhere. Then the unconditional
probability function of x, denoted by f1(x), is available as

f1(x) = ∫
p
f (x,p)dp

=
(nx )Γ(α + β)
Γ(α)Γ(β)

∫
1

0
pα+x−1(1 − p)β+n−x−1dp

=
(nx )Γ(α + β)
Γ(α)Γ(β)

Γ(α + x)Γ(β + n − x)
Γ(α + β + n)

, x = 0, 1,… ,n

Then what is the density of p for given x or the conditional density of p for a given x?
Let it be g2(p|x). Then

g2(p|x) =
f (x,p)
f1(x)

= Γ(α + β + n)
Γ(α + x)Γ(β + n − x)

pα+x−1(1 − p)β+n−x−1, 0 < p < 1

What is the expected value of p given x?

E(p|x) = ∫
1

0
pg2(p|x)dp

=
Γ(α + β + n)

Γ(α + x)Γ(β + n − x)
Γ(α + 1 + x)Γ(β + n − x)

Γ(α + β + 1 + n)

= α + x
α + β + n

.

This is the Bayes’ estimate of p or the best predictor of p at given x. If pwas fixed, then
we would have estimated p by the sample proportion, namely x

n . In the light of a prior
type-1 beta distribution for p, the estimate has changed to α+x

α+β+n .

In the above example, what is the distinction between the two estimates for p.
x
n is the estimate for the probability of success for a given student. If one student is
selected at random and she gave 7 correct answers out of 10 questions of similar diffi-
culties then 7

10 = 0.7 is the estimate for her probability of success. When p has its own
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distribution, then we are considering the probability of success in the population of
such final year students across the spectrum. What is the estimate of this p across the
spectrum, given the information that one girl from this spectrum gave correct answers
for 7 out of 10 questions. Then the estimated value of p is

α + 7
α + β + 10

= 1.5 + 7
1.5 + 3.7 + 10

= 85
152

if α = 1.5 and β = 3.7. Note that the Bayes’ estimate for p here, α+x
α+β+n , can be smaller or

bigger than x
n depending upon the values of α and β.

Exercises 7.6
7.6.1. Let x given λ > 0 be a Poisson random variable with parameter λ. Let λ have a
prior gamma distribution. Compute (1) the unconditional probability function of x;
(2) the posterior density of λ given x = 3; (3) Bayes’ estimate of λ.

7.6.2. Let x given b be generalized gamma with density of the form

g1(x|b) = cxα−1e−bxδ , x ≥ 0, δ > 0, α > 0

and c is the normalizing constant. Let b have a gamma distribution. Then answer (1),
(2), (3) of Exercise 7.6.1.

7.6.3. Let x|μ ∼ N(μ, 1) and let μ ∼ N(0, 1). Answer (1), (2), (3) of Exercise 7.6.1.

7.6.4. Let x|a be uniformly distributed over [0,a]. Let a have a prior Pareto density c
a5 ,

2 < a < 4 where c is the normalizing constant. Answer (1), (2), (3) of Exercise 7.6.1.

7.6.5. Let x|p be binomial with parameters (n = 10,p). Let p have a prior power func-
tion density f2(p) = cp5, 0 < p < 0.7 where c is the normalizing constant. Answer (1),
(2), (3) in Exercise 7.6.1.

7.7 Transformation of variables

In Chapter 6, Section 6.8, we considered transformation of variable involving one vari-
able. Given the density f (x) of a real random variable x how to compute the den-
sity of y = ϕ(x) where x to y is a one to one function of x or x can be uniquely writ-
ten as x = ϕ−1(y). If g(y) is the density of y, then we have seen that the relation is
f (x)dx = g(y)dy if y is an increasing function of x and f (x)dx = −g(y)dy if y is a de-
creasing function of x. In the discrete case, there is no Jacobian of transformation and
g(y), the probability function of y, can be computed by looking at the possible val-
ues y can take and then computing the corresponding probabilities by using f (x), the
probability function of x.
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Here, we will consider transformations when the real scalar random variables
x1,… ,xk have a joint distribution. Consider the transformation

y1 = ϕ1(x1,… ,xk) = ϕ1(X)

y2 = ϕ2(x1,… ,xk) = ϕ2(X)

⋮ =⋮

yk = ϕk(x1,… ,xk) = ϕk(X)

Let Y′ = (y1,… ,yk) and let the transformation be written as Y = ϕ∗(X). Then if the
transformation X to Y is one to one then we can write X uniquely in terms of Y as
X = ϕ−1∗ (Y). When all variables x1,… ,xk are discrete and if there is a transformation
(need not be one to one) then the probability function g(Y) of Y can be computed
parallel to the one variable case. Look at all possible values Y can take then compute
the corresponding probabilities by using the probability function f (X) of X. This will
give g(Y). When all variables x1,… ,xk or X are continuous and if X to Y is a one to
one transformation, then there is a Jacobian of the transformation and the connection
between the density f (X) of X and g(Y) of Y is that

f (X)dX = g(Y)dY ,

where

dX = dx1 ∧ ⋯ ∧ dxk , dY = dy1 ∧ ⋯ ∧ dyk

dY = JdX, J = |(𝜕ϕi
𝜕xj

)|

is the determinant of the matrix of partial derivatives 𝜕ϕi
𝜕xj

. Then

g(Y)dY = f (X)dX ⇒ g(Y)JdX = f (X)dX

g(Y) =
1
J
f (ϕ−1(Y)). (7.32)

Let us do some simple examples to see the significance of the relationship in (7.32).
Before taking up continuous cases, let us do one discrete case for the sake of illustra-
tion.

Example 7.19. Consider the transformation (y1 = x21 ,y2 = 2x1 + x2) and compute the
joint probability function g(y1,y2) when x1,x2 have the joint probability function

f (x1,x2) =

{{{{{{{{{
{{{{{{{{{
{

1/10, for (x1 = 0,x2 = 1)
2/10, for (x1 = 0,x2 = 2)
2/10, for (x1 = −1,x2 = 1)
5/10, for (x1 = −1,x2 = 2)
0, elsewhere
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Solution 7.19. The possible values y1 = x21 can take are y1 = 0, 1. The possible values
y2 can take are y2 = 2(0) + 1 = 1; 2(0) + 2 = 2; 2(−1) + 1 = −1; 2(−1) + 2 = 0. Hence we have
(y1,y2) = (0, 1) with probability 1

10 ; (y1,y2) = (0, 2) with probability 2
10 , and so on. No

points here coincide, and hence the points are all distinct. [If some points coincided,
then we should add up the corresponding probabilities.] Hence the joint probability
function g(y1,y2) is given as

g(y1,y2) =

{{{{{{{{{
{{{{{{{{{
{

1/10, for (y1,y2) = (0, 1)
2/10, for (y1,y2) = (0, 2)
2/10, for (y1,y2) = (1, −1)
5/10, for (y1,y2) = (1,0)
0, elsewhere.

Example 7.20. Let x1 and x2 be independently distributed as uniform random vari-
ables over [0,a] and [0,b], respectively, that is, the densities of x1 and x2, denoted by
f1(x1) and f2(x2), respectively, are f1(x1) = 1

a , 0 ≤ x1 ≤ a and f2(x2) = 1
b , 0 ≤ x2 ≤ b and

zero elsewhere. Compute the densities of (1) u = x1 + x2; (2) v = x1x2; (3) w = x1
x2
.

Solution 7.20. Due to product probability property or statistical independence, the
joint density, denoted by f (x,y), is the product, that is,

f (x,y) = 1
ab

, 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b

and zero elsewhere. Let us make the transformation y1 = x1 + x2,y2 = x2 so that it is a
one to one transformation x2 = y2,x1 = y1 − y2. It is a linear transformation with the
matrix of the transformation is

[
1 1
0 1

] ⇒ |
1 1
0 1

| = 1.

Hence if g(y1,y2) is the joint density of y1 and y2, then it is the same as 1
ab but the

region in the (y1,y2)-plane will be different. The region will be the region bounded by
the lines x1 = 0⇒ y1 − y2 = 0, x1 = a⇒ y1 − y2 = a, x2 = 0⇒ y2 = 0, x2 = b⇒ y2 = b. Thus
the rectangle in the (x1,x2)-plane transforms to a parallelogram in the (y1,y2)-plane as
shown in Figure 7.5.

The marginal density of y1 is available by integrating out y2. From Figure 7.5, note
that when 0 ≤ y1 ≤ a the integration of y2 is from 0 to y1. That is,

∫
y1

y2=0

1
ab

dy2 = y1
ab

, 0 ≤ y1 ≤ a.

When b is greater than a, then in the interval a ≤ y1 ≤ b, the integration is from y2 =
y1 − a to y1. When b ≤ y1 ≤ a + b, then the integration is from y1 − a to b. That is,

∫
y1

y2=y1−a

1
ab

dy2 = a
ab

, a ≤ y1 ≤ b
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Figure 7.5: Left: Region in (x1, x2)-plane; Right: Region in (y1,y2)-plane.

and

∫
b

y2=y1−a

1
ab

dy2 = b + a − y1
ab

.

Thus the density of y1, denoted by g1(y1), for b > a, is given by

g1(y1) =

{{{{{{
{{{{{{
{

y1
ab , 0 ≤ y1 ≤ a
a
ab , a ≤ y1 ≤ b
a+b−y1
ab , b ≤ y1 ≤ a + b

0, elsewhere.

We can verify that it is a density by integrating out and showing that it gives 1. That is,

∫
a+b

0
g1(y1)dy1 =

1
ab

[∫
a

0
y1dy1 + a∫

b

a
dy1 + ∫

a+b

b
[(a + b) − y1]dy1

= 1
ab

{a
2

2
+ a(b − a) + (a + b)a − 1

2
[(a + b)2 − b2]}

= ab
ab

= 1.

Now, let us look at the density of v = x1x2. Again, let us use the same notations. Let
y1 = x1x2, y2 = x2, whichmeans x2 = y2, x1 =

y1
y2
. Then the Jacobian of the transformation

is 1
x2

= 1
y2
.

From Figure 7.6, observe that in the (y1,y2)-plane the integration of y2 to be done
from y2 = y1

a to b. The joint density of x1 and x2 is f (x1,x2) =
1
ab for 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b.

The joint density of y1 and y2, denoted by g(y1,y2), is then g(y1,y2) = 1
aby2

, including
the Jacobian and then the marginal density of y1 is given by

g1(y1) =
1
ab

∫
b

y1/a

1
y2
dy2
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= 1
ab

[lny2]by1/a = 1
ab

[lnab − lny1], 0 ≤ y1 ≤ ab

and zero elsewhere. Let us see whether it is a density function by checking to see
whether the total integral is 1 since it is already non-negative.

Figure 7.6: Region in the (y1,y2)-plane.

∫
ab

0
g1(y1)dy1 =

1
ab

∫
ab

0
[lnab − lny1]dy1

= 1
ab

{(lnab)(ab) − [y1 lny1 − y1]ab0 }

= ab
ab

= 1.

Hence it is a density.
Nowwe look at the density ofw = x1

x2
. Again,weuse the samenotations. Let y1 =

x1
x2
,

y2 = x2, which means, x2 = y2, x1 = y1y2. Then the Jacobian is y2. Therefore, the joint
density of y1 and y2 is

g(y1,y2) =
y2
ab

.

The region in the (y1,y2)-plane is given in Figure 7.7.
Then x2 = 0⇒ y2 = 0; x2 = b⇒ y2 = b; x1 = 0⇒ y1 = 0; x1 = a⇒ y1y2 = a, which is

a part of a hyperbola. Hence the integration of y2 in the range 0 ≤ y1 ≤ a
b is from 0 to

b and the integration in the range a
b ≤ y1 < ∞ is from 0 to a

y1
and the Jacobian is y2.

Figure 7.7: Region in the (y1,y2)-plane.
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Therefore, the marginal density of y1, denoted by g1(y1), is given by

g1(y1) =
{{{
{{{
{

1
ab ∫b0 y2dy2, 0 ≤ y1 ≤

a
b

1
ab ∫a/y10 y2dy2
0, elsewhere.

=
{{{
{{{
{

1
ab

b2
2 , 0 ≤ y1 ≤

a
b

1
ab

a2
2y21

, a
b ≤ y1 < ∞

0, elsewhere.

Let us see whether it is a density. The total integral is given by

∫
∞

0
f1(y1)dy1 =

1
ab

[∫
a/b

0

b2

2
dy1 + ∫

∞

a/b

a2

2y21
dy1]

= 1
ab

[(b
2

2
)(a

b
) − [ a

2

2y1
]
∞

a/b
]

= ab
ab

= 1.

Hence the result.

In the example above, we have done three forms, namely the sum, product and
ratio. The students are advised to go through the geometry of the transformation from
Figures 7.5, 7.6 and 7.7 so that the limits of integration are taken properly. Now there is
only one more basic structure left, which is the density of the difference between two
random variables. This will be illustrated by taking a simple example of an exponen-
tial distribution.

Example 7.21. Suppose that x1 and x2 are real scalar positive random variables, in-
dependently distributed as exponential with different parameters. Let the marginal
densities be

fi(x1) =
1
θi
e−

xi
θi , xi ≥ 0, θi > 0, i = 1, 2

and zero elsewhere. Compute the densities of (1) u = x1 + x2; (2) v = x1 − x2.

Solution 7.21. Transformation of variable technique for a sum is already illustrated in
Example 7.19. Now, we shall try to find the density of y1 by using moment generating
function. Let the mgf of xi be denoted by Mxi (ti), i = 1, 2. Since the variables are as-
sumed to be independently distributed the mgf of the sum is the product of the mgf’s.
From straight integrationMxi (ti) = (1− θit1)−1. [This was evaluated for the gamma den-
sity already and exponential density is a special case of the gamma density.] Hence
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the mgf of the sum x1 + x2 is given by

E[et(x1+x2)] = E[etx1 ]E[etx2 ]
= (1 − θ1t)−1(1 − θ2t)−1. (7.33)

But

1
(1 − θ1t)(1 − θ2t)

= θ1
θ1 − θ2

1
1 − θ1t

+ θ2
θ2 − θ1

1
1 − θ2t

(7.34)

by using the partial fraction technique, when θ1 ≠ θ2. If θ1 = θ2 = θ, then (7.33) reduces
to the mgf of a gamma random variable, and hence y1 has a gamma density with the
parameters (α = 2,β = θ). When θ1 ≠ θ2, then the sum on the right side in (7.34) can
be inverted because each term is a constant multiple of the mgf of an exponential
variable. Hence the density of u, denoted by g1(u), is given by

g1(u) =
1

(θ1 − θ2)
e−

u
θ1 + 1

(θ2 − θ1)
e−

u
θ2 ,

for u ≥ 0, θi > 0, i = 1, 2, θ1 ≠ θ2 and zero elsewhere. [The student may verify this result
by using transformation of variables as done in Example 7.19.]

Now, we shall look at the density of v = x1 − x2. In the (x1,x2)-plane the non-zero
part of the density is defined in the first quadrant, {(x1,x2) ∣ 0 ≤ x1 < ∞,0 ≤ x2 < ∞}.
Let us use transformation of variables. Let y1 = x1 − x2, y2 = x2, the Jacobian is 1 the
joint density of y1 and y2, denoted by g(y1,y2), is given by

g(y1,y2) =
1

θ1θ2
e−

1
θ1
(y1+y2)−

1
θ2
(y2).

Now let us look at the region in the (y1,y2)-plane where the first quadrant in (x1,x2)-
plane is mapped into. x2 = 0⇒ y2 = 0; x2 → ∞ ⇒ y2 → ∞; which is the region above
the y1-axis. x1 = 0⇒ y2 = −y1; x1 → ∞ ⇒ y1 + y2 → ∞, and hence the region of integra-
tion is what is shown in Figure 7.8.

Figure 7.8: Region of integration.
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Hence when y1 > 0 then y2 to be integrated out from zero to infinity and when y1 < 0
then y2 to be integrated out from −y1 to infinity. If themarginal density of y1 is denoted
by g1(y1), then

g1(y1) =
1

θ1θ2
e−

y1
θ1 ∫e−(

1
θ1
+ 1
θ2
)y2dy2

=
{{
{{
{

e
− y1θ1

(θ1+θ2)
[−e−

(θ1+θ2)
(θ1θ2)

y2 ]∞0 , 0 ≤ y1 < ∞

e
− y1θ1

(θ1+θ2)
[−e−

θ1+θ2
θ1θ2

y2 ]∞−y1 , −∞ < y1 ≤ 0
=

{{
{{
{

e
− y1θ1

(θ1+θ2)
, 0 ≤ y1 < ∞

e
y1
θ2

(θ1+θ2)
, −∞ < y1 < 0

(7.35)

and zero elsewhere. It is easily verified that (7.35) is a density.

Exercises 7.7

7.7.1. Use transformation of variable technique to show that the density of u = x1 + x2
is the same as the one obtained by partial fraction technique in Example 7.20.

7.7.2. Verify that (7.35) is a density.

7.7.3. If x1 and x2 are independently distributed type-1 beta random variables with dif-
ferent parameters, then evaluate the densities of (1): u = x1x2; (2): v = x1

x2
.

7.7.4. Evaluate the densities of u and v in Exercise 7.7.3 by using the following tech-
nique: Take theMellin transform and then take the inverse Mellin transform to get the
result. For example, theMellin transform of the unknowndensity g(u) of u is available
from E[us−1] = E[xs−11 ]E[xs−12 ] due to statistical independence and these individual ex-
pected values are available from the corresponding type-1 beta densities. Then take
the inverse Mellin transform.

7.7.5. Let x1 and x2 be independently distributed gamma random variables with the
parameters (α1,β) and (α2,β)with the same beta. By using transformation of variables,
show that u = x1

x1+x2
is type-1 beta distributed, v = x1

x2
is type-2 beta distributed,w = x1+x2

is gamma distributed. [Hint: Use the transformation x1 = r cos2 θ, x2 = r sin2 θ. Then
J = 2r cosθ sinθ.]

7.7.6. Prove that Γ( 12 ) = √π. Hint: Consider

[Γ( 1
2
)]

2
= Γ( 1

2
)Γ( 1

2
)

= [∫
∞

0
x

1
2−1e−xdx][∫

∞

0
y

1
2−1e−ydy]

and make the transformation x = r cos2 θ, y = r sin2 θ.
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7.7.7. Show that

∫
1

0
xα−1(1 − x)β−1dx = Γ(α)Γ(β)

Γ(α + β)

for ℜ(α) > 0,ℜ(β) > 0. Hint: Start with Γ(α)Γ(β) and use integral representations.

7.7.8. Let u = x1
x2
where x1 and x2 are independently distributed with x1 = χ2m/m and

x2 = χ2n/n. Here, χ2ν means a chi-square variable with ν degrees of freedom. Show that
u is F-distributed or u has an F-density of the form

f (F) =
Γ(m+n2 )

Γ(m2 )Γ( n2 )
(m
n

)
m
2 F

m
2 −1

(1 + m
n F)

m+n
2

for 0 ≤ F < ∞,m,n = 1, 2,… and zero elsewhere.

7.7.9. In Exercise 7.7.8, show that x = m
n F has a type-2 beta distributionwith the param-

eters m
2 and n

2 .

7.7.10. Let u = x1
x2
where x1 and x2 are independently distributed with x1 ∼ N(0, 1) and

x2 = χ2ν/ν. That is, x1 is standard normal and x2 is a chi-square with ν degrees of free-
dom, divided by its degrees of freedom. Show that u is Student-t distributed with the
density

f (u) =
Γ( ν+12 )

√νπΓ( ν2 )
(1 + t2

ν
)
−( ν+12 )

for −∞ < u < ∞, ν = 1, 2,….

A note on degrees of freedom
In general, k “degrees of freedom”means free to vary in k different directions. The

phrase “degrees of freedom” appears in different disciplines under different contexts,
each having its own interpretation. We will indicate how it is interpreted in statistical
literature.

The moment generating function (mgf) of a real gamma variable x with the pa-
rameters (α,β) is

Mx(t) = (1 − βt)−α .

Achi-square variablewithm degrees of freedom, χ2m, being a real gammavariablewith
β = 2, α = m

2 , has the mgf

Mχ2m (t) = (1 − 2t)−
m
2 .

Hence, if χ2m and χ2n are independently distributed then u = χ2m + χ2n has the mgf

Mu(t) = (1 − 2t)−
m
2 (1 − 2t)−

n
2 = (1 − 2t)−

m+n
2
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which is the mgf of a chi-square with m + n degrees of freedom. Hence when χ2m and
χ2n are independently distributed then

χ2m + χ2n ≡ χ2m+n.

Extending this result, we have

χ2m ≡ u1 + ⋯ + um

where ui = χ21 or a chi-squarewith one degree of freedom,where u1,… ,um are indepen-
dently distributed. But we have seen that when xi ∼ N(0, 1) then x2i ∼ χ21 , a chi-square
with one degree of freedom. Hence

χ2m = x21 + ⋯ + x2m (7.36)

where x2i is the square of a standard normal variable and x1,… ,xm are independently
distributed. Hence “m degrees of freedom” here means that the χ2m can be written as
the sum of squares ofm independently distributed standard normal variables.



8 Some multivariate distributions

8.1 Introduction

There are several multivariate (involving more than one random variable) densities,
where all the variables are continuous, as well as probability functions where all vari-
ables are discrete. There are also mixed cases where some variables are continuous
and others are discrete.

8.2 Some multivariate discrete distributions

Two such examples, where all the variables are discrete, are themultinomial probabil-
ity law and the multivariate hypergeometric probability law. These will be considered
first.

8.2.1 Multinomial probability law

In Bernoulli trials, each trial could result in only one of two events A1 and A2, A1 ∪
A2 = S, A1 ∩ A2 = ϕ where S is the sure event and ϕ is the impossible event. We called
one of them success and the other failure. We could have also called both “successes”
with probabilities p1 and p2 with p1 + p2 = 1. Now, we look at multinomial trials. Each
trial can result in one of k events A1,… ,Ak with Ai ∩Aj = ϕ for all i ≠ j, A1 ∪⋯∪Ak = S,
the sure event. Let the probability of occurrence of Ai be pi . That is, P(Ai) = pi, i =
1,… ,k, p1+⋯+pk = 1. Suppose that persons in a township are categorized into various
age groups, less than or equal to 20 years old (group 1), more than 20 and less than
or equal to 30 years old (group 2), 30 to 50 (group 3), over 50 (group 4). If a person is
selected at random from this township, then she will belong only to one of these four
groups, that is, each trial can result in one of A1,A2,A3,A4 with Ai ∩ Aj = ϕ, i ≠ j and
A1 ∪⋯∪A4 = S = sure event. Each such selection is amultinomial trial. If the selection
is done independently, then we have independent multinomial trials.

As another example, suppose that the persons are categorized according to their
monthly incomes into 10 distinct groups. Then a selected person will belong to one of
these 10 groups. Here, k = 10 and in the first example k = 4.

As another example, consider taking a hand of five cards with replacement. There
are four suits of 13 cards each (clubs, diamonds, hearts and spades). If cards are se-
lected at random with replacement, then p1 =

13
52 = 1

4 = p2 = p3 = p4.
A general multinomial situation can be described as follows: Each trial results in

one of k mutually exclusive and totally exhaustive events A1,… ,Ak with the proba-
bilities pi = P(Ai), i = 1,… ,k, p1 + ⋯ + pk = 1, and we consider n such independent
trials. What is the probability that x1 times the event A1 occurs, x2 times the event A2

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562545-008
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occurs, …, xk times the event Ak occurs, so that x1 + ⋯ + xk = n = the total number of
trials. We assume that the probabilities (p1,… ,pk) remain the same from trial to trial
and the trials are independent. Let us denote the joint probability function of x1,… ,xk
by f (x1,… ,xk). For any given sequence of x1 timesA1,… ,xk timesAk , the probability is
px11 p

x2
2 ⋯pxkk . Hence the required probability is this probability times the total number

of such sequences. Note that n can be permuted among themselves in n! ways, x1 in
x1!ways and so on. Since repetitions are there, the total number of distinct sequences
possible is

n!
x1!x2!⋯xk !

.

Therefore,

f (x1,… ,xk) =
n!

x1!⋯xk !
px11 ⋯pxkk (8.1)

for xi = 0, 1,… ,n; 0 ≤ pi ≤ 1, i = 1,… ,k; x1 + x2 + ⋯ + xk = n; p1 + ⋯ + pk = 1; and zero
otherwise. Since there is a condition x1 + ⋯ + xk = n, one of the variables can be writ-
ten in terms of others, and hence f (x1,… ,xk) is a (k − 1)-variate probability law, not
k-variate. For example, for k = 2 we have

f (x1,x2) =
n!

x1!x2!
px11 p

x2
2

= n!
x1!(n − x1)!

px11 (1 − p1)n−x1

which is the binomial law. Note that the multinomial expansion gives

(p1 + ⋯ + pk)n = ∑
x1+⋯+xk=n

n!
x1!⋯xk !

px11 ⋯pxkk . (8.2)

What is the joint moment generating function for the multinomial probability law?

M(t1,… , tk) = E[et1x1+⋯+tk−1xk−1 ]

since there are only k − 1 variables, and it is

= ∑
x1+⋯+xk=n

n!
x1!⋯xk !

(p1et1)
x1 ⋯(pk−1etk−1)

xk−1pxkk

= (p1et1 + ⋯ + pk−1etk−1 + pk)
n, (8.3)

available from (8.2) by replacing pi by pieti , i = 1,… ,k − 1 and pk remaining the same.
This mgf is differentiable as well as expansible. Hence we should get the integer mo-
ments by differentiation.

E(xi) =
𝜕
𝜕ti

M(t1,… , tk)|
t1=0,…,tk−1=0

= npieti (p1et1 + ⋯ + pk−1etk−1 + pk)
n−1|t1=0,…,tk−1=0

= npi(p1 + ⋯ + pk)n−1 = npi , i = 1,… ,k − 1.
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But

E(xk) = E[n − x1 − ⋯ − xk−1] = n − np1 − ⋯ − npk−1 = npk .

Hence the formula holds for all i = 1,… ,k or

E(xi) = npi , i = 1,… ,k. (8.4)

For i ≠ j,

E(xixj) =
𝜕
𝜕ti

𝜕
𝜕tj

M(t1,… , tk)|
t1=0,…,tk−1=0

= npieti
𝜕
𝜕tj

(p1et1 + ⋯ + pk−1etk−1 + pk)
n−1|

t1=0=⋯=tk−1

= npi(n − 1)pj .

Hence the covariance between xi and xj for i ≠ j,

Cov(xi ,xj) = E(xixj) − E(xi)E(xj)
= n(n − 1)pipj − (npi)(npj) = −npipj , i ≠ j = 1,… ,k. (8.5)

E(x2i ) = 𝜕2

𝜕t2i
M(t1,… , tk)|

t1=0=⋯=tk−1

= 𝜕
𝜕ti

npieti (p1et1 + ⋯ + pk−1etk−1 + pk)
n−1|

t1=0=⋯=tk−1

= n(n − 1)p2i + npi .

Hence the variance of xi is given by

Var(xi) = n(n − 1)p2i + npi − (npi)2 = npi(1 − pi), i = 1, 2,… ,k. (8.6)

For i = 1,… ,k − 1, they come from differentiation and for i = k by substitution. But
Cov(xi ,xj) = −npipj, i ≠ j = 1,… ,k. Hence the covariance matrix for x1,… ,xk−1 will be
non-singular and positive definite but for x1,… ,xk it will be positive semi-definite and
singular. The singular covariance matrix, denoted by Σ, is then given by

Σ = Cov(X) = Cov[[

[

x1
⋮
xk

]]

]

= [[

[

np1(1 − p1) −np1p2 … −np1pk
−np2p1 np2(1 − p2) … −np2pk

⋮ ⋮ … npk(1 − pk)

]]

]

. (8.7)

This matrix Σ is a singular matrix of rank k − 1.
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Example 8.1. A balanced die is rolled 10 times. What is the probability of getting
5 ones, 3 twos, 2 sixes?

Solution 8.1. Since it is told that the die is balanced, we have a multinomial law with
k = 6, p1 = ⋯ = p6 = 1

6 . Now, we have a multinomial law with n = 10, x1 = 5, x2 = 3,
x3 = 0 = x4 = x5, x6 = 2. Hence the required probability p is given by

p = n!
x1!⋯xk !

px11 ⋯pxkk

= 10!
5!3!0!0!0!2!

( 1
6
)
5
( 1
6
)
3
( 1
6
)
0
( 1
6
)
0
( 1
6
)
0
( 1
6
)
2

= 2520( 1
6
)
10

= 70
68

≈ 0.00004.

Example 8.2. At Thekkady wild-life reserve, suppose that on any given day the prob-
ability of finding a tourist from Kerala is 0.4, from Tamilnadu is 0.3, from other states
in India is 0.2 and foreigners is 0.1. On a particular day, there are 20 tourists. What is
the probability that out of these 20, 10 are fromTamilnadu and 10 are fromother states
in India?

Solution 8.2. We can take this as a multinomial situation with k = 4, n = 20, p1 = 0.4,
p2 = 0.3, p3 = 0.2, p4 = 0.1, x2 = 10, x3 = 10, x1 = 0 = x4. The required probability, p, is
then given by

p = n!
x1!⋯x4!

px11 ⋯px44

= 20!
10!10!0!0!

(0.4)0(0.3)10(0.2)10(0.1)0

= (11)(13)(17)(19)(4)(0.3)10(0.2)10.
≈ 0.0000001

8.2.2 The multivariate hypergeometric probability law

This law is applicable when sampling is done without replacement. A given trial may
result in one of k possible events but the trials are not independent. Suppose that there
are a1 objects of one type, a2 objects of a second type etc and ak objects of the k-th
type. Suppose that these a1 +⋯+ak objects are well shuffled and a subset of n objects
is taken at random. At random, here means that every such subset of n is given and
equal chance of being included. This experiment can also be done by picking one at a
time at random andwithout replacement. Both will lead to the same answer. The total
number of sample points possible is (a1+⋯+akn ). If we obtain x1 of a1 type, x2 of a2 type,
etc. and xk of ak type so that x1 + ⋯ + xk = n then the total number of sample points
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favorable to the event of getting x1,… ,xk is (a1x1 )(
a2x2 )⋯(akxk ). Hence the probability of

getting x1 of a1 type,…, xk of ak type, denoted by f (x1,… ,xk), is given by

f (x1,… ,xk) =
(a1x1 )⋯(akxk )
(a1+⋯+akn )

(8.8)

for xi = 0, 1,… ,n or ai; x1 + ⋯ + xk = n; n = 1, 2,…; i = 1,… ,k and zero elsewhere.
Note that it is a (k − 1)-variate probability function because there is one condition

that x1 +⋯+ xk = n so that one variable can be written in terms of others. From Chap-
ter 3, we may note that

∑
x1+⋯+xk=n

f (x1,… ,xk) = 1

since

∑
x1+⋯+xk=n

(
a1
x1

)⋯(
ak
xk

) = (
a1 + ⋯ + ak
x1 + ⋯ + xk

) = (
a1 + ⋯ + ak

n
) .

In this probability function, since factorials are appearing in the denominators, facto-
rial moments can be easily computed.

ai ,n
∑
xi=0

xi (
ai
xi

) =
ai ,n
∑
xi=1

xi (
ai
xi

) = ai
ai−1
∑
xi=1

(
ai − 1
xi − 1

) .

Therefore,

E(x1) = ∑
x1+⋯+xk=n

x1(a1x1 )⋯(akxk )
(a1+⋯+akn )

=
a1(

a1+⋯+ak−1
n−1 )

(a1+⋯+akn )
= na1
a1 + ⋯ + ak

.

Similarly,

E[x1(x1 − 1)] = n(n − 1)a1(a1 − 1)
(a1 + ⋯ + ak)(a1 + ⋯ + ak − 1)

⇒

Var(xi) = E[xi(xi − 1)] + E[xi] − [E(xi)]
2

= n(n − 1)ai(ai − 1)
(a1 + ⋯ + ak)(a1 + ⋯ + ak − 1)

+ nai
a1 + ⋯ + ak

− n2a2i
(a1 + ⋯ + ak)2

(8.9)

E[x1x2] =
n(n − 1)a1a2

(a1 + ⋯ + ak)(a1 + ⋯ + ak − 1)
⇒

Cov(xi ,xj) =
n(n − 1)aiaj

(a1 + ⋯ + ak)(a1 + ⋯ + ak − 1)
−

n2aiaj
(a1 + ⋯ + ak)2

. (8.10)

The jointmoment generating function goes intomultiple series, and hencewewill not
discusshere. Alsonote that the variancedoesnot have anice representation compared
to the covariance expression in (8.10).



226 | 8 Some multivariate distributions

Example 8.3. From a well-shuffled deck of 52 playing cards, a hand of 8 cards is se-
lected at random. What is the probability that this hand contains 3 clubs, 3 spades
and 2 hearts?

Solution 8.3. This is a multivariate hypergeometric situation with k = 4, a1 = 13 =
a2 = a3 = a4, x1 = 3, x2 = 3, x3 = 2, x4 = 0. Hence the required probability is given
by

(a1x1 )⋯(akxk )
(a1+⋯+akn )

=
(133 )(133 )(132 )(130 )

(528 )

= (1)(2)(3)(4)(5)(6)(7)(8)
(52)(51)(50)(49)(48)(47)(46)(45)

[ (13)(12)(11)
(1)(2)(3)

]
2 (13)(12)

(1)(2)

= (13)(13)(11)(11)(4)
(47)(23)(5)(15)(17)(7)

.

≈ 0.008478.

Exercises 8.2
8.2.1. In a factory, three machines are producing nuts of a certain diameter. These
machines also sometimes produce defective nuts (nuts which do not satisfy quality
specifications). Machine 1 is known to produce 40% of the defective nuts, machine 2,
30%,machine 3, 20% andmachine 4, 10%. Fromaday’s production, 5 nuts are selected
at random and 3 are defective. What is the probability that one defective came from
machine 1, and the other 2 from machine 2?

8.2.2. Cars on the roads in Kerala are known to be such that 40% are of Indian make,
30% of Indo-Japanese make and 30% others. Out of the 10 cars which came to a toll
booth at a particular time, what is the probability that s are Indo-Japanese and 4 are
Indian make?

8.2.3. A small township has households belonging to the following income groups,
based on monthly incomes. (Income group, Number) = (<10 000, 100), (10 000 to
20 000, 50), (over 30 000, 50). Four families are selected from this township, at ran-
dom. What is the probability that two are in the group (10 000 to 20 000) and two are
in the group (<10 000)?

8.2.4. A class consists of students in the following age groups: (Age group, Number) =
(below 20, 10), (20 to 21, 15), (21 to 22, 20), (above 22, 5). A set of four students is
selected ar random. What is the probability that there are one each from each age
group?

8.2.5. In Exercise 8.2.4, what is the probability that at least one group has none in the
selected set?
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8.3 Some multivariate densities

There are many types of multivariate densities in current use in statistical literature.
The most commonly used ones are multivariate normal, Dirichlet type-1, Dirichlet
type-2 and multivariate and matrix variate gamma.

Corresponding to a univariate (one variable case) density, do we have something
called the unique multivariate density? For example, if x ∼ N(0, 1), standard nor-
mal, and if we have a bivariate density f (x,y) such that f (x,y) ≥ 0 for all x and y,
∫x ∫y f (x,y)dx ∧ dy = 1, and ∫x f (x,y)dx = f2(y) ∼ N(0, 1), ∫y f (x,y)dy = f1(x) ∼ N(0, 1).
Is f (x,y) a unique function or can we have many such f (x,y) satisfying the above
conditions having the marginal densities as standard normal? The answer is in the
affirmative andwe can havemany functions satisfying all the above conditions. Hence
there is nothing called the uniquemultivariate analogue of a given univariate density.
As two examples, we can give

f1(x,y) =
1
2π

e−
1
2 (x

2+y2), f2(x,y) =
1

2π√1 − ρ2
e−

1
2 (x

2−2ρxy+y2),

for −1 < ρ < 1 are two functions which are both multivariate analogues of a standard
normal density. Since there is nothing called a unique multivariate analogue to any
given univariate density, some functions are taken as multivariate analogues due to
somedesirable properties. But the studentmust keep inmind thatwhenwe take a par-
ticular multivariate density as an analogue of a given univariate density this function
is not taken as the unique multivariate analogue. It is only onemultivariate analogue.

8.3.1 Type-1 Dirichlet density

This is one generalization of a type-1 beta density. The following is the form of the
density:

f (x1,… ,xk) = cxα1−11 xα2−12 ⋯xαk−1k

× (1 − x1 − ⋯ − xk)αk+1−1

for ℜ(αj) > 0, j = 1,… ,k + 1; (x1,… ,xk) ∈ Ω, Ω = {(x1,… ,xk) ∣ 0 ≤ xi ≤ 1, i = 1,… ,k,
x1 + ⋯ + xk ≤ 1}, and f (x1,… ,xk) = 0 otherwise. In statistical problems, usually the
parameters are real and then the conditions will be αj > 0, j = 1,… ,k + 1. Note that
for k = 1 we have type-1 beta density, and hence the above density can be taken as a
generalization of a type-1 beta density. By integrating out variables one at a time, we
can evaluate the normalizing constant c. For example, let

Ix1 = ∫
1−x2−⋯−xk

x1=0
xα1−11

× [1 − x1 − ⋯ − xk]αk+1−1dx1



228 | 8 Some multivariate distributions

= (1 − x2 − ⋯ − xk)αk+1−1 ∫
1−x2−⋯−xk

0
xα1−11

× [1 − x1
1 − x2 − ⋯ − xk

]
αk+1−1

dx1;

Put y1 =
x1

1−x2−⋯−xk
then

Ix1 = (1 − x2 − ⋯ − xk)α1+αk+1−1

× ∫
1

0
yα1−11 (1 − y1)αk+1−1dy1

= (1 − x2 − ⋯ − xk)α1+αk+1−1

× Γ(α1)Γ(αk+1)
Γ(α1 + αk+1)

forℜ(α1) > 0,ℜ(αk+1) > 0 or α1 > 0, αk+1 > 0 if real. Proceeding like this, the final result
is the following:

∫
Ω
f (x1,… ,xk)dx1 ∧ ⋯ ∧ dxk = cDk

where

Dk = D(α1,… ,αk ;αk+1)

= Γ(α1)⋯Γ(αk+1)
Γ(α1 + ⋯ + αk+1)

. (8.11)

Therefore,

Dk = 1
c
.

The product moment E[xh11 ⋯xhkk ] is available from (8.11) by replacing αj by αj + hj,
j = 1,… ,k. That is,

E[xh11 ⋯xhkk ] = D(α1 + h1,… ,αk + hk ;αk+1)
D(α1,… ,αk ;αk+1)

= Γ(α1 + h1)
Γ(α1)

⋯ Γ(αk + hk)
Γ(αk)

× Γ(α1 + ⋯ + αk+1)
Γ(α1 + h1 + ⋯ + αk + hk + αk+1)

(8.12)

forℜ(αj + hj) > 0, j = 1,… ,k. This means that if the αj ’s are real then the moments will
exist for some negative values of hj also. Some basic properties of type-1 Dirichlet are
the following.

Result 8.1. If (x1,… ,xk) has a type-1 Dirichlet distribution, then every subset of
(x1,… ,xk) is also type-1 Dirichlet distributed and the individual variables are type-1
beta distributed.



8.3 Some multivariate densities | 229

The proof follows by using the property that arbitrary productmoments (8.12) will
uniquely determine the corresponding distributions. Retain hj for the variables in the
selected subset and put the remaining hj ’s zeros and then identify the correspond-
ing distribution to show that all subsets have the same structure of the density or all
subsets are type-1 Dirichlet distributed.

Result 8.2. If (x1,… ,xk) has a type-1 Dirichlet distribution, then y1 = 1 − x1 − ⋯ − xk
and y2 = x1 + ⋯ + xk are both type-1 beta distributed.

For proving this, let us consider the h-thmoment of 1−x1−⋯−xk for anarbitrary h.

E[1 − x1 − ⋯ − xk]h = 1
Dk

∫
Ω
xα1−11 ⋯xαk−1k

× (1 − x1 − ⋯ − xk)αk+1+h−1dx1 ∧ ⋯ ∧ dxk

= Γ(αk+1 + h)
Γ(αk+1)

× Γ(α1 + ⋯ + αk+1)
Γ(α1 + ⋯ + αk+1 + h)

(8.13)

forℜ(αk+1 + h) > 0. But (8.13) is the h-th moment of a type-1 beta random variable with
the parameters (αk+1,α1 + ⋯ + αk). Hence y1 is type-1 beta distributed. For any type-1
variable z, 1−z is also type-1 beta distributedwith the parameters interchanged.Hence
1 − y1 = y2 is type-1 beta distributed with the parameters (α1 + ⋯ + αk ,αk+1).

Example 8.4. If the multinomial probabilities have a prior type-1 Dirichlet distri-
bution, then derive (1) the unconditional distribution of the multinomial variables;
(2) the posterior distribution of the multinomial parameters.

Solution 8.4. The multinomial probability law for given values of the parameters
p1,… ,pk−1 is given by

g1(x1,… ,xk−1|p1,… ,pk−1) =
n!

x1!⋯xk !
px11 ⋯pxk−1k−1

× (1 − p1 − ⋯ − pk−1)xk

for x1 +⋯+ xk = n, and zero otherwise. Let the prior density for p1,… ,pk−1 be a type-1
Dirichlet. Let

f2(p1,… ,pk−1) =
Γ(α1 + ⋯ + αk)
Γ(α1)⋯Γ(αk)

pα1−11 ⋯pαk−1−1k−1

× (1 − p1 − ⋯ − pk−1)αk−1

for 0 ≤ pi ≤ 1, p1 +⋯+ pk−1 ≤ 1, αj > 0, j = 1,… ,k and all known, and f2(p1,… ,pk−1) = 0
elsewhere. Then the joint probability function of x1,… ,xk−1,p1,… ,pk−1 is given by

g1(x1,… ,xk−1|p1,… ,pk−1)f2(p1,… ,pk−1).
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(1) The unconditional probability function of x1,… ,xk−1, denoted by f1(x1,… ,
xk−1), is available by integrating out p1,… ,pk−1.

f1(x1,… ,xk−1)

= n!
x1!⋯xk !

Γ(α1 + ⋯ + αk)
Γ(α1)⋯Γ(αk)

∫
Ω
pα1+x1−11 ⋯

× pαk−1+xk−1k−1 (1 − p1 − ⋯ − pk−1)n−x1−⋯−xk−1+αk−1dp1 ∧ ⋯ ∧ dpk−1

=
n!

x1!⋯xk !
Γ(α1 + ⋯ + αk)
Γ(α1)⋯Γ(αk)

× Γ(α1 + x1)⋯Γ(αk−1 + xk−1)Γ(n − x1 − ⋯ − xk−1 + αk)
Γ(α1 + ⋯ + αk + n)

(2) The posterior density of p1,… ,pk−1 is available by dividing the joint proba-
bility function by f1(x1,… ,xk−1). Denoting the posterior density of p1,… ,pk−1, given
x1,… ,xk−1, by g2(p1,… ,pk−1|x1,… ,xk−1) we have

g2(p1,… ,pk−1|x1,… ,xk−1)

= Γ(α1 + ⋯ + αk + n)
Γ(α1 + x1)⋯Γ(αk−1 + xk−1)Γ(n − x1 − ⋯ − xk−1 + αk)
× pα1+x1−11 ⋯pαk−1+xk−1−1k−1

× (1 − p1 − ⋯ − pk−1)n−x1−⋯−xk−1+αk−1,

for (p1,… ,pk) ∈ Ω,ℜ(αj) > 0, j = 1,… ,k, xj = 0, 1,… ,n, j = 1,… ,k − 1 and g2(p1,… ,pk−1|
x1,… ,xk−1) = 0 elsewhere. These density functions (1) and (2) are very important in
Bayesian analysis and Bayesian statistical inference.

8.3.2 Type-2 Dirichlet density

As an extension of type-2 beta density, we have the type-2 Dirichlet density.

f (x1,… ,xk) =
1
Dk

xα1−11 ⋯xαk−1k (1 + x1 + ⋯ + xk)−(α1+⋯+αk+1)

for ℜ(αj) > 0, j = 1,… ,k + 1, xj ≥ 0, j = 1,… ,k, and f (x1,… ,xk) = 0 elsewhere. Going
through the same steps as in type-1 Dirichlet case, we can show that

∫
∞

0
⋯∫
∞

0
xα1−11 ⋯xαk−1k (1 + x1 + ⋯ + xk)−(α1+⋯+αk+1)dx1 ∧ ⋯ ∧ dxk

= D(α1,… ,αk ;αk+1) =
Γ(α1)⋯Γ(αk+1)
Γ(α1 + ⋯ + αk+1)

(8.14)

This integral is known as type-2 Dirichlet integral.
Arbitrary product moment, E[xh11 ⋯xhkk ], is available from the type-2 Dirichlet in-

tegral by replacing αj by αj + hj, j = 1,… ,k and αk+1 by αk+1 − h1 − ⋯ − hk . That is,
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E[xh11 ⋯xhkk ] = Γ(α1 + h1)
Γ(α1)

⋯ Γ(αk + hk)
Γ(αk)

Γ(αk+1 − h1 − ⋯ − hk)
Γ(αk+1)

(8.15)

forℜ(αj +hj) > 0, j = 1,… ,k,ℜ(αk+1 −h1 −⋯−hk) > 0. Thismeans that the productmo-
ment can exist only for some values of h1,… ,hk . Since arbitrarymoments uniquely de-
termine the distribution in this case, from (8.14) and (8.15) it is clear that if x1,… ,xk are
jointly type-2 Dirichlet distributed then any subset therein will also be type-2 Dirichlet
distributed.

Result 8.3. If x1,… ,xk are jointly type-2 Dirichlet distributed, then all subsets of
x1,… ,xk are type-2 Dirichlet distributed and individual variables are type-2 beta dis-
tributed.

Result 8.4. If x1,… ,xk are jointly type-2 Dirichlet distributed, then y1 = 1
1+x1+⋯+xk

and y2 = x1+⋯+xk
1+x1+⋯+xk

are type-1 beta distributed.

For proving this result, let us take the h-th moment of 1
1+x1+⋯+xk

for arbitrary h.
That is,

E[ 1
1 + x1 + ⋯ + xk

]
h
= E[1 + x1 + ⋯ + xk]−h

= [D(α1,… ,αk ;αk+1)]
−1 ∫
∞

0
⋯∫
∞

0
xα1−11 ⋯

× xαk−1k (1 + x1 + ⋯ + xk)−(α1+⋯+αk+1+h)dx1 ∧ ⋯ ∧ dxk

= [D(α1,… ,αk ;αk+1)]
−1 Γ(α1)⋯Γ(αk+1 + h)

Γ(α1 + ⋯ + αk+1 + h)

= Γ(αk+1 + h)
Γ(αk+1)

Γ(α1 + ⋯ + αk+1)
Γ(α1 + ⋯ + αk+1 + h)

which is the h-th moment of a type-1 beta random variable with the parameters
(αk+1,α1 +⋯+αk). Hence the result. The second part goes by observing that the second
part is y2 = 1 − y1, and hence the result. Here, the parameters are (α1 + ⋯ + αk ,αk+1).

There are various generalizations of type-1 and type-2 Dirichlet densities. Two
forms which appear in reliability analysis and life-testing models are the following:

f1(x1,… ,xk) = c1x
α1−1
1 (1 − x1)β1x

α2−1
2

× (1 − x1 − x2)β2 ⋯xαk−1k

× (1 − x1 − ⋯ − xk)αk+1+βk−1, (x1,… ,xk) ∈ Ω (8.16)

f2(x1,… ,xk) = c2x
α1−1
1 xα2−12 (x1 + x2)β2x

α3−1
3

× (x1 + x2 + x3)β3 ⋯xαk−1k

× (1 − x1 − ⋯ − xk)αk+1−1, (x1,… ,xk) ∈ Ω (8.17)
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where c1 and c2 are the normalizing constants. For evaluating the normalizing con-
stants in (8.16) and (8.17), start with integrating from xk , xk−1 to x1. In (8.17), make
the substitution u1 = x1, u2 = x1 + x2 etc. One generalization of type-2 Dirichlet is the
following:

f3(x1,… ,xk) = c3x
α1−1
1 (1 + x1)−β1x

α2−1
2 ⋯

× (1 + x1 + ⋯ + xk−1)−βk−1x
αk−1
k

× (1 + x1 + ⋯ + xk)−(α1+⋯+αk+1+βk) (8.18)

for 0 ≤ xj < ∞, i = 1,… ,k. For evaluating the normalizing constant c3 start integrat-
ing from xk , xk−1,… ,x1. These computations and evaluations of the corresponding
marginal densities are left as exercises to the students.

Before concluding this section, let us look into themeaning of largest and smallest
random variables.

Example 8.5. Let x1,x2,x3 be independently distributed exponential random vari-
ables with mean values λ−11 ,λ−12 ,λ−13 , respectively. Let y1 = max{x1,x2,x3} and y2 =
min{x1,x2,x3}. Evaluate the densities of y1 and y2.

Solution 8.5. The student may be confused about the meaning of largest of a set of
random variables when x1,x2,x3 are all defined on [0,∞). Let one set of observations
on {x1,x2,x3} be {2,8,5}, another set be {10,7.2, 1}, yet another set be {2,4.2,8.5}. The
largest of these observations from each set are {8, 10,8.5} and the smallest are {2, 1, 2}.
If {8, 10,8.5,…} are observations on some random variable y1, then y1 is called largest
of x1,x2,x3 or y1 =max{x1,x2,x3}. Similarly, if {2, 1, 2,…} are observations on some ran-
dom variable y2 then y2 = min{x1,x2,x3}. Let the densities and distribution functions
of these be denoted by fy1 (y1), fy2 (y2),Fy1 (y1),Fy2 (y2). If the largest y1 is less than a num-
ber u, then all x1,x2,x3 must be less than u. Similarly, if the smallest one y2 is greater
than v, then all must be greater than v. But Fy1 (u) = Pr{y1 ≤ u} and fy1 (u) = d

duFy1 (u).
Similarly, 1 − Fy2 (v) = Pr{y2 > v}. But due to independence,

Fy1 (u) = Pr{x1 ≤ u}Pr{x2 ≤ u}Pr{x3 ≤ u}

=
3

∏
j=1

[∫
u

0
λje−λjxjdxj] =

3
∏
j=1

[1 − e−λju]

fy1 (u) =
d
du

Fy1 (u) =
3
∑
j=1

λje−λju − (λ1 + λ2)e−(λ1+λ2)u

− (λ1 + λ3)e−(λ1+λ3)u − (λ2 + λ3)e−(λ2+λ3)u

+ (λ1 + λ2 + λ3)e−(λ1+λ2+λ3)u

for 0 ≤ u < ∞ and zero otherwise. Similarly,
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fy2 (v) = − d
dv

Pr{y2 > v} = − d
dv

3
∏
j=1

(∫
∞

v
λje−λjxjdxj)

= − d
dv

(e−(λ1+λ2+λ3)v) = (λ1 + λ2 + λ3)e−(λ1+λ2+λ3)v , 0 ≤ v < ∞

and zero elsewhere.

Exercises 8.3
8.3.1. Evaluate the normalizing constant c1 in (8.16). Then evaluate the jointmarginal
densities of (x1,… ,xk−1), (x1,… ,xk−2), …, x1.

8.3.2. For the model in (8.17) evaluate E[xh11 ⋯xhkk ].

8.3.3. By using Exercise 8.3.2, or otherwise, show that x1 in the model (8.17) can be
written equivalently as a product of independently distributed type-1 beta random
variables. (Hint: Take E(xh1 ) and look at the decomposition of this gamma product.)

8.3.4. Evaluate the normalizing constant c2 in (8.17).

8.3.5. Evaluate the normalizing constant c3 in (8.18).

8.3.6. Take the sum u = x1 +⋯+xk , the sum of type-1 Dirichlet variables. In Result 8.2,
it is shown that u is type-1 beta variable. By using the fact that if u is type-1 beta, then
u
1−u and

1
1−u are type-2 beta variables write down the results on (x1,… ,xk).

8.3.7. It is shown in Result 8.4 that u = 1
1+x1+⋯+xk

is a type-1 beta if x1,… ,xk have a
type-2 Dirichlet distribution. Using the fact that if u is type-1 beta, then u

1−u and
1

1−u are
type-2 beta distributed, write down the corresponding results for (x1,… ,xk).

8.3.8. Using Exercises 8.3.6 and 8.3.7 and by using the properties that if w is type-2
beta, then 1

w is type-2 beta, 1
1+w is type-1 beta, w

1+w is type-1 beta write down the corre-
sponding results on (x1,… ,xk) when x1,… ,xk have a type-2 Dirichlet distribution.

8.3.9. If (x1,… ,xk) is type-1 Dirichlet, then evaluate the conditional density of x1 given
x2,… ,xk .

8.3.10. For k = 2, consider type-1 and type-2 Dirichlet densities. By using Maple or
Mathematica, draw the 3-dimensional surfaces for (1) fixed α1,α2 and varying α3;
(2) fixed α2,α3 and varying α1.

8.4 Multivariate normal or Gaussian density

As discussed earlier, there is nothing called a unique multivariate analogue of a uni-
variate normal density. But the following form is used as a multivariate analogue due
to many parallel characterization results and also due to mathematical convenience.
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Let X′ = (x1,… ,xp) be the transpose of the column vectorwith elements x1,… ,xp. Con-
sider the following real-valued scalar function (1 × 1 matrix) of X, denoted by f (X):

f (X) = ce−
1
2 (X−μ̃)

′Σ−1(X−μ̃) (8.19)

for −∞ < xj < ∞, −∞ < μj < ∞, j = 1,… ,p, μ̃′ = (μ1,… ,μp), Σ = Σ′ > O (positive definite
p × p matrix), where μ̃ is a parameter vector, Σ > O is a parameter matrix. Parallel to
the notation used for the scalar case, we will use the following notation.

Notation 8.1 (p-variate Gaussian).

X ∼ Np(μ̃, Σ), Σ > O (8.20)

meaning that the p × 1 vector X is normal or Gaussian distributed as p-variate nor-
mal with parameters μ̃ and Σ with Σ > O (positive definite).

In order to study properties of p-variate Gaussian as well as generalizations of
p-variate Gaussian and other generalized densities, a few results on Jacobians will be
useful. These will be listed here as a note. Those who are familiar with these may skip
the note and go to the text.

Note 8.1 (A note on Jacobians). Before starting the discussion of Jacobians, some
basic notations from differential calculus will be recalled here.

Notation 8.2. ∧: wedge product.

Definition 8.1 (Wedge product or skew symmetric product). Thewedge product or
skew symmetric product of differentials is defined as follows:

dx ∧ dy = −dy ∧ dx ⇒ dx ∧ dx = 0, dy ∧ dy = 0.

Now let y1 = f1(x1,x2), y2 = f2(x1,x2) be two functions of the real scalar variables x1
and x2. From differential calculus,

dy1 =
𝜕f1
𝜕x1

dx1 +
𝜕f1
𝜕x2

dx2 (i)

dy2 = 𝜕f2
𝜕x1

dx1 +
𝜕f2
𝜕x2

dx2 (ii)

where 𝜕fi𝜕xj denotes the partial derivative of fi with respect to xj . Then

dy1 ∧ dy2 = [ 𝜕f1
𝜕x1

dx1 +
𝜕f1
𝜕x2

dx2] ∧ [ 𝜕f2
𝜕x1

dx1 +
𝜕f2
𝜕x2

dx2]

=
𝜕f1
𝜕x1

𝜕f2
𝜕x1

dx1 ∧ dx1 +
𝜕f1
𝜕x1

𝜕f2
𝜕x2

dx1 ∧ dx2
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+ 𝜕f1
𝜕x2

𝜕f2
𝜕x1

dx2 ∧ dx1 +
𝜕f1
𝜕x2

𝜕f2
𝜕x2

dx2 ∧ dx2

= [ 𝜕f1
𝜕x1

𝜕f2
𝜕x2

− 𝜕f1
𝜕x2

𝜕f2
𝜕x1

]dx1 ∧ dx2 + 0 + 0

= |

|

𝜕f1
𝜕x1

𝜕f1
𝜕x2

𝜕f2
𝜕x1
𝜕f2
𝜕x2

|

|
dx1 ∧ dx2 = Jdx1 ∧ dx2

where J is the Jacobian of the matrix of partial derivatives ( 𝜕fi𝜕xj ). In general, if yj =

fj(x1,… ,xp), j = 1,… ,p and the matrix of partial derivatives is ( 𝜕fi𝜕xj ) then the Jacobian
is the determinant

J = |( 𝜕fi
𝜕xj

)|. (8.21)

When J ≠ 0, then we have

dy1 ∧ ⋯ ∧ dyp = Jdx1 ∧ ⋯ ∧ dxp.

dx1 ∧ ⋯ ∧ dxp = 1
J
dy1 ∧ ⋯ ∧ dyp.

(8.22)

As an application of (8.22) we will evaluate a few Jacobians.

Result 8.5. Let x1,… ,xp be distinct real scalar variables and aij ’s be constants. Con-
sider the linear forms:

y1 = a11x1 + a12x2 + ⋯ + a1pxp
y2 = a21x1 + a22x2 + ⋯ + a2pxp
⋮ =⋮

yp = ap1x1 + ap2x2 + ⋯ + appxp.

We may write this as Y = AX, Y′ = (y1,… ,yp), X′ = (x1,… ,xp),A = (aij). Then

Y = AX, |A| ≠ 0 ⇒ dY = |A|dX

where dY = dy1 ∧ dy2 ∧ ⋯ ∧ dyp and dX = dx1 ∧ ⋯ ∧ dxp .

The proof is trivial. 𝜕yi𝜕xj = aij and the Jacobian is the determinant or J = |A|. When
|A| ≠ 0, then the transformation is one to one.

Y = AX, |A| ≠ 0 ⇒ X = A−1Y .

Wemay generalize Result 8.5 formore general linear transformations. Consider am×n
matrix X of distinct or functionally independent real scalar variables. Here, the wedge
product in X will be of the form:

dX = dx11 ∧ ⋯ ∧ dx1n ∧ dx21 ∧ ⋯ ∧ dxmn.

Let A bem ×m non-singular matrix of constants. Then we have the following result.
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Result 8.6. For the m× n matrix of distinct real scalar variables and A a m×m non-
singular matrix

Y = AX, |A| ≠ 0 ⇒ dY = |A|ndX.

Proof. Let Y(1),Y(2),… ,Y(n) be the columns of Y , X(1),… ,X(n) be the columns of X.
Then

Y = AX ⇒ (Y(1),… ,Y(n)) = (AX(1),… ,AX(n)).

Now if we look at the string of variables in Y(1), then in Y(2),…, in Y(n) and the cor-
responding variables in X(1),… ,X(n). Then the matrix of partial derivatives will be a
diagonal block matrix of the form:

[[

[

A O … O
O A … O
⋮ ⋮ … A

]]

]

where the diagonal blocks are A each and there are n such A’s, and hence the deter-
minant is |A|n. This establishes the result.

Now let us see what happens if we post-multiply X with a non-singular n × nma-
trix B. This will be stated as the next result.

Result 8.7. Let X be a m×n matrix of distinct real scalar variables and let B be n×n
non-singular matrix of constants. Then

Y = XB, |B| ≠ 0 ⇒ dY = |B|mdX.

For proving this result, consider the rows of X and Y and proceed as in the case of
Result 8.6. Now, combining Results 8.6 and 8.7 we have the following result.

Result 8.8. Let Y and X be m × n matrices of real distinct variables. Let A be m ×m
and B be n × n non-singular matrices of constants. Then

Y = AXB, |A| ≠ 0, |B| ≠ 0 ⇒ dY = |A|n|B|mdX.

For proving this result, use Results 8.6 and 8.7. Put Z = BX and Y = AZ, compute
dY in terms of dZ and dZ in terms of dX to prove the result.

Now we shall consider a linear transformation on a symmetric matrix. When a
p × pmatrix X = (xij) of real scalar variables is symmetric then we have only p(p + 1)/2
distinct real scalar variables. Then the product of differentials will be of the form:

dX = dx11 ∧ ⋯ ∧ dx1p ∧ dx22 ∧ ⋯ ∧ dx2p ∧ ⋯ ∧ dxpp.
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Result 8.9. Let X, A be p × p, X = X′ = (xij) be a matrix of p(p + 1)/2 distinct real
scalar variables and let A be a non-singular matrix of constants. Then

Y = AXA′, X = X′, |A| ≠ 0 ⇒ dY = |A|p+1dX.

We can prove the result by using the fact that any non-singular matrix can be
represented as a product of elementary matrices. For the proof of this result as well as
those of many other results, the students may see the book [3]. We will list two results
on non-linear transformations, without proofs, before closing this note.

Result 8.10. Let the p × p matrix X be non-singular so that its regular inverse X−1

exists. Then

Y = X−1 ⇒ dY =
{{{
{{{
{

|X|−2pdX for a general X
|X|−(p+1) for X = X′

|X|−(p−1) for X′ = −X.

Result 8.11. Let the p × p matrix X be symmetric and let it be positive definite with
p(p+1)

2 distinct real variables. Let T = (tij) be a lower triangular matrix with positive
diagonal elements, tjj > 0, j = 1,… ,p and tij ’s, i ≥ j being distinct real variables. Then
the transformation X = TT′ is one to one and

X = TT′, tjj > 0, j = 1,… ,p ⇒ dX = 2p{
p

∏
j=1

tp+1−jjj }dT .

With thehelp of the above Jacobians, anumber of results canbe established. Some
applications to statistical distribution theory will be considered next.

We shall evaluate the normalizing constant in the p-variate normal density. Let

Y = Σ−
1
2 (X − μ̃) ⇒ dY = |Σ|−

1
2 dX;d(X − μ̃) = dX

since μ̃ is a constant vector, where Σ−
1
2 is the positive definite square root of Σ−1 > O.

Now, we shall evaluate the normalizing constant c. We use the standard notation ∫X
which means the integral over X. Then

1 = ∫
X
f (X)dX = c∫

X
e−

1
2 (X−μ̃)

′Σ−1(X−μ̃)dX

= c|Σ|
1
2 ∫

Y
e−

1
2Y
′YdY , Y = Σ−

1
2 (X − μ̃)

because, under the substitution Y = Σ−
1
2 (X − μ̃),

(X − μ̃)′Σ−1(X − μ̃) = (X − μ̃)′Σ−
1
2 Σ−

1
2 (X − μ̃) = Y′Y

= y21 + ⋯ + y2p; Y′ = (y1,… ,yp).
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Here, ∫Y means the multiple integral ∫∞
−∞

⋯∫∞
−∞

. But

∫
∞

−∞
e−

1
2 z

2dz = 2∫
∞

0
e−

1
2 z

2dz

due to even and convergent functions, and it is

= √2∫
∞

0
u

1
2−1e−udu (Put u = 1

2
z2)

= √2Γ( 1
2
) = √2π ⇒

∫
Y
e−

1
2Y
′YdY = (2π)

p
2 .

Hence

c = 1
|Σ|

1
2 (2π)

p
2
.

Therefore, the p-variate normal density is given by

f (X) = 1
|Σ|

1
2 (2π)

p
2
e−

1
2 (X−μ̃)

′Σ−1(X−μ̃), Σ > 0.

What is themean value of X, that is, E(X), andwhat is the covariancematrix of X, that
is, Cov(X)? By definition,

E(X) = ∫
X
Xf (X)dX = ∫

X
(X − μ̃ + μ̃)f (X)dX

= μ̃∫
X
f (X)dX + ∫

X
(X − μ̃)f (X)dX

= μ̃ + ∫
X
(X − μ̃)f (X)dX

since the total integral is 1. Make the same substitution,

Y = Σ−
1
2 (X − μ̃) ⇒ dY = |Σ|−

1
2 d(X − μ̃) = |Σ|−

1
2 dX.

Then

∫
X
(X − μ̃)f (X)dX =

1
(2π)p/2

∫
Y
Ye−

1
2Y
′YdY

where the integrand is an odd function in the elements of Y and each piece is conver-
gent, and hence the integral is zero. Therefore,

E(X) = μ̃

or the first parameter vector is the mean value of X itself. The covariance matrix of X,
by definition,
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Cov(X) = E[X − E(X)][X − E(X)]′ = E[X − μ̃][X − μ̃]′

= Σ
1
2 E(YY′)Σ

1
2 ,

under the substitution Y = Σ−
1
2 (X − μ̃)

Cov(X) = Σ
1
2 {∫

Y
YY′e−

1
2Y
′YdY}Σ

1
2 .

But

YY′ = [[

[

y1
⋮
yp

]]

]

[y1,… ,yp] =
[[[[

[

y21 y1y2 … y1yp
y2y1 y22 … y2yp
⋮ ⋮ … ⋮
ypy1 ypy2 … y2p

]]]]

]

.

Thenon-diagonal elements are all odd functions, andhence the integrals over all non-
diagonal elements will be zeros. A diagonal element is of the form:

1
(2π)p/2

∫
∞

−∞
⋯∫
∞

−∞
y2j e−

1
2 (y

2
1+⋯+y2p)dy1 ∧ ⋯ ∧ dyp

= 1
√2π

∫
∞

−∞
y2j e−

1
2 y

2
j dyj[

p
∏
i≠j=1

1
√2π

∫
∞

−∞
e−

1
2 y

2
i dyi]

= [ 2
√2π

∫
∞

0
y2j e−

1
2 y

2
j dyj][

p
∏
i≠j=1

1
√2π

∫
∞

−∞
e−

1
2 y

2
i dyi].

But

1
√2π

∫
∞

−∞
y2j e−

1
2 y

2
j dyj =

√2
√2π

∫
∞

0
t
1
2−1e−tdt under t = 1

2
y2j

=
√2
√2π

Γ( 1
2
) =

√2π
√2π

= 1.

Thus each diagonal element gives 1, and thus the integral over Y gives an identity
matrix and, therefore,

Cov(X) = Σ

which is the parameter matrix in the density. Thus the two parameters in the density
are the mean value and the covariance matrix.

Let us evaluate the moment generating function. Let T′ = (t1,… , tp) be the vector
of parameters. Then by definition the moment generating function

M(t1,… , tp) =MX (T) = E[et1x1+⋯+tpxp ] = E[eT′X]

= E[eT′(X−μ̃+μ̃)] = eT′μ̃E[eT′(X−μ̃)]
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= eT′μ̃E[eT′Σ
1
2 Y ] for Y = Σ−

1
2 (X − μ̃)

= eT′μ̃ 1
(2π)

p
2
∫
Y
eT′Σ

1
2 Y− 12Y

′YdY .

But

(T′Σ
1
2 )Y − 1

2
Y′Y = − 1

2
{Y′Y − 2T′Σ

1
2 Y}

= −
1
2
{(Y − Σ

1
2 T)′(Y − Σ

1
2 T) − T′ΣT}.

Therefore,

MX (T) = eT′μ̃+
1
2 T
′ΣT ∫

Y

1
(2π)

p
2
e−

1
2 (Y−Σ

1
2 T)′(Y−Σ

1
2 T)dY

= eT′μ̃+
1
2 T
′ΣT (8.23)

since the integral is 1. It can be looked upon as the total integral coming from a
p-variate normal with the parameters (Σ

1
2 T , I). Thus, for example, for p = 1, Σ =

σ11 = σ21 , T′ = t1 and, therefore,

MX (T) = exp{t1μ1 +
1
2
t21σ21}. (8.24)

This equation (8.23) can be taken as the definition for a p-variate normal and then in
this case Σ can be taken as positive semi-definite also because even for positive semi-
definite matrix Σ the right side in (8.23) will exist. Then in that case when Σ is singular
or when |Σ| = 0wewill call the corresponding p-variate normal as singular normal. For
a singular normal case, there is no density because when Σ on the right side of (8.23)
is singular the inverse Laplace transform does not give a density function, and hence
a singular normal has no density but all its properties can be studied by using themgf
in (8.23).

For p = 2, T′ = (t1, t2), μ̃′ = (μ1,μ2), T′μ̃ = t1μ1 + t2μ2;

Σ = [
σ11 σ12
σ21 σ22

] = [
σ21 ρσ1σ2

ρσ2σ1 σ22
] ;

T′ΣT = [t1, t2] [
σ21 ρσ1σ2

ρσ2σ1 σ22
][

t1
t2
]

= σ21 t21 + 2ρσ1σ2t1t2 + σ22 t22 ;

MX (T) = exp{(t1μ1 + t2μ2) +
1
2
(t21σ21 + 2t1t2ρσ1σ2 + t22σ22)} (8.25)

where ρ is the correlation between x1 and x2 in this case.
One important result in this connection is that ifX ∼ Np(μ̃, Σ), then any linear func-

tion of X, say u = a1x1 + ⋯ + apxp = a′X = X′a, a′ = (a1,… ,ap), is a univariate normal.
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Result 8.12. If X ∼ Np(μ̃, Σ), then u = a1x1 + ⋯ + apxp = a′X = X′a is univariate nor-
mal with the parameters μ = E(u) = a′μ̃ and σ2 = Var(u) = a′Σa.

This can be proved by looking at the moment generating function. Since u is a
function of X ∼ Np(μ̃, Σ) we can compute the moment generating function of u from
the moment generating function of X.

Mu(t) = E[etu] = E[e(ta′)X] = E[eT′X], T′ = ta′

= eT′μ̃+
1
2 T
′ΣT = et(a′μ̃)+

1
2 t

2(a′Σa).

But this is the mgf of a univariate normal with parameters a′μ̃ and a′Σa. Hence u ∼
N1(a′μ̃,a′Σa). This shows that every linear function of a multivariate normal vector X
is univariate normal. One may also note that we have not used the non-singularity of
Σ in the proof here. Hence the result holds for singular normal case also.

Naturally, onemay ask: if a′X is univariate normal, for a given a, will X be amulti-
variate normal? Obviously, this need not hold. But if a is arbitrary or for all a if u = a′X
is univariate normal, will X be multivariate normal? The answer is in the affirmative.
This, in fact, also provides a definition for a multivariate normal law as the law satis-
fied by X when a′X is univariate normal for all constant vector a.

Result 8.13. For any vector random variable X and for a constant vector a, if u =
a′X = X′a is univariate normal for all a, then X is multivariate normal X ∼ Np(μ̃, Σ),
Σ ≥ 0.

The proof is available by retracing the steps in the proof of the previous result. If
u = a′X is univariate normal, then its parameters are E[u] = a′μ̃ and Var(u) = a′Σa.
Therefore, the mgf of u is available as

Mu(t) = et(a′μ̃)+
t2
2 (a
′Σa)

= eT′μ̃+
1
2 T
′ΣT , T′ = ta′ = (ta1,… , tap) (8.26)

where a1,… ,ap are arbitrary, and hence ta1,… , tap are also arbitrary. There are p ar-
bitrary parameters here in (8.26), and hence it is the mgf of the vector X. In other
words, X is multivariate normal. Note that the proof holds whether Σ is non-singular
or singular, and hence the result holds for singular as well as non-singular normal
cases.

Definition 8.2 (Singular normal distribution). Any vector random variable X hav-
ing themgf in (8.23), where Σ is singular, is called the singular normal vector X and
it is denoted as X ∼ Np(μ̃, Σ), Σ ≥ O.

As mentioned earlier, there is no density for singular normal or when |Σ| = 0 but
all properties can be studied by using (8.26).
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Since further properties of a multivariate normal distribution involve a lot of ma-
trix algebra, we will not discuss them here. We will conclude this chapter by looking
at a matrix-variate normal.

8.4.1 Matrix-variate normal or Gaussian density

Consider am×nmatrix X of distinctmn real scalar random variables and consider the
following non-negative function:

f (X) = ce−
1
2 tr[A(X−M)B(X−M)

′] (8.27)

where X and M are m × n, M is a constant matrix, A is m ×m and B is n × n constant
matrices where A and B are positive definite, X = (xij), M = (mij), −∞ < xij < ∞, −∞ <
mij < ∞, i = 1,… ,m; j = 1,… ,n and c is the normalizing constant.

We can evaluate the normalizing constant by using the Jacobians of linear trans-
formations that we discussed in Note 8.1. Observe that any positive definite matrix
can be represented as CC′ for some matrix C, where C could be rectangular also. Also
unique square root is defined when a matrix is positive definite. Let A

1
2 and B

1
2 de-

note the unique square roots of A and B, respectively. For the following steps to hold,
only a representation in the form A = A1A′1 and B = B1B′1 , with A1 and B1 being non-
singular, is sufficient but we will use the symmetric positive definite square roots for
convenience. Consider the general linear transformation:

Y = A
1
2 (X −M)B

1
2 ⇒ dY = |A|

n
2 |B|

m
2 d(X −M) = |A|

n
2 |B|

m
2 dX

sinceM is a constant matrix. Observe that by using the property tr(PQ) = tr(QP)when
PQ and QP are defined, PQ need not be equal to QP, we have

tr[A(X −M)B(X −M)′] = tr[A
1
2 (X −M)B

1
2 B

1
2 (X −M)′A

1
2 ]

= tr(YY′) =
m
∑
i=1

n
∑
j=1

y2ij ,Y = (yij).

But

∫
∞

−∞
e−

1
2 z

2dz = √2π ⇒ ∫
Y
e−

1
2 tr(YY

′)dY

= (2π)
mn
2 .

Since the total integral is 1, the normalizing constant

c = |A|
n
2 |B|

m
2

(2π)
mn
2

.

That is,

f (X) = |A|
n
2 |B|

m
2

(2π)
mn
2

e−
1
2 [A(X−M)B(X−M)

′] (8.28)
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for A = A′ > O, B = B′ > O, X = (xij),M = (mij), −∞ < xij < ∞, −∞ <mij < ∞, i = 1,… ,m;
j = 1,… ,n. The density in (8.28) is known as the matrix-variate Gaussian density. Note
that when m = 1 we have the usual multivariate density or n-variate Gaussian density
in this case.

Exercises 8.4
8.4.1. If X ∼ Np(μ̃, Σ), Σ > 0 and if X is partitioned as X′ = (X′(1),X′(2))where X(1) is r × 1,
r < p and if Σ is partitioned accordingly as

Σ = (
Σ11 Σ12
Σ21 Σ22

) , Σ11 = Cov(X(1)) > O,

Σ22 = Cov(X(2)) > O, Σ12 = Cov(X(1),X(2)), Σ12 = Σ′21. Then show that

X(1) ∼ Nr(μ(1), Σ11), Σ11 > O (i)
X(2) ∼ Np−r(μ(2), Σ22), Σ22 > O (ii)

where μ̃′ = (μ′(1),μ′(2)), μ(1) is r × 1 and μ(2) is (p − r) × 1.

8.4.2. In Exercise 8.4.1, evaluate the conditional density of X(1) given X(2) and show
that the it is also a r-variate Gaussian. Evaluate (1) E[X(1)|X(2)], (2) covariance matrix
of X(1) given X(2).

8.4.3. Answer the questions in Exercise 8.4.2 if r = 1, p − r = p − 1.

8.4.4. Show that when m = 1 the matrix-variate Gaussian becomes n-variate normal.
What are the mean value and covariance matrix in this case?

8.4.5. Write the explicit form of a p-variate normal density for p = 2. Compute (1) the
mean value vector; (2) the covariance matrix; (3: correlation ρ between the two com-
ponents and show that −1 < ρ < 1 for the Gaussian to be non-singular and that when
ρ = ±1 the Gaussian is singular.

8.5 Matrix-variate gamma density

The integral representation of a scalar variable gamma function is defined as

Γ(α) = ∫
∞

0
xα−1e−xdx, ℜ(α) > 0.

Suppose that we have a p × pmatrix X = X′ of p(p + 1)/2 distinct real scalar variables.
Further, let us assume that X is positive definite. Consider the integral of the form:

Γp(α) = ∫
X>0

|X|α−
p+1
2 e− tr(X)dX, ℜ(α) > p − 1

2
, (8.29)
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where |X|means the determinant of X, tr(X) is the trace of X, ∫X>O means the integra-
tion over the positive definite matrix X and dX stands for the wedge product of the
p(p + 1)/2 differential elements dxij ’s. Observe that (8.29) reduces to the scalar case of
the gamma function for p = 1. Let us try to evaluate the integral in (8.29). Direct in-
tegration over the individual variables in X is not possible. Even for a simple case of
p = 2, note that the determinant

|X| = |
x11 x12
x12 x22

| = x11x22 − x212, tr(X) = x11 + x22

and the integration is over the positive definitematrix X, whichmeans a triple integral
over x11, x22, x12 subject to the conditions x11 > 0, x22 > 0, x11x22 − x212 > 0. [Observe that
due to symmetry x21 = x12.] Evaluation of this triple integral, that is, the evaluation of
(8.29) for p = 2 is left as an exercise to the students.

The integral in (8.29) can be evaluated by using Result 8.10 in Note 8.1 for the non-
linear transformation X = TT′. Let us make the transformation X = TT′ where T = (tij)
is a lower triangular matrix with positive diagonal elements, that is, tjj > 0, j = 1,… ,p,
tij = 0, for all i < j. Under this transformation,

|X|α−
p+1
2 =

p
∏
j=1

(t2jj)
α− p+12

|X|α−
p+1
2 dX = {

p
∏
j=1

(t2jj)
α− j2 }dT and

Γp(α) = ∫
X
|X|α−

p+1
2 e− tr(X)dX

= ∫
T
{

p
∏
j=1

2∫
∞

0
(t2jj)

α− j2 e−t2jjdtjj}

× ∏
i<j

{∫
∞

−∞
e−t2ijdtij}.

Weneed to evaluate only two types of integrals here, one type on tjj and the other type
on tij . That is,

2∫
∞

0
(t2jj)

α− j2 e−t2jjdtjj = ∫
∞

0
uα−

j−1
2 e−udu

under the substitution u = t2jj, and then the integral

= Γ(α −
j − 1
2

), ℜ(α) > j − 1
2

for j = 1,… ,p, and hence the final conditionwill beℜ(α) > p−1
2 and the gamma product

is then
p

∏
j=1

Γ(α − j − 1
2

) = Γ(α)Γ(α − 1
2
)⋯Γ(α − p − 1

2
).
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In ∏i<j there are
p(p−1)

2 factors and each factor is the integral

∫
∞

−∞
e−t2tijdtij = √π

and thus this product gives (√π)
p(p−1)

2 = (π)
p(p−1)

4 . Therefore, the integral reduces to the
following:

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α −
1
2
)⋯Γ(α −

p − 1
2

) (8.30)

for ℜ(α) > p−1
2 .

Notation 8.3. Γp(α): Real matrix-variate gamma function.

Definition 8.3 (The real matrix-variate gamma). The following are the definition
of Γp(α) and its integral representation:

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α − 1
2
)⋯Γ(α − p − 1

2
), ℜ(α) > p − 1

2

= ∫
X>0

|X|α−
p+1
2 e− tr(X)dX, ℜ(α) > p − 1

2
.

We can define a matrix variate gamma, corresponding to Γp(α), when the elements in
thep×pmatrixX are in the complexdomain. Thiswill be called complexmatrix-variate
gamma as opposed to real matrix-variate gamma. This will not be discussed here. For
those students, who are interested in or curious to know about random variables on
the complex domain, may see the book [3].

For example, for p = 2, we can obtain the integral from the formula (8.30). That is,

Γ2(α) = π
1
2 Γ(α)Γ(α − 1

2
), ℜ(α) > 1

2
.

For p = 3,

Γ3(α) = π
3
2 Γ(α)Γ(α − 1

2
)Γ(α − 1), ℜ(α) > 1.

By using the integral representation of a real matrix-variate gamma, one can define a
real matrix-variate gamma density. Let us consider the following function:

f (X) = c|X|α−
p+1
2 e− tr(BX)

for X = X′ > O, B = B′ > O where the matrices are p × p positive definite and B is a
constant matrix and X is a matrix of p(p+ 1)/2 distinct real scalar variables. If f (X) is a
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density, then let us evaluate the normalizing constant c. Write tr(BX) = tr(B
1
2 XB

1
2 ) by

using the property that for twomatrices A and B, tr(AB) = tr(BA) as long as AB and BA
are defined. Make the transformation

Y = B
1
2 XB

1
2 ⇒ dX = |B|−

p+1
2 dY

by using Result 8.9. Also note that

|X|α−
p+1
2 dX = |B|−α|Y |α−

p+1
2 dY .

Now integrating out, we have

∫
X>0

|X|α−
p+1
2 e− tr(BX)dX

= |B|−α ∫
Y>0

|Y |α−
p+1
2 e− tr(Y)dY

= |B|−αΓp(α).

Hence the normalizing constant is |B|α/Γp(α) and, therefore, the density is given by

f (X) = |B|α

Γp(α)
|X|α−

p+1
2 e− tr(BX) (8.31)

for X = X′ > O, B = B′ > O,ℜ(α) > p−1
2 and zero otherwise. This density is known as the

real matrix-variate gamma density.
A particular case of this density for B = 1

2Σ
−1, Σ > O and α = n

2 , n = p,p + 1,… is
the most important density in multivariate statistical analysis, known as the Wishart
density. By partitioning thematrix X, it is not difficult to show that all the leading sub-
matrices in X also have matrix-variate gamma densities when X has a matrix-variate
gamma density. This density enjoys many properties, parallel to the properties en-
joyed by the gamma density in the scalar case. Also there are other matrix-variate
densities such as matrix-variate type 1 and type 2 beta densities and matrix-variate
versions of almost all other densities in current use. We will not elaborate on these
here. This density is introduced here for the sake of information. Those who are inter-
ested to readmore on the matrix-variate densities in the real as well as in the complex
cases may see the above mentioned book on Jacobians.

Exercises 8.5
8.5.1. Evaluate the integral ∫X>0 e

− tr(X)dX and write down the conditions needed for
the convergence of the integral, where the matrix is p × p.

8.5.2. Starting with the integral representation of Γp(α) and then taking the product
Γp(α)Γp(β) and treating it as a double integral, show that

∫
O<X<I

|X|α−
p+1
2 |I − X|β−

p+1
2 dX =

Γp(α)Γ(β)
Γp(α + β)
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and write down the existence conditions of the integral, where O < X < I means that
the p × p matrix X is positive definite and I − X is also positive definite where I is
the identity matrix. [Observe that definiteness is defined only for symmetric matrices
when real and Hermitian matrices when in the complex domain.]

8.5.3. Evaluate the integral ∫O<X<I dX by using Exercise 8.5.2 or otherwise, where X is
p × p real and verify your result for (1) p = 1; (2) p = 2; (3) p = 3 by direct integration as
multiple integrals.

8.5.4. Evaluate the integral ∫O<X<I |X|dX where X is p × p, and verify your result for
(1): p = 1, (2): p = 2 by direct integration as multiple integrals.

8.5.5. Evaluate the integral ∫O<X<I |I − X|dX where X is p × p, and verify the result by
direct integration for (1) p = 1; (2) p = 2.





9 Collection of random variables

9.1 Introduction

We had come across one collection of random variables called a simple random sam-
ple, where the variables were independently and identically distributed, iid variables.
First, we look at some properties of scalar variables, which will be used in the discus-
sions to follow. Hence these will be listed here as results.

Result 9.1. For a real scalar variable x, let E(x) = μ, Var(x) = σ2 < ∞. Then

Pr{|x − μ| ≥ kσ} ≤ 1
k2

, k > 0. (9.1)

This result says that if we are kσ away from the mean value μ then the total prob-
ability in the tails is less than or equal to 1

k2 . This result is also known as Chebyshev’s
inequality. The variables could be discrete or continuous. The probability in the tail is
marked in Figure 9.1.

Figure 9.1: Probability in the tail: Chebyshev’s inequality.

Then the probability in the middle portion is available from (9.1) as one minus the
probability in the tails. That is,

Pr{|x − μ| ≤ kσ} ≥ 1 − 1
k2

. (9.2)

If we replace kσ by some k1 then (9.1) and (9.2) can be written in different forms:

Pr{|x − μ| ≥ kσ} ≤
1
k2

Pr{|x − μ| ≥ k} ≤
σ2

k2

Pr{|x − μ| ≤ kσ} ≥ 1 − 1
k2

Pr{|x − μ| ≤ k} ≥ 1 − σ2

k2
. (9.3)

All these forms in (9.3) are called Chebyshev’s inequalities. The proof is quite simple.
We will illustrate the proof for the continuous case. For the discrete case, it is parallel.
Consider the variance σ2.

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562545-009
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σ2 = ∫
∞

−∞
(x − μ)2f (x)dx

= ∫
μ−kσ

−∞
(x − μ)2f (x)dx + ∫

∞

μ+kσ
(x − μ)2f (x)dx

+ ∫
μ+kσ

μ−kσ
(x − μ)2f (x)dx.

Let us delete the middle portion. Then the left side must be bigger than or equal to the
balance on the right. That is,

σ2 ≥ ∫
μ−kσ

−∞
(x − μ)2f (x)dx + ∫

∞

μ+kσ
(x − μ)2f (x)dx.

In these integrals in the tails |x − μ| ≥ kσ, and hence if we replace |x − μ| by its lowest
possible point in these two intervals, namely kσ then the inequality must remain in
the same direction. That is,

σ2 ≥ ∫
μ−kσ

−∞
(kσ)2f (x)dx + ∫

∞

μ+kσ
(kσ)2f (x)dx

≥ (k2σ2)[∫
μ−kσ

−∞
f (x)dx + ∫

∞

μ+kσ
f (x)dx]

= (k2σ2)Pr{|x − μ| ≥ kσ}.

Dividing by σ2 on both sides we have the inequality

Pr{|x − μ| ≥ kσ} ≤ 1
k2

which holds for all non-degenerate random variables with finite variance. Since we
divided by σ2 the step is valid only if the variable is non-degenerate. From this result,
the above four results in (9.3) are now available.

Result 9.2 (Chebyshev’s inequality). For real non-degenerate scalar random vari-
able x for which the variance σ2 is finite, the inequalities in (9.3) hold.

From the procedure above, it is clear that similar results will hold true if we take
any other distance measure. Consider the distance

Mr = [E(|x − μ|r)]
1
r ⇒ Mr

r = E(|x − μ|r)

and let us look at the tail areas after k timesMr from themean value, that is, Pr{|x−μ| ≥
kMr}. Then proceeding as above, we have

Pr{|x − μ| ≥ kMr} ≤ 1
kr

, r = 1, 2,… , ⇒

Pr{|x − μ| ≥ k} ≤ 1 − Mr
r

kr
, r = 1, 2,… . (9.4)

Hence we have the following result.
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Result 9.3. For non-degenerate real scalar random variables for which the r-th ab-
solute moment about the mean value exists then the inequality in (9.4) and the corre-
sponding four inequalities, parallel to the ones in (9.3) hold.

In the above procedure, we are deleting the middle portion of the probabilities
and then replacing the distance measure by the lowest point in the interval. Then if
the lowest point always remains positive, we can extend the idea to positive random
variables and obtain an inequality in terms of the mean value.

Let x be a real scalar positive random variable with mean value denoted by μ so
that μ > 0. Let a be an arbitrary positive number. Then

μ = ∫
∞

0
xf (x)dx

= ∫
a

0
xf (x)dx + ∫

∞

a
xf (x)dx.

Here, all quantities involved are non-negative. Hence if we delete the integral
∫a0 xf (x)dx then the balance should be less than or equal to μ. If the deleted area
is zero, then it will be equal. Then

μ ≥ ∫
∞

a
xf (x)dx.

But in the interval [a,∞) the value of x is bigger than or equal to a. Hence if we replace
x by a then we should get a quantity still less than or equal to the previous quantity.
Therefore,

μ ≥ ∫
∞

a
af (x)dx = a∫

∞

a
f (x)dx

= aPr{x ≥ a} ⇒

Pr{x ≥ a} ≤ μ
a
.

Result 9.4. For non-degenerate positive real scalar random variables for which the
mean value μ exists, then for any positive number a,

Pr{x ≥ a} ≤ μ
a
. (9.5)

The inequality in (9.5) is often known asMarkov’s inequality. Thus, if we have iid
variables with finite common variance σ2 and mean value μ, then we have shown in
(7.16) of Chapter 7 that

Var(x̄) = σ2

n
, x̄ = x1 + ⋯ + xn

n
, E(x̄) = μ.
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Then from Chebyshev’s inequality in (9.3), it follows that

Pr{|x̄ − μ| ≤ k} ≥ 1 − Var(x̄)
k2

= σ2

nk2
→ 1 when n→ ∞. (9.6)

Thus it follows that with probability 1, x̄ goes to μ. This is known as the weak law of
large numbers.

9.2 Laws of large numbers

Result 9.5 (The weak law of large numbers). If x1,… ,xn are iid variables with a
common finite variance σ2 and common mean value μ, and if x̄ = x1+⋯+xn

n is the sam-
plemean, then the samplemean goes to the populationmean value μ with probability
1 or

lim
n→∞

Pr{|x̄ − μ| ≤ k} = 1

for k > 0.

This is the limit of a probability. This can also be looked upon as the stochastic
convergence of x̄ to its mean value μ or convergence in the sense of probability. The
phrase “weak law” suggests that there is a strong law,whichwill be a statement on the
probability of a limit, which will not be discussed here because it needsmore analysis
for its proof. A simple illustration of the weak law and its consequence can be seen
from Bernoulli trials.

Consider n independent Bernoulli trials. In each trial, the result is either 1 (suc-
cess) or 0 (failure). If xi denotes the outcome in the i-th trial, then x1,… ,xn are n iid
variables taking values 1 with probability p and 0 with probability q = 1 − p, or it is a
simple random sample of size n fromaBernoulli population. Then sum x1 +⋯+xn will
give x = the number of successes in n Bernoulli trials, and this x is the binomial ran-
dom variable. Then x̄ = x

n is the proportion of successes in n independent Bernoulli
trials. What the weak law of large numbers says is that this proportion of successes
converges to the true probability of success p when the number of trials n goes to in-
finity. This is a very important observation. If we conduct Bernoulli trials, such as get-
ting a head when a coin is tossed repeatedly under the same conditions, and if 40
successes are observed in 100 trials then 40

100 = 0.4 can be taken as an estimate of the
true probability. When the number of trials becomes larger and larger, we get a better
and better estimate of the true probability of getting a head, and finally when n goes
to infinity the sample proportion coincides with the true probability p. This is the ba-
sis for taking relative frequencies as estimates for the true probability of success in
Bernoulli trials.
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9.3 Central limit theorems

Another interesting result connectedwith a collectionof randomvariables is a limiting
property known as the central limit theorem. We will illustrate it for iid variables. Let
x1,… ,xn be a simple random sample of size n from some population with finite vari-
ance σ2. Let the samplemean be denoted by x̄ = x1+⋯+xn

n . Then E(x̄) = μ themean value
in the population and Var(x̄) = σ2

n . Let us look at the standardized sample mean, ob-
serving that for any randomvariable u, v = u−E(u)

√Var(u) is the standardized u so thatE(v) = 0
and Var(v) = 1, denoted by z.

z =
x̄ − E(x̄)
√Var(x̄)

=
x̄ − μ
σ/√n

=
√n(x̄ − μ)

σ

One central limiting property says that the standardized sample mean, whatever be
the population with finite variance, continuous or discrete, will go to standard nor-
mal or Gaussian when the sample size n goes to infinity. There are various versions of
this limiting property depending upon the conditions that we impose. We will state a
central limiting property under the existence of the second moment and then prove it
by assuming that the mgf exists.

Result 9.6 (The central limit theorem). Consider a simple random sample of size n
froma populationwith finite variance σ2 < ∞. Let x̄ = x1+⋯+xn

n . Then the standardized
sample mean goes to standard normal when n→ ∞.

Proof. Let z be the standardized sample mean

z = (x̄ − μ)
σ/√n

=
√n
σ

∑n
j=1(xi − μ)

n

= 1
σ√n

[
n
∑
j=1

(xj − μ)]

where μ is the population mean value and σ2 is the population variance, which is as-
sumed to be finite. LetMxi (t) be themgf of xi . Since the xi ’s are identically distributed,
we have

Mz(t) = [Mxi−μ(
t

σ√n
)]

n
.

Taking logarithms and expanding we have

lnMz(t) = n lnMxi−μ(
t

σ√n
)
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= n ln[1 + t
1!σ√n

E(xi − μ) + ( t
σ√n

)
2 E[xi − μ]2

2!
+ ⋯]

= n ln[1 + ϵ], ϵ = t2

2n
+O( 1

n3/2
)

= t2

2
+O( 1

n
1
2
) → t2

2

when n→ ∞. ThenMz(t) → e
t2
2 which is themgf of a standard normal variable. Hence

when n→ ∞ the standardized sample mean goes to a standard normal variable.

Let us examine the consequences of this result.
(1) If the population is normal, then the standardized sample mean is exactly a

standard normal variable for all or for every n.
(2) When we have a Bernoulli population and if x1,… ,xn are iid Bernoulli vari-

ables then the sample sum x = x1 +⋯+ xn is the binomial variable because the sample
sum gives the number of successes in n independent Bernoulli trials. Then the sample
mean x̄ = x

n = the binomial proportion with expected value and variance given by

E[x
n
] = p, Var(x

n
) = p(1 − p)

n
.

This means that the standardized sample mean

z = (x̄ − μ)
σ/√n

=
( xn − p)
√pq/n

= x − np
√npq

which is nothing but the standardized binomial variable itself, q = 1−p. Hence for the
binomial variable its standardized formwill go to a standard normalwhen the number
of trials n goes to infinity. This is due to the fact that the binomial proportion is nothing
but the sample mean when the sample comes from a Bernoulli population.

(3) When the population is gamma with shape parameter α and scale parameter
β, we know that the population mean value is αβ and the population variance is αβ2.
Hence

z =
(x̄ − αβ)
β√α/√n

=
√n(x̄ − αβ)

β√α
→ N(0, 1)

as n → ∞. We had already seen that when the population is gamma then for every
n, z is a relocated and re-scaled gamma variable and this gamma variable goes to a
standard normal, which is an interesting result.

The importance of this limit theorem is that whatever be the population, whether
discrete or continuous, the standardized sample mean will go to a standard normal
when n → ∞ and when the population variance is finite. Thus the normal or Gaus-
sian distribution becomes a very important distribution in statistical analysis.Misuses
come from interpreting this limit theorem in terms of x̄ − μ or x̄. This limit theorem
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does not imply that x̄ − μ ∼ N(0, σ
2

n ) for large n. It does not imply that x̄ ∼ N(μ, σ
2

n ) for
large n.

Before concluding this section, somemore technical terms will be introduced but
a detailed discussion of these will be done in later chapters.

Definition 9.1 (A statistic). Let x1,… ,xn be iid variables or a simple randomsample
of size n from some population. Any observable function of x1,… ,xn is called a
statistic. Several such functions are called statistics, different from the subject of
statistics.

For example, x̄ = x1+⋯+xn
n is a statistic. T1 = ∑n

j=1 x
2
j is another statistic. x̄ and T1 are

two statistics. If the function contains some unknown parameters such as ∑n
i=1(xi −

μ)2 it is not a statistic because μ here is not known. But if μ is known, such as μ = 2
then ∑n

i=1(xi − 2)2 is a statistic. One important statistic is the sample mean. Another
important statistic is the sample variance.

Definition 9.2 (Sample variance). Consider x1,… ,xn iid variables. Then

S2 =
∑n
i=1(xi − x̄)2

n

is called the sample variance.

Definition 9.3 (Sampling distributions). The distribution of a statistic is known as
a sampling distribution.

If we consider the distributions of x̄ and S2, then these are two sampling dis-
tributions. Since when n = 1 the original population is described, the population
distribution itself can be looked upon as a sampling distribution also. The most im-
portant sampling distributions in statistical literature are the chi-square distribution,
Student-t distribution and the F-distribution. Out of these, chi-square was discussed
as a special case of a gamma distribution but it is also associated with a sampling
distribution. Discussion of sampling distributions will be postponed to Chapter 10.
Before concluding this section, a small property will be examined. When we have a
simple random sample from a population with mean value μ and variance σ2 then we
have seen that

E[x̄] = μ and Var(x̄) = σ2

n
= Population variance

Sample size

What is the expected value of the sample variance? This can be computed by us-
ing a standard result. Note that E[xi − μ]2 = Var(xi) = σ2 for i = 1,… ,n, and hence
E[∑n

i=1(xi − μ)
2] = nσ2. Consider
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n
∑
i=1

[xi − μ]2 =
n
∑
i=1

[(xi − x̄) + (x̄ − μ)]2

=
n
∑
i=1

(xi − x̄)2 + n(x̄ − μ)2 + 2(x̄ − μ)
n
∑
i=1

(xi − x̄)

=
n
∑
i=1

(xi − x̄)2 + n(x̄ − μ)2 since
n
∑
i=1

(xi − x̄) = 0

Now taking expectations on both sides, we have

nσ2 = E[
n
∑
i=1

(xi − x̄)2] + nVar(x̄) ⇒

E[
n
∑
i=1

(xi − x̄)2] = (n − 1)σ2.

In other words, if

S21 =
∑n
i=1(xi − x̄)2

n − 1
then E[S21 ] = σ2

and this property is called unbiasedness.

Definition 9.4 (Unbiasedness). If T is a statistic and if E[T] = θ for all admissible
values of θ, then T is called unbiased for θ or T is an unbiased estimator of θ.

This is a desirable property inmany cases. We have seen that S21 is unbiased for σ2

but S2 is not unbiased for the population variance σ2. Because of this property some
people define sample variance as S21 instead of S2. But S21 should not be taken as sam-
ple variance because it is not consistent with the original definition of variance as
Var(u) = E[u − E(u)]2. For example, take a discrete random variable x taking values
x1,… ,xn with probabilities 1

n each. Then E[x] = x̄ and Var(x) = ∑
n
i=1(xi−x̄)

2

n . Further, S2

is the square of per unit distance or dispersion of x from the point of location x̄ and
consistent with the idea of dispersion or scatter. Thus the proper measure to take for
sample variance is S2 and not S21 . Besides, unbiasedness is not a desirable property in
many situations.

Some general properties on independence

Some general properties on product probability property or statistical independence
will be mentioned here.

(a) If the real scalar random variables x and y are independently distributed, then
u = ax + b, a ≠ 0 and v = cy + d, c ≠ 0 are also independently distributed.

(b) If the real scalar random variables x and y are independently distributed, then
(i) x2 and y; (ii) x and y2; (iii) x2 and y2 are independently distributed. Note that when
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x and y are independently distributed, that is a property holding in all four quadrants.
But (iii) is a property holding in the first quadrant only, (ii) is a property holding in the
first and second quadrants only and (i) is a property holding in the first and fourth
quadrants only. A property holding in a few quadrants need not hold in all quadrants
unless the variables are restricted such as positive variables. If x and y are positive
random variables then all properties in (i), (ii), (iii) will hold, otherwise (i) or (ii) or
(iii) need not necessarily imply that x and y are independently distributed.

Exercises 9.3
9.3.1. Use a computer and select random numbers between 0 and 1. This is equiv-
alent to taking independent observations from a uniform population over [0, 1]. For
each point, starting from the number of points n = 5, calculate the standardized sam-
ple mean z = √n(x̄−μ)σ , remembering that for a uniform random variable over [0, 1],
μ = 1

2 , σ
2 = 1

12 . Make many samples of size 5, form the frequency table of z values
and smooth to get the approximate curve. Repeat this for samples of sizes, n = 5,6,…
and estimate n so that the simulated curve approximates well with a standard normal
curve.

9.3.2. Repeat Exercise 9.3.1 if the population is exponential with mean value μ = 5.
[Select a randomnumber from the interval [0, 1]. Convert that into an observation from
the exponential population by the probability integral transformation of Section 6.8
in Chapter 6, and then proceed.]

9.3.3. Consider the standardized samplemeanwhen the sample comes fromagamma
population with the scale parameter β = 1 and shape parameter α = 5. Show that the
standardized sample mean is a relocated and re-scaled gamma variable.

9.3.4. By using a computer or with the help of MAPLE or MATHEMATICA, compute
the upper 5% tail as a function of n, the sample size. Determine n when the upper tail
has good agreement with the upper 5% tail from a standard normal variable.

9.3.5. Repeat the same Exercise 9.3.4 when the population is Bernoulli with the prob-
ability of success (1) p = 1

2 , symmetric case; (2) p = 0.2 non-symmetric case.

9.4 Collection of dependent variables

So far we considered only collections of independent random variables. But practical
examples of dependent variables are plenty. General stochastic processes and time
series comeunder this category.Here,wegiveone example of a sequenceof dependent
variables.

If the dependent sequence of random variables is considered over time such as
monitoring the price of staple food over time, stockmarket values of shares over time,
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water level in a damover time, stock in a grain storage facility over time, etc. then such
sequences of random variables over time, are called time series.

There are sequences of variables which are branching in nature. Consider the
population size in a banana or pineapple plant. Let us consider one banana plant
to start with. This plant produces one bunch of bananas and when that bunch is cut
the mother plant dies. But there will be two to three shoots from the bottom. These
are the next generation plants. If these shoots are planted, then each will produce
new shoots which will be the next generation plants. If the first generation had three
shoots and each of these three shoots produced 2,3,3 shoots in the next generation,
then the second generation size is 2 + 3 + 3 = 8. Thus the population size is available
from a branching process. Such sequences of random variables are called branching
processes.

If we check the number of fish in a particular pool area in a river every morning,
then the numbers are likely to be different on different days. By the next morning,
some fish may have migrated out of the pool area and some others may have immi-
grated into the area. If we check the population size in a given community of people
every 10 years, then the numbers during successive observation periods are likely to
be different. Somemayhave died out and somenewbirthsmay have taken place. Such
processes are birth and death processes. Special cases are the pure death process and
pure birth process.

An ideal hero portrayed inMalayalammoviesmay bewalking home in the follow-
ing fashion. He comes out of the liquor shop. At everyminute, he takes either a step to
the left or to the right. That step is followed by a random step at the next minute, and
so on. Such processes are called random walk processes.

The above are a few examples of dependent sequences of random variables, gen-
erally known as stochastic processes.



10 Sampling distributions

10.1 Introduction

In Chapter 9, we have already defined a simple random sample from a given popula-
tion. The population may be designated by a random variable, its probability/density
function, its distribution function, its moment generating function (mgf) or its char-
acteristic function. For ready reference, we will list the definition once again. In this
chapter, we will deal only with real random variables (not variables defined in the
complex domain).

Definition 10.1 (A simple random sample). Let x1,x2,… ,xn be a set of indepen-
dently and identically distributed (iid) random variables; for brevity, we write as
iid random variables. Let the common probability/density function be denoted by
f (x). Then the collection of random variables {x1,… ,xn} is called a simple random
sample of size n from the population designated by f (x).

Example 10.1. If x1,… ,xn are iid random variables following a Poisson distribution
with probability function,

f1(x) =
{
{
{

λx
x! e
−λ , λ > 0, x = 0, 1,…

0, elsewhere,
(10.1)

then compute the joint probability function of the sample values.

Solution 10.1. Here, for example, {x1,… ,x4} is a simple random sample of size n = 4
from this Poisson population with parameter λ. Then the joint probability function,
denoted by f1(x1,… ,xn), is the product of the marginal probability functions, due to
independence. That is,

f1(x1,… ,xn) =
{
{
{

∏n
j=1

λxj
xj!
e−λ , λ > 0, xj = 0, 1,… ; j = 1,… ,n

0, elsewhere

=
{
{
{

λx1+⋯+xn
x1!⋯xn!

, λ > 0,
0, elsewhere.

(10.2)

Definition 10.2 (Likelihood function). Let {x1,… ,xn} be a collection of random
variables with the joint probability/density function f (x1,… ,xn). Then this
f (x1,… ,xn) at an observed value of (x1,… ,xn) is called the likelihood function
of the random variables x1,… ,xn.

If x1,… ,xn are a simple random sample from the populationwith probability/den-
sity function f (x), then the likelihood function, denoted by L, is given by the following

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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product due to iid nature:

L =
n

∏
j=1

f (xj) (10.3)

when {x1,… ,xn} is a set of observed values.

Note 10.1. Here, we use the same small letters to denote mathematical variables,
random variables and the values assumed by the random variables. The usage will
be clear from the context. Many authors denote random variables by capital letters
and the values assumed by them by small letters. This can create double notation
for the same variable and logical inconsistencies when statements such as Pr{X ≤ x}
are made, where a big X is smaller than a small x. Besides, small letters are used
to denote mathematical variables also. Hence we denote mathematical variables as
well as random variables by small letters so that degenerate random variables will be
interpreted as mathematical variables.

In Example 10.1, suppose that the random variables x1,x2,x3,x4 represent the
number of traffic accidents on a stretch of a highway on 4 different independent oc-
casions. Suppose that on the first occasion, possibly the first day of January, x1 is
observed as 2, on the second occasion, possibly first day of February, x2 is observed
as 0, on the third occasion, possibly the first day of March, x3 is observed as 1 and
on the 4th occasion x4 is observed as 5. Then the likelihood function in this case is
available from (10.3) by substituting the observations, namely

f1(x1 = 2,x2 = 0,x3 = 1,x4 = 5) = e−4λλ2+0+1+5

2!0!1!5!
= λ8e−4λ

240
. (10.4)

Example 10.2. Let x1,x2,x3 be independently distributed gamma random variables
with parameters (α1,β), (α2,β), (α3,β), respectively. Evaluate the likelihood function.

Solution 10.2. Let L1 denote the likelihood function here. Then

L1 =
xα1−11 e−

x1
β

βα1Γ(α1)
× xα2−1e−

x2
β

βα2Γ(α2)
×
xα3−13 e−

x3
β

βα3Γ(α3)

=
xα1−11 xα2−12 xα3−13 e−

1
β (x1+x2+x3)

βα1+α2+α3Γ(α1)Γ(α2)Γ(α3)

at an observed point. Let the observations on the variables be the following: x1 = 2,
x2 = 1, x3 = 4. Then

L1 =
2α1−1(1)α2−14α3−1e−

1
β (2+1+4)

βα1+α2+α3Γ(α1)Γ(α2)Γ(α3)
= 2α1−14α3−1e−

7
β

βα1+α2+α3Γ(α1)Γ(α2)Γ(α3)
. (10.5)

Note 10.2. Since the joint probability/density function at the observed sample point
is defined as the likelihood function, once the point is substituted then the function
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becomes a function of the parameters only, which may be observed from (10.4) and
(10.5), and not a function of the variables x1,… ,xn.

Note 10.3. In most of the applications in this and succeeding chapters, we will be
dealing with simple random samples or iid variables only, coming from a real univari-
ate (scalar variable case) distribution. Hence, hereafter whenever we refer to a sample
it will mean a simple random sample or iid variables.

Definition 10.3 (Sample mean and the sample variance). Let x1,… ,xn be iid vari-
ables. Then the sample mean, denoted by x̄ = sample mean, and the sample vari-
ance, denoted by s2 = sample variance, are defined as follows:

x̄ = x1 + ⋯ + xn
n

; s2 =
n
∑
j=1

(xj − x̄)2

n
. (10.6)

Note that when x1,… ,xn are real scalar random variables then x̄ and s2 are random
variables having their own distributions. If {x1 = a1,… ,xn = an} is a given set of ob-
servations on x1,… ,xn, then an observed value of x̄ is ā = a1+⋯+an

n and that of s2 is

∑n
j=1
(aj−ā)2

n . For example, if n = 2, a1 = 1, a2 = 4 then the observed value of the sample
mean is 4+1

2 = 2.5 and the observed value of s2 is 1
2 [(1−

5
2 )
2 + (4− 5

2 )
2] = 2.25. In general,

x̄ and s2 are random variables, and not numbers.

Definition 10.4 (A statistic). Let the real scalar random variables x1,… ,xn be a
sample of size n coming from some population (need not be iid but usually we have
iid variables). Any observable function T = T(x1,… ,xn) of the sample values, hav-
ing its own distribution, is called a statistic. [Plural of the term “statistic” is also
called “statistics”, different from the subject matter Statistics. This is yet another
unfortunate technical term in Statistics.] For example, the following are statistics:

T1 = x1 + ⋯ + xn; T2 = a1x1 + ⋯ + anxn,

where a1,… ,ak are known constants;

T3 = x21 + ⋯ + x2n; T4 = (x1 − 2)2 + ⋯ + (xn − 2)2

are statistics, and one can construct many such statistics on a given sample. Stu-
dents usually have the following doubts: Suppose that we consider functions of the
type

u1 = (x1 − θ) + ⋯ + (xn − θ);

u2 = (x1 − θ1)2 + ⋯ + (xn − θ1)2

θ22
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where θ,θ1 and θ2 are some unknown parameters. Are u1 and u2 statistics? If the
distributions of u1 and u2 are free of θ,θ1,θ2 will u1 and u2 be statistics? The answer
is “no”. As long as unknown parameters such as θ,θ1,θ2 are present, then the func-
tions are not observable, and hence not statistics. If functions of sample values and
some unknown parameters are there such that their distributions are free of all pa-
rameters then such quantities are called “pivotal” quantities and their uses will be
discussed in the chapter on confidence intervals. Hence the most important basic
property for a statistic is its observability.

Definition 10.5 (Sampling distributions). The distribution of a statistic is known
as the sampling distribution of that statistic such as the sampling distribution of
the sample mean x̄, sampling distribution of the sample variance s2, etc.

Observe that the phrase “distribution” is used here in the sense that we have iden-
tified a random variable by its probability/density function or its distribution func-
tion, etc. It is unfortunate that there are too many similar sounding technical terms
which are used in statistical literature, such as “a distribution”(means that a variable
is identified such as normal distribution, gamma distribution, etc.), “a distribution
function” (means the cumulative probability/density function), “sampling distribu-
tion” (means a statistic is identified by its density or probability or distribution func-
tion). Also “probability function” is used for discrete and mixed cases only but some
authors use it for all cases. Similarly, “density function” is used for continuous cases
only but some authors use for all cases. Hence there is no unanimous convention in
the use of the terms “probability function” or “density function”. In this book, we will
use “probability function” for discrete andmixed cases and “density function” for the
continuous case.

10.2 Sampling distributions

Amajor part of statistical inference in this module is concerned with Gaussian or nor-
mal populations, and hence sampling distributions, when the sample comes from a
normal population, are very important here. But we will also consider sampling dis-
tributions when the sample comes from other populations as well.

Example 10.3. Consider a real gamma population with the density function:

f2(x) =
{
{
{

xα−1e−
x
β

βαΓ(α) , x ≥ 0, β > 0, α > 0
0, elsewhere.

(10.7)

Evaluate the density functions of (1) u1 = x1 + ⋯ + xn; (2) u2 = x̄ = (x1+⋯+xn)n ; (3) u3 =
x̄ − αβ; (4) u4 = √n(x̄−αβ)β√α ; (5) u5 = limn→∞ u4.
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Solution 10.3. It is easier to solve the problems with the help of the mgf of a gamma
random variable or with the Laplace transform of a gamma density. The mgf of the
random variable x or the density function f (x) = d

dxF(x), where F(x) is the distribution
function, denoted byMx(t) is the following:

Mx(t) = E[etx] = ∫
∞

−∞
etxf (x)dx = ∫

∞

−∞
etxdF(x)

where t is a parameter and E denotes the expected value, is defined by the above inte-
gral when the integral exists. [Replace integrals by sums in the discrete case.] Hence
theMx(t) for the gamma density in (10.7) is the following:

Mx(t) = ∫
∞

0
etx x

α−1e−
x
β

βαΓ(α)
dx = (1 − βt)−α for 1 − βt > 0. (10.8)

Observe that the integral is not convergent if 1 − βt ≤ 0:
(1) If x1,… ,xn are iid variables with the mgf Mx(t), then the sum has the mgf

[Mx(t)]n due to independence and identical distribution. Hence

Mu1 (t) = (1 − βt)−nα , 1 − βt > 0 (10.9)

where u1 = x1 + ⋯ + xn. Since the mgf is unique, by examining (10.3) we see that u1 is
a gamma variable with the parameters (nα,β).

(2) Since the mgf of au1 is mgf of u1 with t replaced by at, then for u2 = u1
n we

have

Mu2 (t) =Mu1(
t
n
) = (1 − βt

n
)
−nα

, 1 − βt
n

> 0. (10.10)

This shows that u2 is gamma distributed with the parameters (nα, βn ) for each n =
1, 2,…. One interesting property is obvious from (10.10). When n→ ∞,

lim
n→∞

Mu2 (t) = lim
n→∞

(1 − βt
n

)
−nα

= eαβt (10.11)

which is the mgf of a degenerate random variable, taking the value αβ with proba-
bility 1. In other words, as n becomes larger and larger the curve becomes more and
more peaked around the line x = αβ, which is the mean value of the gamma variable
with parameters (α,β), and then eventually the whole probability mass will be con-
centrated at the point x = αβ. The behavior of the graphs of the density of x̄ for various
values of the sample size n is shown in Figure 10.1.

Remark 10.1. Some studentsmay have the wrong notion, that since the standardized
samplemean goes to a standard normal as the sample size goes to infinity, the sample
mean itself has anapproximatenormal distribution for large n. This is incorrect,which
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Figure 10.1: The density of ̄x when the population is
gamma.

may be seen from Figure 10.1. Even x̄ − E[x̄] does not approximate to a normal, only
the standardized samplemeanwill approximate to a standard normal when n is large.
In other words,

x̄ − E[x̄]
√Var(x̄)

∼ N(0, 1) ⇏ x̄ ≈ N(μ0,σ20) or x̄ − E(x̄) ≈ N(0,σ20)

for some μ0 and σ20.

Result 10.1. When the population is a gamma population with the parameters (α,β),
the samplemean x̄ goes to αβ with probability 1when the sample size n goes to infinity
or x̄ converges to E(x) = αβ with probability 1 when n goes to infinity.

(3) If a variable x is relocated at the point x = a, then the mgf, by definition is the
following:

Mx−a(t) = E[et(x−a)] = e−taMx(t).

If the variable x is relocated and re-scaled, that is, if y = ax + b then

My(t) = etbMx(at). (10.12)

Therefore,

Mu3 (t) = e−αβtMx̄(t) = e−αβt(1 − βt
n

)
−nα

, 1 − βt
n

> 0 (10.13)

which shows that u3 is a relocated gamma random variable with parameters (nα, βn )
and re-location parameter αβ or with the density, denoted by fu3 (u3),

fu3 (u3) =
(u3 − αβ)nα−1e−

n
β (u3−αβ)

(β/n)nαΓ(nα)
(10.14)

for u3 ≥ αβ, α > 0, β > 0, n = 1, 2,…
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(4)

u4 =
√n
β√α

(x̄ − αβ) =
√n
β√α

x̄ − √n√α

= 1
β√α

∑n
j=1 xj
√n

− √nα.

Therefore, the mgf of u4 is given by

Mu4 (t) = e−t√nα(1 − t
√nα

)
−nα

, 1 − t
√nα

> 0 (10.15)

which shows that u4 is a relocated gamma random variable with parameters (nα, 1
√nα )

and the relocation parameter is √nα, for each n = 1, 2,….
u5 is the limiting form of u4 when n goes to infinity. A convenient way of taking

this limit is to take the limit of the natural logarithm of the right side of (10.15), then
expand and then take the limit. That is,

lnMu4 (t) = −t√nα − nα ln(1 − t
√nα

), | t
√nα

| < 1

= −t√nα + nα[ t
√nα

+ 1
2

t2

(√nα)2
+ ⋯]

= t2

2
+ t3

3
O( 1

√n
) → t2

2
as n→ ∞. (10.16)

Since all terms containing t3 and higher powers will contain√n and its powers in the
denominator, all terms will go to zero when n→ ∞.

lim
n→∞

lnMu4 (t) =
t2

2
⇒ Mu5 (t) = e

t2
2 (10.17)

which is the mgf of a standard normal variable. Hence u5 has a standard normal dis-
tribution with the density

fu5 (u5) =
1

√2π
e−

u25
2 , −∞ < u5 < ∞.

Since a chi-square random variable is a particular case of a gamma random vari-
able with α = ν

2 and β = 2, ν = 1, 2,… (ν is the Greek letter nu), if y ∼ χ2ν or if y is a
chi-square with ν degrees of freedom then E(y) = αβ = ( ν2 ) × 2 = ν and Var(y) = αβ2 =
( ν2 )(4) = 2ν. Hence for a sample of size n from a chi-square distribution, with ν degrees
of freedom, the sample sum u1 = x1 + ⋯ + xn is a gamma with parameters nα = nν

2 and
β = 2 or u1 is a chi-square with nν degrees of freedom or u1 = χ2nν . If u2 = x̄, then u2
is a gamma with the parameters α = nν

2 and β = 2
n . Therefore, we have the following

result



266 | 10 Sampling distributions

Result 10.2. When the population is a chi-square population with ν degrees of free-
dom, then as n→ ∞

√n (x̄ − ν)
√2ν

→ z ∼ N(0, 1) as n→ ∞ (10.18)

where N(0, 1) denotes a standard normal population.

As exponential variable is a gamma variable with α = 1 and β = θ > 0 and if y2
denotes an exponential variable with parameter θ, then E(y2) = θ and Var(y2) = θ2. If
a sample of size n comes from an exponential population with parameter θ, then we
have the following result.

Result 10.3. For a sample of size n froman exponential populationwith parameter θ,

√n(x̄ − θ)
θ

→ z ∼ N(0, 1), as n→ ∞. (10.19)

Note that in this case the sample sum u1 = x1 +⋯+xn is a gamma random variable
with parameters α = n and β = θ. The sample mean u2 = x̄ is a gammawith parameters
α = n and β = θ

n for each n = 1, 2,…. The above are the illustrations of the central limit
theorem when the population is a gamma.

Example 10.4. Consider a simple random sample of size n, {x1,… ,xn}, from a
Bernoulli population with probability function

f2(x) = pxq1−x , x = 0, 1, q = 1 − p, 0 < p < 1

and zero elsewhere. [Note that for p = 0 or p = 1 we have a deterministic situation or a
degenerate randomvariable.] Evaluate the probability functions of (1) u1 = x1 +⋯+xn;
(2) u2 = x̄ = x1+⋯+xn

n ; (3) u3 = x̄ − p; (4) u4 = √n (x̄−p)√pq ; (5) u5 = limn→∞ u4.

Solution 10.4. Note that themean value and the variance of a Bernoulli variable x are
given by the following: E(x) = p, Var(x) = pq and Var(x̄) = pq

n . The mgf of the Bernoulli
variable x is given by

Mx(t) =
1
∑
x=0

etxpxq1−x = q + pet , q = 1 − p, 0 < p < 1.

(1) Therefore, the mgf of u1 = x1 + ⋯ + xn is available as

Mu1 (t) = (q + pet)n. (10.20)

But this is the mgf of a binomial random variable, and hence u1 is a binomial random
variable, with the probability function,
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fu1 (u1) = (
n
u1

)pu1qn−u1 , u1 = 0, 1,… ,n; q = 1 − p, 0 < p < 1

and zero otherwise.
(2) By using the earlier procedure,

Mu2 (t) = (q + pe
t
n )n.

The probability function in this case is

fu2 (u2) = (
n
nu2

)pnu2qn−nu2 , u2 = 0, 1
n
,… , 1

and zero elsewhere.
(3) By using the earlier procedure

Mu3 (t) = e−ptMu2 (t) = e−pt(q + pe
t
n )n.

This gives a relocated form of the probability function in Case (2).

Pr{u1 = y} = Pr{u2 = y
n
} = Pr{u3 = y

n
− p}

for y = 0, 1,… ,n.
(4)

u4 =
√n
√pq

x̄ − p√n
√pq

=
∑n
j=1 xj

√npq
− √np

√q
.

Then the mgf is given by

Mu4 (t) = e−t
√np
√q (q + pe

t
√npq )n.

(5) Consider the natural logarithm on both sides, then expand the exponential
function:

lnMu4 (t) = −√np
√q

t + n ln[q + p(1 + t
√npq

+
t2

2!(npq)
+O(

1
n3/2

))]

= −√np
√q

t + n ln[1 + ϵ]

where q + p = 1 and ϵ = pt
√npq + pt2

2!(npq) +O( 1
n3/2 ). But

ln(1 + ϵ) = ϵ − ϵ2

2
+ ⋯ for |ϵ| < 1.

Without loss of generality, we can assume that |ϵ| < 1 for large n. Therefore,

lnMu4 (t) = −√np
√q

t + nϵ − nϵ
2

2
+ ⋯
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Now, collecting the coefficients of t on the right we see that it is zero. The coefficient
of t2 on the right is 1

2 and the remaining terms are of the order O( 1
n
1
2
) → 0 as n→ ∞.

Hence, when n→ ∞, we have

lnMu5 (t) = lim
n→∞

lnMu4 (t) =
t2

2
⇒ Mu5 (t) = e

t2
2

which is the mgf of a standard normal variable. Hence we have the following result:

Result 10.4. When the sample of size n comes from a Bernoulli population pxq1−x ,
x = 0, 1, q = 1−p, 0 < p < 1 then the standardized samplemean, which is equivalent to
the standardized binomial variable, goes to a standard normal variable when n goes
to infinity. That is,

u5 = x̄ − E(x̄)
√Var(x̄)

=
∑n
j=1 xj − np
√npq

= x − np
√npq

→ z ∼ N(0, 1)

as n→ ∞ where x is the binomial random variable.

Thus, in the binomial case the standardized variable itself goes to the standard
normal variable when the number of Bernoulli trials goes to infinity. This result is also
consistent with the central limit theorem where the population is the Bernoulli popu-
lation.

Note 10.4. If x is a real scalar random variable with E(x) = μ and Var(x) = σ2, then
y = x−μ

σ is called the standardized x, with E(y) = 0 and Var(y) = 1.

Note 10.5. When a simple random sample of size n comes from a Bernoulli popula-
tion, then the likelihood function L is given by

L =
n

∏
j=1

pxjq1−xj = pxqn−x (10.21)

where x is a binomial random variable at the observed sample point. Observe that the
number of combinations (nx ), appearing in the binomial probability function, does not
enter into the likelihood function in (10.21).

Example 10.5. Let x1,… ,xn be iid real scalar random variables following a normal
distribution N(μ,σ2). Compute the distributions of (1) u1 = a1x1 + ⋯ + anxn where
a1,… ,an are constants; (2) u2 = x̄; (3) u3 = x̄ − μ; (4) u4 = √nσ (x̄ − μ).

Solution 10.5. The Gaussian or normal density function for a real scalar randomvari-
able x is given by

f2(x) =
e−

1
2 (

x−μ
σ )

2

σ√2π
, −∞ < x < ∞, σ > 0, −∞ < μ < ∞
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and the mgf of x is given by

Mx(t) = E[etx] = ∫
∞

−∞
etxf2(x)dx = etμ+

1
2 t

2σ2 . (10.22)

(1) In order to compute the distribution of u1, we will compute the mgf of u1 and
then try to identify the distribution from this mgf:

Mu1 (t) = E[et(a1x1+⋯+anxn)] =
n

∏
j=1

E[etajxj ]

=
n

∏
j=1

etajμ+
1
2 t

2a2j σ2 = etμ(∑
n
j=1 aj)+

t2σ2
2 (∑

n
j=1 a

2
j )

due to x1,… ,xn being iid normal variables. But this mgf is that of a normal variable
with mean value μ∑n

j=1 aj and variance σ
2 ∑n

j=1 a
2
j . Therefore,

u1 ∼ N(μ
n
∑
j=1

aj ,σ2
n
∑
j=1

a2j )

where “∼” indicates “distributed as”.

Note 10.6. If N(μj ,σ2j ), j = 1,… ,n are independently distributed and if u1 = a1x1 +⋯+
anxn then from the above procedure, it is evident that

u1 ∼ N(
n
∑
j=1

ajμj ,
n
∑
j=1

a2j σ2j ). (10.23)

Result 10.5. If xj ∼ N(μj ,σ2j ), j = 1,… ,k and mutually independently distributed and
if u = a1x1 + ⋯ + akxk is a linear function, where a1,… ,ak are constants, then

u ∼ N(
k
∑
j=1

ajμj ,
k
∑
j=1

a2j σ2j ). (10.24)

(2) Putting k = n, a1 = ⋯ = an = 1
n , μ1 = ⋯ = μn = μ, σ21 = ⋯ = σ2n = σ2 in (10.24) we

have

u2 = x̄ ∼ N(μ, σ
2

n
), n = 1, 2,… ; Mu2 (t) = etμ+

1
2
t2σ2
n .

Thus, for each n, x̄ is again normally distributedwithmean value μ and variance σ2/n.
(3)

Mu3 (t) = e−μtMu2 (t) = e
1
2
t2σ2
n .

This means that u3 = x̄ − μ ∼ N(0, σ
2

n ) for every n = 1, 2,…
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(4)

Mu4 (t) =Mu3(
√n
σ
t) = e

1
2 (
√n
σ )

2 t2σ2
n = e

t2
2 .

Therefore, u4 ∼ N(0, 1), n = 1, 2,… Thus, for each n = 1, 2,… including n→ ∞, the stan-
dardized sample mean u4 = x̄−E(x̄)

√Var(x̄) is exactly standard normal for each n, when the
sample comes from a normal population. When the sample comes from other popula-
tions with finite variance, we have seen that the standardized sample mean goes to a
standard normal variable when the sample size goes to infinity. In the following Fig-
ure 10.2, (a) is the density of the sample mean x̄, (b) is the density of x̄ − μ and (c) is
the density of the standardized variable when the population is normal.

Figure 10.2: Density cure for sample mean when the population is Gaussian.

Example 10.6. Let z1,… , zn be iid real scalar random variables following a standard
normal distributionN(0, 1). Compute the distributions of (1) u1 = z21 ; (2) u2 = z21 +⋯+z2n.

Solution 10.6. (1) This was already done in Module 6. For the sake of completeness,
we will repeat here by using transformation of variables. Another method by using
the distribution function is given in the exercises. Here, z1 is standard normal and its
density is given by

f3(z1) =
e−

z21
2

√2π
, −∞ < z1 < ∞.

But the transformation u1 = z21 is not one to one since z1 can take negative values also.
But in each interval (−∞ < z1 < 0) and (0 ≤ z1 < ∞), the transformation is one to one.
Consider the interval 0 ≤ z1 < ∞. Then

u1 = z21 ⇒ z1 = u
1
2
1 ⇒ dz1 =

1
2
u

1
2−1
1 du1

and that part of the density of u1, denoted by

g31(u1) =
1
2

1
√2π

u
1
2−1
1 e−

u1
2

= 1
2

1
2

1
2 Γ( 12 )

u
1
2−1
1 e−

u1
2 , 0 ≤ u1 < ∞.
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But in the interval (−∞,0) also the function f3(z1) is the same and an even function.
Hence the density of u1, denoted by g3(u1), is given by

g3(u1) =
{{
{{
{

1
2
1
2 Γ( 12 )

u
1
2−1
1 e−

u1
2 , 0 ≤ u1 < ∞

0, elsewhere

which is a gamma density with α = 1
2 and β = 2 or it is a chi-square density with one

degree of freedom or

z1 ∼ N(0, 1), u1 = z21 ∼ χ21 ; Mu1 (t) = (1 − 2t)−
1
2 , 1 − 2t > 0. (10.25)

(2) Since themgf of a sumof independent variables is the product of the individual
mgf, we have

Mu2 (t) =
n

∏
j=1

Mu1 (t) = [Mu1 (t)]
n = (1 − 2t)−

n
2 .

Therefore, we have the following result.

Result 10.6. For z1,… , zn iid with common distribution N(0, 1), then

z2j ∼ χ21 and u3 =
n
∑
j=1

z2j ∼ χ2n. (10.26)

Exercises 10.2
10.2.1. If x1,… ,xn are iid from a uniform population over [0, 1], evaluate the density
of x1 + ⋯ + xn for (1) n = 2; (2) n = 3. What is the distribution in the general case?

10.2.2. If x1,… ,xn are iid Poisson distributed with parameter λ, then (1) derive the
probability function of u1 = x1 + ⋯ + xn; (2) write down the probability function of x̄.

10.2.3. If x1,… ,xn are iid type-1 beta distributedwith parameters (α,β), then compute
the density of (1) u1 = x1 + x2; (2) u2 = x1 + x2 + x3.

10.2.4. Repeat Exercise 10.2.3 if the population is type-2 beta with the parameters
(α,β).

10.2.5. State the central limit theorem explicitly if the sample comes from (1) type-1
beta population; (2) type-2 beta population.

10.2.6. Let x1,… ,xn be iid Bernoulli distributed with parameter p, 0 < p < 1. Let

u1 = x1 + ⋯ + xn − np; u2 = u1
√np(1 − p)

; u3 =
u1 +

1
2

√np(1 − p)
.
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Using a computer, or otherwise, evaluate γ so that Pr{|u2| ≥ γ} = 0.05 for n = 10, 20,30,
50 and compute n0 such that for all n ≥ n0, γ approximates to the corresponding stan-
dard normal value 1.96.

10.2.7. Repeat Exercise 10.2.6 with u3 of Example 10.4 and make comments about bi-
nomial approximation to a standard normal variable.

10.2.8. Let x be a gamma randomvariablewith parameters (n,β), n = 1, 2,…. Compute
the mgf of (1) u1 = x̄; (2) u2 = x̄ − nβ; (3) u3 = x̄−nβ

β√n ; (4) show that u3 goes to a standard
normal variable when n→ ∞.

10.2.9. Interpret (4) of Exercise 10.2.8 in terms of the central limit theorem. Which is
the population and which is the sample?

10.2.10. Is there any connection between central limit theorem and infinite divisibil-
ity of real random variables? Explain.

10.2.11. Let z ∼ N(0, 1). Let y = z2. Compute the following probabilities: (1) Pr{y ≤ u} =
Pr{z2 ≤ u} = Pr{|z| ≤ √u}; (2) by using (1) derive the distribution function of y and
thereby the density of y; (3) show that y ∼ χ21 .

10.2.12. Let x1,… ,xn be iid with E(xj) = μj, Var(xj) == σ2j < ∞, j = 1,… ,n. Let x̄ =
x1+⋯+xn

n . Consider the standardized x̄,

u =
x̄ − E(x̄)
√Var(x̄)

=
∑n
j=1(xj − μj)

√σ21 + ⋯ + σ2n
.

Assuming the existence of themgf of xj, j = 1,… ,nwork out a condition on σ21 +⋯+σ2n
so that u→ z ∼ N(0, 1) as n→ ∞.

10.2.13. Generalize Exercise 10.2.12 when u is the standardized v = a1x1 + ⋯ + anxn
when X′ = (x1,… ,xn) has a joint distribution with covariance matrix Σ = (σij) with
‖Σ‖ < ∞ and a′ = (a1,… ,an) is a fixed vector of constants and ‖(⋅)‖ denotes a norm
of (⋅).

10.3 Sampling distributions when the population is normal

Here, we will investigate some sampling distributions when the population is normal.
Wehave seen several results in this category already. Let x ∼ N(μ,σ2) be the population
and let x1,… ,xn be a simple random sample from this population. Then we have seen
that

x̄ = x1 + ⋯ + xn
n

∼ N(μ, σ
2

n
).
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Note that when n becomes larger and larger then the variance of x̄ becomes smaller
and smaller and finally it goes to zero. In other words, the normal distribution degen-
erates to the point at x̄ = μ with the total probability mass 1 at this point. That is, x̄
converges to μ with probability 1. This, in fact, is a general result, which was stated
as the weak law of large numbers in Chapter 9. We have the following results from the
discussions so far.

Result 10.7.

xj ∼ N(μ,σ2) ⇒ zj =
xj − μ
σ

∼ N(0, 1); z2j = (
xj − μ
σ

)
2
∼ χ21

n
∑
j=1

xj ∼ N(nμ,nσ2); x̄ ∼ N(μ, σ
2

n
); u1 =

√n
σ

(x̄ − μ) ∼ N(0, 1);

u21 = n
σ2

(x̄ − μ)2 ∼ χ21 ; (x1 − μ
σ

)
2
∼ χ21 ;

n
∑
j=1

(
xj − μ
σ

)
2
∼ χ2n.

Result 10.8. FromResult 10.7, we have the followingwhen the population is N(μ,σ2):

E[(
xj − μ
σ

)
2
] = E[χ21 ] = 1;E[

n
∑
j=1

(
xj − μ
σ

)
2
] = E[χ2n] = n;

Var[(
xj − μ
σ

)
2
] = Var(χ21 ) = 2;

Var[
n
∑
j=1

(
xj − μ
σ

)
2
] = Var(χ2n) = 2n. (10.27)

Note 10.7. Corresponding properties hold even if x1,… ,xn are not identically dis-
tributed but independently distributed as xj ∼ N(μj ,σ2j ), j = 1,… ,n.

Result 10.9. For xj ∼ N(μj ,σ2j ), j = 1,… ,n and independently distributed, we have
the following results:

xj − μj ∼ N(0,σ2j );
xj − μj
σj

∼ N(0, 1);

(
xj − μj
σj

)
2
∼ χ21 ;

n
∑
j=1

(
xj − μj
σj

)
2
∼ χ2n. (10.28)

Example 10.7. Compute the expected value of the sample variance when the sample
comes from any population with finite variance and compute the distribution of the
sample variance when the sample comes from a normal population.

Solution 10.7. Let x1,… ,xn be a simple random sample from any population with
mean value μ and variance σ2 < ∞. Then
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E(xj) = μ; E(xj − μ) = 0; E(
xj − μ
σ

) = 0;

Var(xj) = σ2; Var(xj − μ) = σ2; Var(
xj − μ
σ

)
2
= 1; E[x̄] = μ;

E[x̄ − μ] = 0; Var(x̄) = σ2

n
.

The sample variance can be represented as follows:

s2 =
n
∑
j=1

(xj − x̄)2

n
= 1
n

n
∑
j=1

(xj − μ + μ − x̄)2

= 1
n

n
∑
j=1

(xj − μ)2 + (x̄ − μ)2 + 2
n
(μ − x̄)

n
∑
j=1

(xj − μ)

= 1
n

n
∑
j=1

(xj − μ)2 + (x̄ − μ)2 − 2(x̄ − μ)2

= 1
n

n
∑
j=1

(xj − μ)2 − (x̄ − μ)2. (10.29)

Taking expectations on both sides, we have

E(s2) = 1
n

n
∑
j=1

Var(xj) −Var(x̄) =
1
n
nσ2 − σ2

n
= n − 1

n
σ2.

This shows that

E[
n
∑
j=1

(xj − x̄)2

n − 1
] = σ2, (10.30)

a property called unbiasedness, which will be discussed in the chapter on estimation.
The above result says that ∑n

j=1
(xj−x̄)2
n−1 is unbiased for the population variance, what-

ever be the population, as long as the population variance is finite.
If the population is normal, then we have shown that

n
∑
j=1

(xj − μ)2

σ2
∼ χ2n and n

σ2
(x̄ − μ)2 ∼ χ21 .

But from (10.29), it is evident that
n
∑
j=1

(xj − μ)2

σ2
≡

n
∑
j=1

(xj − x̄)2

σ2
+

n
σ2

(x̄ − μ)2

which means

χ2n ≡
n
∑
j=1

(xj − x̄)2

σ2
+ χ21 . (10.31)

But we have the property that if χ2m and χ2n are independently distributed then

χ2m + χ2n ≡ χ2m+n. (10.32)
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Independence of x̄ and s2 will guarantee from (10.31), by looking at the mgf of both
sides in (10.31), that

n
∑
j=1

(xj − x̄)2

σ2
∼ χ2n−1. (10.33)

But it can be shown that if the sample comes from a normal population, then x̄ and
∑n
j=1(xj − x̄)2 are independently distributed. Hence for the normal population, result

(10.33) holds. Independence will be proved later on. Independence of x̄ and s2, along
with some minor conditions, will in fact, characterize a normal population; see the
book [11].

Note 10.8. If x and y are real scalar randomvariables and if x and y are independently
distributed and if x1 = a1x + b1, y1 = a2y + b2, where a1 ≠ 0, a2 ≠ 0, b1, b2, are con-
stants, then x1 and y1 are also independently distributed. Are x and y2 independently
distributed? Are x2 and y independently distributed? Are x2 and y2 independently dis-
tributed?

Note 10.9. If x and y are real scalar random variables and if x2 and y2 are indepen-
dently distributed, then are the following independently distributed: (1) x2 and y; (2) x
and y2; (3) x and y ?

Example 10.8 (Non-central chi-square). Let x1,… ,xn be iid variables from a N(μ,σ2).
Evaluate the density of u = ∑n

j=1
x2j
σ2 , μ ≠ 0. [This is known as a non-central chi-square

with n degrees of freedom and non-centrality parameter λ = nμ2
2σ2 and it is written as

u ∼ χ2n(λ) because when μ is present, then ∑n
j=1
(xj−μ)2

σ2 ∼ χ2n or central chi-square with n
degrees of freedom.]

Solution 10.8. Since the joint density of x1,… ,xn is available, let us compute themgf
of u, that is,Mu(t) = E[etu].

Mu(t) = E[etu] = ∫⋯∫
1

(σ√2π)n

× exp{t
n
∑
j=1

x2j
σ2

−
1
2

n
∑
j=1

(xj − μ)2

σ2
}dx1 ∧ ⋯ ∧ dxn. (10.34)

Let us simplify the exponent:

t
n
∑
j=1

x2j
σ2

− 1
2

n
∑
j=1

(xj − μ)2

σ2

= − 1
2σ2

[
n
∑
j=1

(1 − 2t)x2j − 2μ
n
∑
j=1

xj + nμ2]
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= −λ + λ
1 − 2t

− 1
2σ2

n
∑
j=1

(√1 − 2txj −
μ

√1 − 2t
)
2

for 1−2t > 0 and λ = nμ2
2σ2 . Put yj = √1 − 2txj −

μ
√1−2t and integrate variables one at a time.

For xj, the integral is the following:

1
σ√2π

∫
∞

−∞
e−

1
2σ2
(√1−2txj−

μ
√1−2t )

2
dxj =

1
√1 − 2t

from the total integral of a normal density. Therefore,

Mu(t) =
e−λ

(1 − 2t)n/2
e

λ
1−2t =

∞

∑
k=0

λk

k!
e−λ 1

(1 − 2t)
n
2 +k

.

Butwe know that (1−2t)−(
n
2 +k) is themgf of a chi-squarewith n+2k degrees of freedom

and its density is a gammawithparameters (α = n
2 +k,β = 2) andhence the density of u,

denoted by g(u), is given by

g(u) =
∞

∑
k=0

λk

k!
e−λ u

n
2 +k−1

2
n
2 +kΓ( n2 + k)

e−
u
2 , u ≥ 0 (10.35)

and zero elsewhere. This is the non-central chi-square density, which is in the form
of a weighted gamma (chi-square) densities, weights being Poisson probabilities or
Poisson-weighted chi-square densities with n + 2k degrees of freedom. Observe also
that since λ > 0 we have Pk = λk

k! e
−λ with∑∞k=0 Pk = 1 or the coefficients are from a Pois-

son distribution. The non-central chi-square density is of the form:

g(u) =
∞

∑
k=0

fk(u)Pk

where

fk(u) =
u

n
2 +k−1e−

u
2

2
n
2 +kΓ( n2 + k)

, u ≥ 0 (10.36)

and

Pk = λk

k!
e−λ .

This density is a very important density, which is also connected to Bessel function in
the theory of special functions.

Exercises 10.3
10.3.1. If x1,x2,x3 are independently distributed so that x1 ∼ N(0,σ2 = 1), x2 ∼ N(μ = 2,
σ2 = 4), x3 ∼ N(μ = −1,σ2 = 5) evaluate the densities of the following: (1) u1 = x1+x2+x3;
(2) u2 = 2x1 − 3x2 + 5x3; (3) u3 = x21 + (x2−2)

2

4 + (x3+1)
2

5 ; (4) u4 = x21 + (x2 − 2)2; (5) u5 = x21 +
x22
4 + x23

5 .
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10.3.2. By using the mgf or otherwise compute the exact densities of (1) u1 = χ2n − n;
(2) u2 = χ2n−n

√2n ; (3) show that u2 → z ∼ N(0, 1) as n→ ∞.

10.3.3. Interpret (3) in Exercise 10.3.2 in terms of the central limit theorem. What is
the population and what is the sample?

10.3.4. By using a computer (1) compute γ so that Pr{|u2| ≥ γ} = 0.05 for n = 10, 20,30
where u2 is the same u2 in Exercise 10.3.2; (2) determine n so that γ approximates well
with the corresponding N(0, 1) value 1.96 at the 5% level (tail area is 0.05).

10.3.5. Find n0 such that for n ≥ n0 the standard normal approximation in Exer-
cise 10.3.4 holds well.

10.4 Student-t and F distributions

The distribution of a random variable of the type u = z
√y/ν where z is a standard nor-

mal, z ∼ N(0, 1), y is a chi-square with ν degrees of freedom, y ∼ χ2ν , where z and y are
independently distributed, is known as a Student-t variable with ν degrees of free-
dom, tν .

Definition 10.6 (A Student-t statistic tν). A Student-t variable with ν degrees of
freedom is defined as

tν = u = z
√y/ν

, z ∼ N(0, 1), y ∼ χ2ν (10.37)

where z and y are independently distributed.

The person who derived the density of the variable tν , W. Gossett, wrote the pa-
per under the name “a student”, and hence the distribution is known in the litera-
ture as the Student-t distribution. Before deriving the density, let us examine more
general structures and derive the density as a special case of such a general struc-
ture.

Example 10.9. Let x1 and x2 be independently distributed real gamma random vari-
ables with the parameters (α1,β) and (α2,β), respectively, that is, the scale parameters
are equal to some β > 0. Let u1 = x1 + x2, u2 = x1

x1+x2
, u3 = x1

x2
. Derive the distributions of

u1,u2,u3.

Solution 10.9. Due to independence, the joint density of x1 and x2, denoted by
f (x1,x2), is given by

f (x1,x2) =
xα1−11 xα2−12 e−

1
β (x1+x2)

βα1+α2Γ(α1)Γ(α2)
, 0 ≤ xi < ∞, i = 1, 2 (10.38)
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and f (x1,x2) = 0 elsewhere. Let us make the polar coordinate transformation: x1 =
r cos2 θ, x2 = r sin2 θ. We have taken cos2 θ and sin2 θ due to the presence of x1 + x2 in
the exponent. The Jacobian of the transformation is the determinant

|

|

𝜕x1
𝜕r
𝜕x1
𝜕θ

𝜕x2
𝜕r
𝜕x2
𝜕θ

|

|
= |

cos2 θ −2r cosθ sinθ
sin2 θ 2r cosθ sinθ

| = 2r cosθ sinθ.

The joint density of r and θ, denoted by g(r,θ), is given by

g(r,θ) = (r cos2 θ)α1−1(r sin2 θ)α2−1

βα1+α2Γ(α1)Γ(α2)
e−

r
β 2r cosθ sinθ

= rα1+α2−1e−
r
β

βα1+α2Γ(α1 + α2)
Γ(α1 + α2)
Γ(α1)Γ(α2)

× (cos2 θ)α1−1(sin2 θ)α2−12 cosθ sinθ
= g1(r)g2(θ) (10.39)

by multiplying and dividing by Γ(α1 + α2). From (10.39), a few properties are obvious.
(a) x1 + x2 = r has the density g1(r), which is a gamma density, and hence u1 = x1 + x2
is gamma distributed with parameters (α1 + α2,β); (b) Since (10.39) is in the form of a
product of two densities, one is a function of r alone and the other is a function of θ,
the variables r and θ are independently distributed. (c)

u2 = x1
x1 + x2

= r cos2 θ
r cos2 θ + r sin2 θ

= cos2 θ

is a function of θ alone. Hence u1 = x1 + x2 and u2 = x1
x1+x2

are independently dis-
tributed. (d) But x1 = u1u2 ⇒ E(xh1 ) = E(uh1 )E(uh2 ) due to the independence of u1 and u2.
Therefore, we have the following result.

Result 10.10. When the real scalar random variables x1 and x2 are independently
distributed as gamma variables with parameters (α1,β) and (α2,β), respectively, with
the same β, and when u1 = x1 + x2, u2 = x1

x1+x2
, then

E(uh1 ) = E(xh1 )
E(uh2 )

⇒ E[ x1
x1 + x2

]
h
= E(xh1 )
E(x1 + x2)h

Note that even if y1 and y2 are independently distributed, E( y1y2 )
h ≠ E(yh1 )

E(yh2 )
. From

(10.29), the density of u2 = cos2 θ is the following: The non-zero part of the den-
sity of x1 and x2 is in the first quadrant, and hence 0 ≤ r < ∞, 0 ≤ θ ≤ π

2 . Note that
du2 = 2 cosθ sinθdθ. But the density of θ is

g2(θ) = (cos2 θ)α1−1(sin2 θ)α2−12 cosθ sinθ, 0 ≤ θ ≤
π
2

(10.40)
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and g2(θ) = 0 elsewhere. Also, for 0 ≤ θ ≤ π
2 means 0 ≤ u2 = cos2 θ ≤ 1. Hence the

density of u2 is given by

gu2 (u2) =
Γ(α1 + α2)
Γ(α1)Γ(α2)

uα1−12 (1 − u2)α2−1, 0 ≤ u2 ≤ 1, α1 > 0, α2 > 0 (10.41)

and gu2 (u2) = 0 elsewhere. Hence u2 is a type-1 beta variable with parameters (α1,α2),
and therefore 1 − u2 is a type-1 beta with the parameters (α2,α1).

Result 10.11. If x1 and x2 are as inResult 10.10, then u2 = x1
x1+x2

is a type-1 beta random
variable with the parameters (α1,α2).

(e) u3 = x1
x2

= r cos2 θ
r sin2 θ = cot2 θ. We can evaluate the density of u3 = cot2 θ either from

the density of θ in (10.40) or from the density of u2 in (10.41).

u2 = x1
x1 + x2

= x1/x2
1 + x1/x2

=
u3

1 + u3
⇒ u3 = u2

1 − u2
.

du3 = 1
(1 − u2)2

du2 = (1 + u3)2du2 ⇒ du2 = 1
(1 + u3)2

du3.

From (10.41), the density of u3, denoted by gu3 (u3), is given by

gu3 (u3) =
Γ(α1 + α2)
Γ(α1)Γ(α2)

(
u3

1 + u3
)
α1−1

( 1
1 + u3

)
α2−1 1

(1 + u3)2

=
{{{
{{{
{

Γ(α1+α2)
Γ(α1)Γ(α2)

uα1−13 (1 + u3)−(α1+α2),
0 ≤ u3 < ∞, α1 > 0, α2 > 0

0, elsewhere.

(10.42)

Therefore, u3 = x1
x2
is type-2 beta distributed with parameters (α1,α2) and then u4 = x2

x1
is type-2 beta distributed with the parameters (α2,α1).

Result 10.12. If x1 and x2 are as in Result 10.10, then u3 = x1
x2
is a type-2 beta with the

parameters (α1,α2).

Now, consider a particular case of a gamma variable, namely the chi-square vari-
able. Let x1 ∼ χ2m and x2 ∼ χ2n be independently distributed. x1 ∼ χ2m means a gamma
with the parameters (α = m

2 ,β = 2). Then

u3 =
x1
x2

has the density, form,n = 1, 2,…,

fu3 (u3) =
Γ(m+n2 )

Γ(m2 )Γ( n2 )
u

m
2 −1
3 (1 + u3)−(

m+n
2 ), 0 ≤ u3 < ∞, (10.43)
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and fu3 (u3) = 0 elsewhere. A constant multiple, namely,

n
m
u3 = χ2m/m

χ2n/n

or a chi-square with m degrees of freedom divided by its degrees of freedom and
the whole thing is divided by a chi-square with n degrees of freedom, divided by
its degrees of freedom, where the two chi-squares are independently distributed, is
known as a F random variable with m and n degrees of freedom and usually written
as Fm,n.

Definition 10.7 (F random variable). A F = Fm,n random variable is defined, and it
is connected to u3, as follows:

Fm,n = χ2m/m
χ2n/n

= n
m
u3 ⇒ u3 = m

n
Fm,n.

Then the F-density is available from the type-2 beta density or from (10.43), and it
is the following:

fF (Fm,n) =
Γ(m+n2 )

Γ(m2 )Γ( n2 )
(m
n

)
m
2
F

m
2 −1m,n (1 + m

n
Fm,n)
−( m+n2 )

(10.44)

for 0 ≤ Fm,n < ∞,m,n = 1, 2,… and fF (Fm,n) = 0 elsewhere.

Special Case form = 1, n = ν. Let F1,ν = t2ν . Then puttingm = 1, n = ν in (10.44) we have
the density of F1,ν = χ21

χ2ν/ν
= t2ν which will then be the density of the square of Student-t

with ν degrees of freedom. Denoting the density by ft(t2ν), we have the following:

ft(t2ν) =
Γ( ν+12 )

Γ( ν2 )√πν
(t2ν)

1
2−1(1 + t2ν

ν
)
−( ν+12 )

, 0 ≤ t2ν < ∞.

Note that

t2ν = F1,ν ⇒ |tν | =
√χ21

√χ2ν/ν
= |z1|

√χ2ν/ν
, tν = z1

√χ2ν/ν

where z1 is a standard normal variable. For tν > 0, it is a one to one transformation and

dtν = 1
2
F−

1
2

1,ν dF1,ν or 2dtν = F−
1
2

1,ν dF1,ν .

Hence for tν > 0 the folded Student-t density is given by

ft(tν) = 2
Γ( ν+12 )

Γ( ν2 )√πν
(1 + t2ν

ν
)
−( ν+12 )

, 0 ≤ tν < ∞. (10.45)
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Figure 10.3: Student-t density.

Since it is symmetric about tν = 0, the Student-t density is given by

ft(tν) =
Γ( ν+12 )

Γ( ν2 )√πν
(1 + t2ν

ν
)
−( ν+12 )

, −∞ < tν < ∞.

A graph of Student-t density is given in Figure 10.3. Another way of deriving the den-
sity directly from the joint density of independently distributed standard normal vari-
able and a chi-square variable is by using transformation of variables. Since tν = z

√y/ν ,
where z ∼ N(0, 1) and y ∼ χ2ν where z and y are independently distributed, for z > 0 the
transformation is one to one, and similarly for z < 0 also the transformation is one to
one. Let z > 0. Take u = z

√y/ν and v = y. Then dz ∧ dy = √ y
νdu ∧ dv. The joint density of

z and y, denoted by f (z,y), is given by

f (z,y) = e−
z2
2

√2π
× y

ν
2 −1e−

y
2

2
ν
2 Γ( ν2 )

, z = u√y
ν
, y = v

and then the joint density of u and v, denoted by g(u, v), is given by

g(u,y) = e−
u2y
2ν

√2π
y

ν
2 −1e−

y
2

2
ν
2 Γ( ν2 )

y
1
2

ν
1
2

= y
ν+1
2 −1e−y(

1
2+

u2
2ν )

2
ν+1
2 Γ( ν2 )√ν

.

Integrating out y, we have that part of the marginal density for u given by

g1(u) =
1

2
ν+1
2 Γ( ν2 )√νπ

∫
∞

0
y

ν+1
2 −1e−

1
2 y(1 + u2

ν
)dy

=
Γ( ν+12 )

Γ( ν2 )√νπ
(1 + u2

ν
)
−( ν+12 )

, u > 0

The same is the function for u < 0, and hence for −∞ < tν < ∞, u2 = t2ν we have the
density of tν given by

ft(t) =
Γ( ν+12 )

Γ( ν2 )√πν
(1 + t2

ν
)
−( ν+12 )

, −∞ < tν < ∞.

Observe that when the sample x1,… ,xn comes from a normal population N(μ,σ2) we
have

√n(x̄ − μ)
σ

∼ N(0, 1)
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and
n
∑
i=1

(xi − x̄)2

σ2
∼ χ2n−1

and these two are independently distributed. Hence

tn−1 =
√n(x̄ − μ)

σ
/[

n
∑
i=1

(xi − x̄)2

(n − 1)σ2
]

1
2

=
√n(x̄ − μ)

σ̂

is a Student-t with n − 1 degrees of freedom, where σ̂2 = ∑n
i=1
(xi−x̄)2
n−1 , which is the un-

biased estimator for σ2. Thus, if σ2 is replaced by its unbiased estimator σ̂2 then the
standardized normal variable changes to a Student-t variable with n − 1 degrees of
freedom.

√n(x̄ − μ)
σ

∼ N(0, 1) and
√n(x̄ − μ)

σ̂
∼ tn−1. (10.46)

We also have a corresponding distribution on variance ratios. Consider two indepen-
dent populationsN(μ1,σ21 ) andN(μ2,σ22 ) and let x1,… ,xm and y1,… ,yn be iid variables
from these two populations respectively. Then

σ̂21/σ21
σ̂22/σ22

=
∑m
i=1(xi − x̄)

2/((m − 1)σ21 )
∑n
i=1(yi − ȳ)2/((n − 1)σ22 )

∼ Fm−1,n−1

=
∑m
i=1(xi − x̄)

2/(m − 1)
∑n
i=1(yi − ȳ)2/(n − 1)

∼ Fm−1,n−1 for σ21 = σ22 . (10.47)

This F-density is also known as the density for the “variance ratio”, which is useful in
testing hypotheses of the type σ21 = σ22 . Observe that the results in (10.46) and (10.47)
do not hold when the populations are not independent normal populations.

Exercises 10.4
10.4.1. Let x1,… ,xm be iid variables from the population N(μ1,σ21 ) and let y1,… ,yn be
iid variables from the population N(μ2,σ22 ) and let all variables be mutually indepen-
dently distributed. [This is also known as samples coming from independent popula-
tions.] Let x̄ = ∑m

j=1
xj
m and ȳ = ∑n

j=1
yj
n . Then show that the following results hold:

(1) (
xj − μ1
σ1

)
2
∼ χ21 ; (2) s21 =

m
∑
j=1

(
xj − μ1
σ1

)
2
∼ χ2m;

(3) (
yj − μ2
σ2

)
2
∼ χ21 ; (4) s22 =

n
∑
j=1

(
yj − μ2
σ2

)
2
∼ χ2n;

(5) s21
s22

∼ type-2 beta (
m
2
,
n
2
);
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(6) s21
s21 + s22

∼ type-1 beta (m
2
, n
2
);

(7) n
m
s21
s22

∼ Fm,n; (8) s23 =
m
∑
j=1

(
xj − x̄
σ1

)
2
∼ χ2m−1;

(9) s24 =
n
∑
j=1

(
yj − ȳ
σ2

)
2
∼ χ2n−1;

(10) s23
s24

∼ type-2 beta (m − 1
2

, n − 1
2

);

(11) s23
s23 + s24

∼ type-1 beta (m − 1
2

, n − 1
2

);

(12) n − 1
m − 1

s23
s24

∼ Fm−1,n−1.

Note that when σ21 = σ22 = σ2 then all the variances, σ21 ,σ22 , will disappear from all the
ratios above. Hence the above results are important in testing hypotheses of the type
σ21 = σ22 = σ2.

10.4.2. For the same samples in Exercise 10.4.1, evaluate the densities of the following
variables:

(1) u1 =
1
2σ21

(x1 − x2)2; (2) u2 = 1
2σ22

(y1 − y2)2;

(3) u3 = 1
2
(x1 − x2)2; (4) u4 = 1

2
(y1 − y2)2;

(5) u5 = σ22
σ21

(x1 − x2)2

(y1 − y2)2
; (6) u6 = (x1 − x2)2

(y1 − y2)2
;

(7) u7 = √u5; (8) √u6.

10.4.3. Show that Fm,n = 1
Fn,m

. Let x = Fm,n with density f1(x) and let y = 1
x = Fn,m with

density f2(y). The notation Fm,n,α means the point from where onward to the right the
area under the curve f1(x) is α. Then Fn,m,1−α means the point from where onward to
the right the area under the curve f2(y) is 1 − α. By using the densities f1(x) and f2(y)
and then by transforming y = 1

x show that

Fm,n,α =
1

Fn,m,1−α
.

[Note that, due to this property, only the right tail areas are tabulated in the case of F
distribution. Such numerical tables, called F-tables, are available.]

10.4.4. Notations χ2ν,α, tν,α, Fm,n,α mean the point from where onward to the right the
areaunder the curve in the case of chi-squaredensity, Student-t density and F-density,
is α. By using a computer, compute χ2ν,α, tν,α, Fm,n,α for α = 0.05 (5% tables), α = 0.01
(1% tables) for various values of ν,m,n = 1, 2,…. [This is equivalent to creating 5% and
1% chi-square, Student-t and F-tables.]



284 | 10 Sampling distributions

10.4.5. Derive the density of a non-central F, where the numerator chi-square is non-
central with m degrees of freedom and non-centrality parameter λ, and the denomi-
nator chi-square is central with n degrees of freedom.

10.4.6. Derive the density of a doubly non-central Fm,n(λ1,λ2)with degrees of freedom
m and n and non-centrality parameters λ1 and λ2.

10.4.7. For the standard normal distribution x ∼ N(0, 1), Pr{|x| ≥ γ} = 0.05 means
γ ≈ 1.96. By using a computer, calculate γ such that Pr{|tν | ≥ γ} = 0.05 for ν = 10, 20,
30, 100. Then show that a Student-t does not approximate well to a standard normal
variable even for ν = 100. Hence conclude that reading from standard normal tables,
when the degrees of freedom of a Student-t, is greater than or equal to 30 is not a valid
procedure.

10.4.8. For a type-2 beta variable x with parameters α and β show that

E(xh) = Γ(α + h)
Γ(α)

Γ(β − h)
Γ(β)

, −α < h < β

when real and −ℜ(α) < ℜ(h) < ℜ(β) when in the complex domain. What are the corre-
sponding conditions for (1) Fm,n randomvariable; (2) Student-t variablewith ν degrees
of freedom. [Hint: x = m

n Fm,n.]

10.4.9. Show that (1) E(tν) does not exist for ν = 1, 2; (2) E(t2ν) does not exist for ν = 3,4.

10.4.10. Evaluate the h-th moment of a non-central chi-square with ν degrees of free-
dom and non-centrality parameter λ, and write down its conditions for existence.
Write it as a hypergeometric function, if possible.

10.4.11. Evaluate the h-th moment of a (1): singly non-central Fm,n(λ)with numerator
chi-square χ2m(λ); (2): doubly non-central Fm,n(λ1,λ2), and write down the conditions
for its existence.

10.5 Linear forms and quadratic forms

Wehave already looked into linear functions of normally distributed randomvariables
in equation (10.24). We have seen that arbitrary linear functions of independently dis-
tributed normal variables are again normally distributed. We will show later that this
property holds even if the variables arenot independently distributedbut having a cer-
tain form of a joint normal distribution. First, we will look into some convenient ways
of writing linear forms and quadratic forms by using vector and matrix notations.

Consider a set of real scalar random variables x1,… ,xk and real scalar constants
a1,… ,ak . Then linear form is of the type y and a linear expression is of the type y1 =
y + b where b is a constant, where

y = a1x1 + ⋯ + akxk ; y1 = a1x1 + ⋯ + akxk + b.
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These can also be written as

y = a′X = X′a, y1 = a′X + b = X′a + b (10.48)

where a prime denotes the transpose and

a = [[

[

a1
⋮
ak

]]

]

, X = [[

[

x1
⋮
xk

]]

]

, a′ = (a1,a2,… ,ak), X′ = (x1,… ,xk).

For example,

u1 = 2x1 − x2 + x3 = [2, −1, 1][[
[

x1
x2
x3

]]

]

= [x1,x2,x3]
[[

[

2
−1
1

]]

]

; u2 = 2x1 − x2 + x3 + 5 = a′X + 5.

Here, b = 5.
A simple quadratic form is of the type X′X = x21 + x22 +⋯+ x2k where X′ = (x1,… ,xk)

and the prime denotes the transpose. A general quadratic form is of the type

X′AX =
k
∑
i=1

k
∑
j=1

aijxixj (10.49)

=
k
∑
j=1

ajjx2j + ∑
i

∑
j,i≠j

aijxixj (10.50)

=
k
∑
j=1

ajjx2j + 2∑
i<j
aijxixj =

k
∑
j=1

ajjx2j + 2∑
i>j
aijxixj (10.51)

where the matrix A = A′ without loss of generality, X′ = (x1,… ,xk). The coefficient of
xixj is aij for all i and j, including i = j. In (10.49), all terms, including the case i = j,
are written in a single expression. In (10.50), the diagonal terms and all non-diagonal
terms are separated. Due to symmetry, A = A′, we have aij = aji and hence the coef-
ficients of xixj will be the same as that of xjxi . Thus some of the terms appear twice
and this is reflected in (10.51). For example, for k = 2 the above representations are
equivalent to the following:

X′AX = a11x21 + a12x1x2 + a21x2x1 + a22x22
= a11x21 + a22x22 + 2a12x1x2 since a12 = a21
= a11x21 + a22x22 + 2a21x2x1.

Definition 10.8 (Linear Forms, Quadratic Form, Linear Expressions and Quadratic
Expressions). A linear form is where all terms are of degree one each. A linear ex-
pression is one where the maximum degree is one. A quadratic form is where all
terms are of degree 2 each. A quadratic expression is such that the maximum de-
gree of the terms is two.
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Thus, a quadratic expression has a general representation X′AX + a′X + b where
a′X is a linear form and b is a scalar constant, a′ = (a1,… ,ak) a set of scalar constants.
Examples will be of the following types:

u1 = x21 + ⋯ + x2k (a quadratic form);
u2 = 2x21 − 5x22 + x23 − 2x1x2 − 6x2x3 (a quadratic form);
u3 = x21 + 5x22 − 3x1x2 + 4x1 − x2 + 7 (a quadratic expression).

Example 10.10. Write the following in vector, matrix notation:

u1 = 2x21 − 5x22 + x23 − 2x1x2 + 3x1 − x2 + 4;
u2 = x1 − x2 + x3;
u3 = x21 + 2x22 − x23 + 4x2x3.

Solution 10.10. Here, u1 is a quadratic expression

u1 = X′AX + a′X + b where

X′ = (x1,x2,x3), a′ = (3, −1,0), b = 4, A = [[

[

2 −1 0
−1 −5 0
0 0 1

]]

]

It is a quadratic expression.

u2 = a′X, a′ = (1, −1, 1), X′ = (x1,x2,x3).

It is a linear form.

u3 = X′AX, X′ = (x1,x2,x3), A = [[

[

1 0 0
0 2 2
0 2 −1

]]

]

.

This is a quadratic form. In all these cases, the matrix of the quadratic form is written
in the symmetric form. Any quadratic form in real variables will be of the form X′AX,
where X′ = (x1,… ,xk), A = (aij) and X′AX is a scalar quantity or a 1 × 1 matrix, and
hence it is equal to its transpose. That is, X′AX = (X′AX)′ = X′A′X and, therefore,

X′AX = 1
2
[X′AX + X′A′X] = X′(A + A′

2
)X = X′BX,

B = 1
2
(A + A′) = B′

and hence the result.

Whenwehave a sample fromanormal population,we canderivemany interesting
and useful results. For a full discussion of quadratic forms and bilinear forms in real
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random variables, see the books [12] and [13]. We will need only two main results on
quadratic forms, one is the chi-squaredness of quadratic forms and the other is the
independence of two quadratic forms.

Result 10.13 (Chi-squaredness of quadratic forms). Let x1,… ,xp be iid random
variables from a normal population N(0,σ2). Let y = X′AX be a quadratic form,
where X′ = (x1,… ,xp) and A = (aij) = A′ be a matrix of constants. Then the neces-
sary and sufficient condition for u = y

σ2 to be chi-square distributed with r degrees of
freedom or u ∼ χ2r is that A is idempotent and of rank r.

Proof. For any real symmetric matrix A, there exists an orthonormal matrix Q,
QQ′ = I, Q′Q = I, such that Q′AQ = D = diag(λ1,… ,λp) where λ1,… ,λp are the eigen-
values of A. Hence by making the transformation Y = Q′X we have

X′AX = Y′DY = λ1y21 + ⋯ + λpy2p. (10.52)

Also the orthonormal transformation, being linear in X, will still have yj, j = 1,… ,p

independently distributed as N(0,σ2). Hence y2j
σ2 ∼ χ21 , j = 1,… ,p. If A is idempotent

of rank r then r of the λj ’s are unities and the remaining ones are zeros, and hence
X′AX
σ2 = 1

σ2 (y
2
1 + ⋯ + y2r ) ∼ χ2r . Thus, ifA is idempotent of rank r then u ∼ χ2r . For proving

the converse, we assume that X′AX
σ2 ∼ χ2r and show that then A is idempotent and of

rank r. Themgf of a chi-square with r degrees of freedom is (1−2t)−
r
2 for 1−2t > 0. But,

from (10.41) each y2j
σ2 is χ

2
1 , withmgf (1−2t)−

1
2 with 1−2t > 0, for j = 1,… ,p andmutually

independently distributed. Further, λjy2j /σ2 has the mgf (1 − 2λjt)−
1
2 with 1 − 2λjt > 0,

j = 1,… ,p. Then from (10.52) and the χ2r , we have the identity
p

∏
j=1

(1 − 2λjt)−
1
2 ≡ (1 − 2t)−

r
2 . (10.53)

Take the natural logarithmon both sides of (10.53), expand and equate the coefficients
of (2t), (2t)2,… we obtain the following:

p
∑
j=1

λmj = r, m = 1, 2,…

The only solution for the above sequence of equations is that r of the λj ’s are unities
and the remaining ones are zeros. This condition, together with the property that our
matrix A is real symmetric will guarantee that A is idempotent of rank r. This estab-
lishes the result.

Note 10.10. Observe that if a matrix has eigenvalues 1’s and zeros that does not mean
that the matrix is idempotent. For example, take a triangular matrix with diagonal
elements zeros andones. But this property, togetherwith real symmetrywill guarantee
idempotency.
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Note 10.11. Result 10.13 can be extended to a dependent case also. When x1,… ,xp
have a joint normal distribution X ∼ Np(O, Σ), Σ = Σ′ > 0, X′ = (x1,… ,xp), a corre-
sponding result can be obtained. Make the transformation Y = Σ−

1
2 X then the prob-

lem will reduce to the situation in Result 10.13. If X ∼ Np(μ, Σ), μ ≠ O then also a corre-
sponding result can be obtained but in this case the chi-square will be a non-central
chi-square. Even if X is a singular normal, that is, |Σ| = 0 then also a corresponding
result can be obtained. For such details, see [12].

As a consequence of Result 10.13, we have the following result.

Result 10.14. Let x1,… ,xn be iid variables distributed as N(μ,σ2). Let

u =
n
∑
j=1

(xj − x̄)2

σ2
=

n
∑
j=1

[(xj − μ) − (x̄ − μ)]2

σ2
=

n
∑
j=1

(yj − ȳ)2

where yj =
xj−μ
σ . Then

u =
n
∑
j=1

(yj − ȳ)2, yj ∼ N(0, 1) (10.54)

and

u = χ2n−1. (10.55)

Proof. Writing xj − x̄ = (xj −μ)−(x̄−μ) and then taking yj =
xj−μ
σ , we have the represen-

tation in (10.54). But (10.54) is a quadratic form of the type Y′AY where A = I − 1
nLL
′,

L′ = (1, 1,… , 1) which is idempotent of rank n − 1. Then from Result 10.13 the result
follows.

Another basic result, which is needed for testing hypotheses in model building
situations, design of experiments, analysis of variance, regression problems, etc. is
the result on independence of quadratic forms. This will be stated next.

Result 10.15 (Independence of two quadratic forms). Let x1,… ,xp be iid variables
following a N(0,σ2) distribution. [This is also the same as saying X ∼ Np(O,σ2I), X′ =
(x1,… ,xp)where I is the identitymatrix and σ2 > 0 is a scalar quantity.] Let u = X′AX,
A = A′ and v = X′BX, B = B′ be two quadratic forms in X. Then these quadratic forms
u and v are independently distributed if and only if (iff) AB = O.

Proof. Since A and B are real symmetric matrices, from Result 10.13 we have the rep-
resentations

u = X′AX = λ1y21 + ⋯ + λpy2p (10.56)
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and

v = ν1y21 + ⋯ + νpy2p (10.57)

where λ1,… ,λp are the eigenvalues of A; ν1,… , νp are the eigenvalues of B, and yj ∼
N(0, 1), j = 1,… ,p andmutually independently distributed. Let us assume thatAB = O.
Then due to symmetry, we have

AB = O = O′ = (AB)′ = B′A′ = BA ⇒ AB = BA

whichmeans thatA andB commute. This commutativity and symmetrywill guarantee
that there exists an orthonormal matrix Q, QQ′ = I, Q′Q = I such that both A and B are
reduced to their diagonal forms by the same Q. That is,

O = AB ⇒ Q′AQQ′BQ = D1D2,

D1 = diag(λ1,… ,λp), D2 = diag(ν1,… , νp).

But D1D2 = O means that whenever a λj ≠ 0 the corresponding νj = 0 and vice versa.
In other words, all terms in u and v are mathematically separated. Once a set of sta-
tistically independent variables are mathematically separated then the two sets are
statistically independent also. Hence u and v are independently distributed. This is
the sufficiency part of the proof. For proving the converse, the “necessary” part, we
assume that u and v are independently distributed. We can use this property and the
representations in (10.56) and (10.57). By retracing the steps in the “sufficiency” part,
we cannot prove the “necessary” part. There are many incorrect proofs of this part in
the literature. The correct proof is a little more lengthy and makes use of a number
of properties of matrices, and hence we will not give here. The students may refer to
Mathai and Provost [12].

Remark 10.2. One consequence of the above result with respect to a simple random
sample from a normal population is the following: Let x1,… ,xn be iid N(μ,σ2) vari-
ables. Let u = 1

σ2 ∑n
j=1(xj − x̄)

2 and v = n
σ2 (x̄ −μ)2. Taking yj =

(xj−μ)
σ , we have yj ∼ N(0, 1),

j = 1,… ,n and iid. Then

u =
m
∑
j=1

(yj − ȳ)2 = Y′AY , A = I − 1
n
LL′, L′ = (1,… , 1)

v = (ȳ)2 = Y′BY , B = 1
n
LL′, Y′ = (y1,… ,yn).

Observe that AB = O ⇒ u and v are independently distributed, thereby one has the
independence of the sample variance and the square of the sample mean when the
sample comes from a N(μ,σ2) population. One can extend this result to the indepen-
dence of the sample variance and the samplemeanwhen the sample is from aN(μ,σ2)
population.
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Exercises 10.5
10.5.1. Let the p × 1 vector X have a mean value vector μ and positive definite covari-
ance matrix Σ, that is, E(X) = μ, Cov(X) = Σ = Σ′ > 0. Show that Y = Σ−

1
2 X ⇒ E(Y) =

Σ−
1
2 μ, Cov(X) = I and for Z = Y − Σ−

1
2 μ, E(X) = O,Cov(Z) = I .

10.5.2. Consider the quadratic form Q(X) = X′AX and Y and Z as defined in Exer-
cise 10.5.1. Then show that

Q(X) = X′AX = Y′Σ
1
2AΣ

1
2 Y

= (Z + Σ−
1
2 μ)′Σ

1
2AΣ

1
2 (Z + Σ−

1
2 μ). (10.58)

10.5.3. Let P be an orthonormal matrix which will diagonalize the symmetric matrix
of Exercise 10.5.2, Σ

1
2AΣ

1
2 , into the form

P′Σ
1
2AΣ

1
2 P = diag(λ1,… ,λp), PP = I , P′P = I

where λ1,… ,λp are the eigenvalues of Σ
1
2AΣ

1
2 . Then show that Q(X), the quadratic

form, has the following representations:

Q(X) = X′AX =
p
∑
j=1

λj(uj + bj)2, A = A′, μ ≠ O

=
p
∑
j=1

λju2j , A = A′, μ = O (10.59)

where b′ = (b1,… ,bp) = μ′Σ−
1
2 P.

10.5.4. Illustrate the representation in Exercise 10.5.3 for Q(X) = 2x21 + 3x22 − 2x1x2 and
A = ( 1 11 2 ).

10.5.5. Singular case. Let the p× 1 vector X have themean value E(X) = μ, Cov(X) = Σ
of rank r ≤ p. Since Σ here is at least positive semi-definite, we have a representation
Σ = BB′ where B is p × r of rank r. Then one can write X = μ + BY with E(Y) = O and
Cov(Y) = I . Show that any quadratic form Q(X) = X′AX has the representation

Q(X) = X′AX = (μ + BY)′A(μ + BY)

= μ′Aμ + 2Y′B′Aμ + Y′B′ABY for A = A′. (10.60)

Obtain a representation for Q(X), corresponding to the one in Exercise 10.5.3 for the
singular case.

10.5.6. Let the p × 1 vector X, X′ = (x1,… ,xp), be distributed as a multivariate normal
of the following type:

f (X) =
1

|Σ|
1
2 (2π)p/2

e−
1
2 (X−μ)

′Σ−1(X−μ)
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where −∞ < xj < ∞, −∞ < μj < ∞, Σ > 0, μ′ = (μ1,… ,μp). Show that for this non-
singular normal the mgf is given by

MX (T) = eT′μ+
1
2 T
′ΣT (10.61)

where T′ = (t1,… , tp) is a parametric vector. (Hint:MX (T) = E[eT′X ].)

10.5.7. Taking the mgf in Exercise 10.5.6 as the mgf for both the non-singular case
Σ > O and the singular case Σ ≥ O show by calculating the mgf, or otherwise, that
an arbitrary linear function y = a′X, a′ = (a1,… ,ap), X′ = (x1,… ,xp) has a univariate
normal distribution.

10.5.8. If an arbitrary linear function y = a′X, a′ = (a1,… ,ap), X′ = (x1,… ,xp), has
a univariate normal distribution, for all constant vectors a, then show that the p × 1
vector X has a multivariate normal distribution of the type determined by (10.61) and
in the non-singular case, has the density as in Exercise 10.5.6.

10.5.9. Let the p× 1 vector X have a singular normal distribution (which also includes
the non-singular case). Let the covariance matrix Σ of X be such that Σ = BB′ where B
is a p × q, q ≥ p matrix of rank r ≤ p. Let Q(X) = X′AX. Show that the mgf of Q = Q(X)
has the representation

MQ(t) = {
r

∏
j=1

(1 − 2tλj)−
1
2 }exp{αt + 2t2

r
∑
j=1

b2j (1 − 2tλj)−1}, μ ≠ O

=
r

∏
j=1

(1 − 2tλj)−
1
2 , μ = O (10.62)

where the λj ’s are the eigenvalues of B′AB, b′ = (b1,… ,br) = μ′A′BP, α = μ′Aμ.

10.5.10. Let X ∼ Np(O, I) and X′X = X′A1X+X′A2X,A1 = A′1 ,A2 = A′2, whereA1 is idem-
potent of rank r < p. Then show that X′A1X ∼ χ2r , X′A2X ∼ χ2p−r and X′A1X and X′A2X
are independently distributed. [This result can also be extended when we have the
representation I = A1 + ⋯ + Ak and this will help to split the total variation to sum
of individual variations due to different components in practical situations such as
analysis of variance problems.]

10.6 Order statistics

In a large number of practical situations, the items of interest may be largest value or
the smallest value of a set of observations. If we are watching the flood in the local
river, then the daily water level in the river is not that important but the highest water
level is most important or water levels over a threshold value are all important. If you
are watching the grain storage in a silo or water storage in a water reservoir serving a
city, over the years, then both the highest level and lowest levels are very important.
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If you are running an insurance firm then the maximum damage due to vehicular col-
lision, largest number of accidents, largest number of thefts of properties are all very
important. The theory of order statistics deals with such largest values or smallest val-
ues or the r-th largest values, etc. Since numbers are simply numbers and there is not
much to study there, we will be studying some random variables corresponding to
such ordered observations.

Let x1,… ,xn be a simple random sample of size n from some population. Then
{x1,… ,xn} is a collection of random variables. Consider one set of observations on
{x1,… ,xn}. For example, let x be the waiting time for a particular bus at a local bus
stop. Assume that this bus never comes earlier than the scheduled time but it can
only be on time or late. On 5 (here n = 5) randomly selected occasions let the waiting
times be 3, 10, 15,0, 2, time being measured in minutes. If we write these observations
in ascending order of their magnitudes, then we have

0 < 2 < 3 < 10 < 15 (i)

Again, suppose that another 5 (same n = 5) occasions are checked. The waiting times
may be 3,5,8,5, 10. If we order these observations, then we have

3 < 5 ≤ 5 < 8 < 10 (ii)

If we keep on taking such 5 observations each then each such set of 5 observations can
be ordered as in (i) and (ii). There will be a set of observations which will be the small-
est in each set, a set of observations which will be the second smallest and so on, and
finally there will be a set of observation corresponding to the largest in each set. Now
think of the set of smallest observations as coming from a randomvariable denoted by
xn∶1, the set of second smallest numbers coming from a random variable xn∶2, etc. and
finally the set of largest observations as coming from the random variable xn∶n. Thus,
symbolically we may write

xn∶1 ≤ xn∶2 ≤ ⋯ ≤ xn∶n (10.63)

Since these are random variables, defined on the whole real line (−∞,∞), there is no
meaning of the statement that the variables are ordered or one variable is less than
another variable. What it means is that if we have an observed sample, then the n
observations can be ordered. Once they are ordered, then the smallest will be the ob-
servation on xn∶1, the second smallest will be the observation on xn∶2 and so on, and
the largest will be an observation on xn∶n. From the ordering in (i) and (ii) note that the
number 3 is the smallest in (ii) whereas it is the 3rd smallest in (i). Thus, for example,
every observation on xn∶1 need not be smaller than every observation on xn∶2 but for
every observed sample of size n we have one observation each corresponding to xn∶r
for r = 1, 2,… ,n. Now, we will have some formal definitions.

Let us consider a continuous population. Let the iid variables x1,… ,xn come from
a population with density function f (x) and distribution function F(x) (cumulative
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density). How can we compute the density function or distribution function of xn∶r ,
the r-th largest variable or the r-th order statistic? For example, how can we compute
the density of the smallest order statistic?

10.6.1 Density of the smallest order statistic xn∶1

We are considering continuous random variables here. Wemay use the argument that
if the smallest is bigger thananumber y then all observations on the variables x1,… ,xn
must be bigger than y. Since the variables are iid, the required probability will be a
product. Therefore,

Pr{xn∶1 > y} = Pr{x1 > y}Pr{x2 > y}⋯Pr{xn > y} = [Pr{xj > y}]n

since the variables are iid. But

Pr{xj > y} = 1 − Pr{xj ≤ y} = 1 − F(y) (10.64)

where F(y) is the distribution function of x evaluated at the point y. But the left side
is 1− the distribution function of xx∶1, denoted by 1 − F(1)(y). Therefore, the density
function of xn∶1, denoted by f(1)(y), is given by

f(1)(y)|y=xn∶1 = − d
dy

[1 − F(1)(y)]|
y=xn∶1

= − d
dy

[1 − F(y)]n|
y=xn∶1

.

f(1)(xn∶1) = n[1 − F(xn∶1)]
n−1f (xn∶1), −∞ < xn∶1 < ∞. (10.65)

Here, f (xn∶1) indicates the population density evaluated at the observed point of xn∶1
and F(xn∶1)means the population distribution function evaluated at the observed xn∶1.

10.6.2 Density of the largest order statistic xn∶n

Again we are considering continuous random variables. Here, we may use the argu-
ment that if the largest of the observations is less than or equal to y then every obser-
vation must be ≤y. This statement, translated in terms of the random variables is the
following:

Pr{xn∶n ≤ y} = Pr{x1 ≤ y}⋯Pr{xn ≤ y}
= [Pr{xj ≤ y}]n = [F(y)]n.

Hence the density of xn∶n, denoted by f(n)(⋅), is given by

f(n)(xn∶n) =
d
dy

Pr{xn∶n ≤ y}|
y=xn∶n

= n[F(y)]n−1f (y)|y=xn∶n

= n[F(xn∶n)]
n−1f (xn∶n). (10.66)
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10.6.3 The density of the r-th order statistic xn∶r

Here also one can use an argument similar to the one in Sections 10.6.1 and 10.6.2.
But it will be easier to use the following argument. Think of the subdivision of the
x-axis into the following intervals: (−∞,xn∶r), (xn∶r ,xn∶r +Δxn∶r), (xn∶r +Δxn∶r ,∞), where
Δxn∶r is a small increment in xn∶r . When we say that an observation is the r-th largest
that means that r − 1 are below that or in the interval (−∞,xn∶r), one is in the interval
(xn∶r ,xn∶r + Δxn∶r) and n − r observations are in the interval (xn∶r + Δxn∶r ,∞). Let p1,p2
and p3 be the respective probabilities. These probabilities can be computed from the
population density. Note that pi > 0, i = 1, 2,3 and p1 +p2 +p3 = 1 because we have n ≥ 1
observations. Then from the multinomial probability law the density of xn∶r , denoted
by f(r)(xn∶r), is given by the following multinomial probability law:

f(r)(xn∶r)dxn∶r = lim
Δxn∶r→0

[ n!
(r − 1)!(n − r)!

pr−11 p12pn−r3 ].

But

p1 = Pr{−∞ < xj ≤ xn∶r} = F(xn∶r)
lim
Δxn∶r→0

p2 = lim
Δxn∶r→0

Pr{xn∶r ≤ xj ≤ xn∶r + Δxn∶r} = f (xn∶r)dxn∶r

lim
Δxn∶r→0

p3 = lim
Δxn∶r→0

Pr{xn∶r + Δxn∶r ≤ xj < ∞} = 1 − F(xn∶r).

Substituting these values, we get

f(r)(xn∶r) =
n!

(r − 1)!(n − r)!
[F(xn∶r)]

r−1[1 − F(xn∶r)]
n−r f (xn∶r)

= Γ(n + 1)
Γ(r)Γ(n − r + 1)

[F(xn∶r)]
r−1

× [1 − F(xn∶r)]
n−r f (xn∶r). (10.67)

Note that f(r)(⋅) is the density of the r-th order statistic, f (xn∶r) is the population density
evaluated at xn∶r and F(xn∶r) is the population distribution function evaluated at xn∶r .
Note that the above procedure is the most convenient one when we want to evaluate
the joint density of any number of order statistics, that is, divide the real line into
intervals accordingly and then use the multinomial probability law to evaluate the
joint density.

Example 10.11. Evaluate the densities of (1) the largest order statistic, (2) the smallest
order statistic, (3) the r-th order statistic, when the population is (i) uniformover [0, 1],
(ii) exponential with parameter θ.

Solution 10.11. (i) Let the population be uniformover [0, 1]. Then the population den-
sity and distribution function are the following:
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f (x) =
{
{
{

1, 0 ≤ x ≤ 1
0, elsewhere;

F(x) =
{
{
{

x, 0 ≤ x ≤ 1
1, x ≥ 1.

From (10.65), the density of the smallest order statistic is given by

f(1)(y) = n[1 − y]n−1, 0 ≤ y ≤ 1, y = xn∶1

and zero elsewhere. From (10.66), the density of the largest order statistic is given by

f(n)(y) = nyn−1, 0 ≤ y ≤ 1, y = xn∶n

and zero elsewhere. From (10.67), the density of the r-th order statistic is given by

f(r)(y) =
n!

(r − 1)!(n − r)!
yr−1(1 − y)n−r , 0 ≤ y ≤ 1, y = xn∶r .

(ii) When the population is exponential the density and distribution function are
the following:

f (x) =
{
{
{

e−
x
θ

θ

0, elsewhere;
F(x) =

{
{
{

0, −∞ < x < 0
1 − e−x/θ , 0 ≤ x < ∞.

Hence the density for the largest order statistic is given by

f(n)(y) = n[1 − e−y/θ]n−1e−y/θ 1
θ
, y = xn∶n.

The density for the smallest order statistic is given by

f(1)(y) = n[e−y/θ]n−1e−y/θ 1
θ

= n
θ
e−ny/θ , y = xn∶1.

It is interesting to note that the density of the smallest order statistic in this case is
again an exponential density with parameter θ/n or if the original population density
is taken as f (x) = θe−θx , x ≥ 0, θ > 0 then the density of the smallest order statistic
is the same with θ replaced by nθ. This, in fact, is a property which can be used to
characterize or uniquely determine the exponential density.

Example 10.12. A traveler taking a commuter train every morning for five days every
week has to wait in a queue for buying the ticket. If the waiting time is exponentially
distributedwith the expectedwaiting time 4minutes, thenwhat is the probability that
for any givenweek (1) the shortest waiting time is less than oneminute, (2) the longest
waiting time is more than 10 minutes, time being measured in minutes?

Solution 10.12. From the given information, the population density is of the form:

f (t) = 1
4
e−t/4, t ≥ 0
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and zero elsewhere, and hence the distribution function will be of the form F(x) =
1 − e−x/4 for x ≥ 0. Then the density for the smallest order statistic is of the form:

f(1) = n[1 − F(y)]n−1f (y) = 5
4
e−5y/4, y ≥ 0, y = xn∶n.

The probability that we need is Pr{y ≤ 1}. That is,

Pr{y ≤ 1} = ∫
1

0

5
4
e−5y/4dy = 1 − e−5/4.

Similarly, the density for the largest order statistic is

f(n)(y) = n[F(y)]n−1f (y) = 5[1 − e−y/4]4 1
4
e−y/4.

The probability that we need is Pr{y ≥ 10}. That is,

Pr{y ≥ 10} = 5
4

∫
∞

10
[1 − e−y/4]4e−y/4dy

= 5∫
∞

2.5
[1 − 4e−u + 6e−2u − 4e−3u + e−4u]e−udu

= 5e−2.5[1 − 2e−2.5 + 2e−5 − e−7.5 + 1
5
e−10].

Example 10.13. For the r-th order statistic xn∶r show that the density can be trans-
formed to a type-1 beta density.

Solution 10.13. Let the population density and distribution function be denoted
by f (x) and F(x) respectively and let the density for the r-th order statistic be denoted
by f(r)(y), y = xn∶r . Then it is given by

f(r)(y) =
n!

(r − 1)!(n − r)!
[F(y)]r−1[1 − F(y)]n−r f (y), y = xn∶r .

Let u = F(y) ⇒ du = dF(y) = f (y)dy. Then the density of u, denoted by g(u), is given
by

g(u) = n!
(r − 1)!(n − r)!

ur−1(1 − u)n−r , 0 ≤ u ≤ 1

= Γ(n + 1)
Γ(r)Γ(n + 1 − r)

ur−1(1 − u)n+1−r−1, 0 ≤ u ≤ 1

and zero elsewhere, which is a type-1 beta density with the parameters r and n + 1 − r.

Remark 10.3. From the structure of the density function of the r-th order statistic,
it may be noted that the distribution function F(x) (cumulative density) of the orig-
inal population is involved. Hence if the population is gamma, generalized gamma,
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Raleigh, Maxwell–Boltzmann, general pathway density, etc. then F(x)may not have a
simple explicit analytic form or it may go into incomplete gamma functions, and then
the explicit evaluation of the moments, etc. of the r-th order statistic for r = 1, 2,… ,n
may not be possible. Even if the population is standard normal still the distribution
function F(x) is not available analytically. One may have to evaluate in terms of in-
complete gamma function or go for numerical evaluations. But the transformation
u = F(x), as in Example 10.13, will reduce the density in terms of type-1 beta density or
in terms of type-1 Dirichlet density in the joint distribution of several order statistics.
Hence properties of order statistics can be studied easily in all situations where one
canwrite x = F−1(u) explicitly. This is possible in some cases, for example, for uniform
and exponential situations. If x is uniform over [a,b], then

F(x) = x
b − a

and u = F(x) ⇒ x = (b − a)u. (10.68)

If x is exponential with parameter θ, then

F(x) = 1 − e−x/θ and u = F(x) ⇒ x = −θ ln(1 − u). (10.69)

Example 10.14. Evaluate the h-th moment of the r-th order statistic coming from a
sample of size n and from a uniform population over [0, 1].

Solution 10.14. When the population is uniform over [0, 1], then the distribution
function

F(x) = ∫
x

−∞
f (t)dt = ∫

x

0
dt = x, 0 ≤ x ≤ 1.

Hence the cumulative density at the point xn∶r is u = xn∶r , and the density for xn∶r is
given by

f(r)(y) =
Γ(n + 1)

Γ(r)Γ(n + 1 − r)
yr−1(1 − y)n+1−r−1, y = xn∶r , 0 ≤ y ≤ 1

and zero elsewhere. Hence the h-th moment of the r-th order statistic xn∶r is given by

E[xn∶r]h = E[yh] = ∫
1

0
yhf(r)(y)dy

= Γ(n + 1)
Γ(r)Γ(n + 1 − r)

∫
1

0
yr+h−1(1 − y)n+1−r−1dy

= Γ(n + 1)
Γ(r)Γ(n + 1 − r)

Γ(r + h)Γ(n + 1 − r)
Γ(n + 1 + h)

=
Γ(n + 1)

Γ(n + 1 + h)
Γ(r + h)
Γ(r)

, ℜ(h) > −r

or h > −r if h is real.
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10.6.4 Joint density of the r-th and s-th order statistics xn∶r and xn∶s

Let us consider two order statistics xn∶r , the r-th and xn∶s, the s-th order statis-
tics for r < s. Then divide the real axis into intervals (−∞,xn∶r), (xn∶r ,xn∶r + Δxn∶r),
(xn∶r + Δxn∶r ,xn∶s), (xn∶s,xn∶s + Δxn∶s), (xn∶s + Δxn∶s,∞). Proceed exactly as in the deriva-
tion of the density of the r-th order statistic. Let the joint density of xn∶r and xx∶s be
denoted by f (y, z), y = xn∶r , z = xn∶s. Then we have

f (y, z)dy ∧ dz = n!
(r − 1)!1!(s − r − 1)!1!(n − s)!

[F(y)]r−1

× [F(z) − F(y)]s−r−1[1 − F(z)]n−s

× f (y)f (z)dy ∧ dz,y = xn∶r , z = xn∶s, (10.70)

for −∞ < y < z < ∞ and zero elsewhere. As in Example 10.13, if we make the transfor-
mation u = F(y), v = F(z) then the joint density of u and v, denoted by g(u, v) is given
by the following:

g(u, v) = Γ(n + 1)
Γ(r)Γ(s − r)Γ(n + 1 − s)

ur−1(v − u)s−r−1

× (1 − v)n+1−s−1, 0 ≤ u < v ≤ 1 (10.71)

and zero elsewhere. If we make a further transformation u = u1, v − u = u2, then the
joint density of u and v is changed to g1(u1,u2), given by

g1(u1,u2) =
Γ(n + 1)

Γ(r)Γ(s − r)Γ(n + 1 − s)
ur−11 us−r−12 (1 − u1 − u2)n+1−s−1 (10.72)

for 0 ≤ ui ≤ 1, i = 1, 2, 0 ≤ u1 + u2 ≤ 1 and g1(u1,u2) = 0 elsewhere, which is a Dirichlet
density. If wemake a further simplification r = r1, s− r = r2, n+ 1− s = n+ 1− r1 − r2 = r3,
then r1 + r2 + r3 = n + 1. Thus the density g1(u1,u2) becomes

g1(u1,u2) =
Γ(r1 + r2 + r3)
Γ(r1)Γ(r2)Γ(r3)

ur1−11 ur2−12 (1 − u1 − u2)r3−1 (10.73)

for 0 ≤ uj ≤ 1, 0 ≤ u1 +u2 ≤ 1. Then (10.73) is in the usual format of a type-1 Dirichlet den-
sity. Now we can extend to consider the joint density of the y1 = r1-th, y2 = (r1 + r2)-th,
…, yp = (r1 +⋯+ rp)-th order statistics. Let the joint density be denoted by g(y1,… ,yp).
Then we have

g(y1,… ,yp) =
Γ(n + 1)

Γ(r1)Γ(r2)⋯Γ(rp+1)
[F(y1)]

r1−1

× [F(y2) − F(y1)]
r2−1 ⋯[1 − F(yp)]

rp+1−1

× f (y1)⋯ f (yp). (10.74)
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Now, make the transformations v1 = F(y1), v2 = F(y2),…,vp = F(yp) and then make the
transformation u1 = v1, u2 = v2 − v1, …, up = vp − vp−1. Then the joint density of u1,… ,up
will reduce to a type-1 Dirichlet density of the form:

g1(u1,… ,up) =
Γ(n + 1)

Γ(r1)Γ(r2)⋯Γ(rp+1)
ur1−11

× ur2−12 ⋯urp−1p (1 − u1 − ⋯ − up)rp+1−1 (10.75)

for r1 + ⋯ + rp+1 = n + 1, 0 ≤ uj ≤ 1, j = 1,… ,p, 0 ≤ u1 + ⋯ + up ≤ 1.

Example 10.15. Construct the joint density of xn∶1, the smallest order statistic, and
xn∶n the largest order statistic for a sample of size n from a population with distribu-
tion function F(x). Show that it is a density. Then construct the density of the range =
largest order statistic minus the smallest order statistic, when the population is uni-
form over [0, 1].

Solution 10.15. In the general formula in (10.70) put r = 1 and s = n to obtain the joint
density of the largest order statistic y2 = xn∶n and the smallest order statistic y1 = xn∶1.
Let the joint density be denoted by f (y1,y2). Then

f (y1,y2) =
n!

0!(n − 1 − 1)!0!
[F(y1)]

0

× [F(y2) − F(y1)]
n−1−1[1 − F(y2)]

0f (y1)f (y2)

= n(n − 1)[F(y2) − F(y1)]
n−2f (y1)f (y2). (10.76)

Let u = F(y1), v = F(y2). Then the joint density of u and v, denoted by g(u, v), is given
by

g(u, v) = n(n − 1)[v − u]n−2, 0 ≤ u ≤ v ≤ 1, n ≥ 2. (10.77)

Integrating out over y1 and y2 in (10.76) is equivalent to integrating out u and v in
(10.77). Let us compute the total integral, denoted by q.

q = ∫
u
∫
v
g(u, v)du ∧ dv = n(n − 1)∫

1

v=0
[∫

v

u=0
(v − u)n−2du]dv.

Put z = u
v and take out v. Then

q = n(n − 1)∫
1

v=0
vn−1[∫

1

z=0
(1 − z)n−2dz]dv

= n(n − 1)
n − 1

∫
1

v=0
vn−1dv = 1 for n ≥ 2.

Hence f (y1,y2) is a density since it is non-negative with total integral unity. When the
population is uniform over [0, 1] then the joint density of y1 and y2 is that in (10.77)
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with y1 = u and y2 = v. Let w = y2 − y1 and y = y2. Then the Jacobian is 1 and the joint
density of w and y, denoted by g1(w,y), is given by

g1(w,y) = n(n − 1)wn−2, 0 ≤w ≤ y ≤ 1

and zero elsewhere. Integrating out y, w < y < 1, the marginal density of w, denoted
by h(w), is the following:

h(w) = n(n − 1)wn−2 ∫
1

w
dy = n(n − 1)wn−2(1 −w), 0 ≤w ≤ 1

and zero elsewhere. It is type-1 beta density with parameters (n − 1, 2).

One canmake another interesting observation. Consider a simple random sample
x1,… ,xn from a population with density f (x). Suppose that we consider the joint den-
sity of all order statistics y1 = xn∶1, y2 = xn∶2, …, yn = xn∶n. If all variables are involved,
then the collection of the original variables {x1,… ,xn} and the collection of all order
statistics {y1 = xn∶1,… ,yn = xn∶n} are one and the same. That is, {x1,… ,xn} = {y1,… ,yn}.
The only difference is that in the set {x1,… ,xn} the variables are free to vary. But in the
set {y1,… ,yn} the variables are ordered, that is, y1 ≤ y2 ≤ ⋯ ≤ yn. Given a set of vari-
ables x1,… ,xn how many such ordered sets are possible? This number is the number
of permutations, which is n!. Hence n! ordered sets are possible. If integration is to
be done for computing some probabilities, then in the set {y1 = xn∶1,… ,yn = xn∶n} the
integration is to be done as follows: If the original variables have non-zero density in
[a,b], then y1 goes from a to y2. Then y2 goes from a to y3 and so on or if we are inte-
grating from the other end then yn goes from yn−1 to b, yn−1 from yn−2 to b and so on.
The idea will be clear from the following example.

Example 10.16. Let x1,… ,xn be iid as exponential with parameter θ or with density
function

f (x) = e−x/θ

θ
, x ≥ 0, θ > 0

and zero elsewhere. Compute the joint density of all order statistics y1 = xn∶1,… ,
yn = xn∶n.

Solution 10.16. The joint density of x1,… ,xn, denoted by f (x1,… ,xn), is given by

f (x1,… ,xn) =
1
θn

exp{− 1
θ
(x1 + ⋯ + xn)}, 0 ≤ xj < ∞, θ > 0.

The joint density of y1,… ,yn, denoted by g(y1,… ,yn), is then

g(y1,… ,yn) =
n!
θn

exp{− 1
θ
(y1 + ⋯ + yn)}, 0 ≤ y1 ≤ y2 ≤ ⋯ ≤ yn < ∞,
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and θ > 0. Let us verify that it is a density. It is a non-negative function and let us
compute the total integral. For convenience, we can integrate out starting from yn.
Integration over yn is given by

n!
θn

∫
∞

yn=yn−1
exp{−yn

θ
}dyn = n!

θn−1
exp{−yn−1

θ
}.

In the joint density there is already a yn−1 sitting in the exponent. Then for the next
integral the coefficient of yn−1 is 2. Then the integral over yn−1 gives

n!
θn−1

∫
∞

yn−2
exp{−2yn−1

θ
}dyn−1 =

n!
θn−2(2)

exp{−2yn−2
θ

}.

Proceeding like this the last integral over y1 is the following:

n!
θ(2)(3)⋯(n − 1)

∫
∞

0
exp{−ny1

θ
}dy1 =

n!θ
θ(2)(3)⋯(n)

= 1.

This shows that it is a joint density.

Exercises 10.6
10.6.1. Let x1,… ,xn be independently distributed but not identically distributed. Let
the distribution function of xj be Fj(xj), j = 1,… ,n. Consider observations on x1,… ,xn
and ordering them in ascending values. Let y1 = xn∶1 be the smallest order statistic and
y2 = xn∶n be the largest order statistic here. By using the ideas in Sections 10.6.1 and
10.6.2 derive the densities of y1 and y2.

10.6.2. Let x have the density f (x) = 5x4
25 , 0 ≤ x ≤ 2 and f (x) = 0 elsewhere. Consider a

simple random sample of size n from this population. Construct the densities of (1) the
smallest order statistic, (2) the largest order statistic, (3) the 5-th order statistic, n > 5.

10.6.3. For the problem in Exercise 10.6.2 evaluate the probability that xn∶1 ≤ 0.5,
xn∶4 ≥ 1.5, xn∶5 ≤ 1 for n = 10.

10.6.4. (1) Compute c so that f (x) = c(1 − x)3, 0 ≤ x ≤ 1 and f (x) = 0 elsewhere, is a
density; (2) Repeat Exercise 10.6.2 if the density in (1) here is the density there.

10.6.5. Repeat Exercise 10.6.3 for the density in Exercise 10.6.4.

10.6.6. During the raining season of June–July at Palai it is found that the duration
of a rain shower, t, is exponentially distributed with expected duration 5 minutes,
time being measured in minutes. If 5 such showers are randomly selected, what is the
probability that (1) the shortest shower lasted for more than 2 minutes; (2) the longest
shower lasted for less than 5 minutes; (3) the longest shower lasted for more than 10
minutes?
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10.6.7. For the Exercise in 10.6.6, what is the probability that the second shortest
shower lasted for more than 2 minutes?

10.6.8. Let xn∶1,xn∶2,… ,xn∶n be all the order statistics for a simple random sample of
size n coming from a population with density function f (x) and distribution func-
tion F(x). Construct the joint density of all these order statistics xn∶1,… ,xn∶n.

10.6.9. The annual family income x of households in a city is found to be distributed
according to the density f (x) = c

x2 , 1 ≤ x ≤ 10, x being measured in Rs 10 000 units
which means, for example, x = 2 means of Rs 20 000. (1) Compute c; (2) If a simple
random sample of 6 households is taken, what is the probability that the largest of
the household income is more than Rs 80000 or xn∶n > 8?

10.6.10. If x1,… ,xn are iid Poisson distributed with parameter λ = 2, construct the
probability function of (1) the smallest order statistic, (2) the largest order statistic.

10.6.11. Let x1,… ,xn be iid as uniform over [0,θ]. Compute the joint density of the
order statistics y1 = xn∶1,… ,yn = xn∶n and verify that it is a density.



11 Estimation

11.1 Introduction

Statistical inference part consists of mainly estimation, testing of statistical hypothe-
ses andmodel building. In Chapter 10,we developed some toolswhichwill help in sta-
tistical inference problems. Inference about a statistical population is usuallymade by
observing a representative sample from that population and then making some deci-
sions based on some statistical procedures. Inference may be of the following nature:
Suppose that a farmer is planting corn by preparing the soil as suggested by the lo-
cal agricultural scientist. The item of interest to the farmer is whether the yield per
plot of land is going to be bigger than the usual yield that the farmer is getting by the
traditional method of planting. Then the hypothesis is that the expected yield under
the new method is greater than or equal to the expected yield under the traditional
method of planting. This will be something like a hypothesis E(x1) ≥ E(x2) where x1
is the yield under the new method and x2 is the yield under the traditional method.
The variables x1 and x2 are the populations here, having their own distributions. If x1
and x2 are independently gamma distributed with the parameters (α1,β1) and (α2,β2),
then E(x1) = α1β1 and E(x2) = α2β2. Then our hypothesis is that α1β1 ≥ α2β2. How do we
carry out a statistical test of the above hypothesis? We have to conduct experiments
under the traditional method of planting and under the new method of planting and
collect a sample of observations under both of these methods. This is the first step.
Hence the very basic aspect of inference is a sampling procedure or to take a represen-
tative sample, someway representing the whole population. There are many types of
samples and sampling procedures. We have already discussed one type of sample, in
Chapter 10, namely a simple random sample. There are other types of samples such as
multistage samples, stratified samples, proportional samples and so on, and the cor-
responding sampling plans are there.Wewill only consider inference based on simple
random samples here.

The student may be wondering whether it is essential to go for samples and why
not look into the whole population itself and then take a decision. Sometimes it is
possible to check the whole population and then take a decision. Suppose that a firm,
such as HMT, has produced only 10 printing units. Suppose that the claimed weight
per unit is 10 tons. It is not difficult to check this claim by weighing all the 10 units.
Sometimes, even if we have only a finite number of units in a population it may not
be possible to check each and every unit and come up with a decision. Suppose that a
carmanufacturer has produced 25 expensive cars, such as a newmodel of Ferrari. The
manufacturer’s claim is that in case of frontal collision the damage to the car will be
less than 10%. One cannot test this claim by a 100% checking or 100% testing because
checking each item involves destroying the car itself. Suppose that the manufacturer
of a new brand of electric bulb says that the expected life time of the new brand is

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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1 000 hours. Here, the life-time x may be exponentially distributed with mean value
θ. Then the claim is that θ = 1000. One cannot do a hundred percent testing of this
claim because each observation can bemade only by burning the bulb until it is burnt
out. There will not be anything left for sale. Hence one has to go for a representative
sample, study the sample and test the claims by using this sample observations only.

As another example, suppose that you want to test the claim that in the local
Meenachil River the chance (probability) of flood (water level going above a thresh-
old value) in any given year is less than or equal to 0.2. Here, even if you wish to do a
100% checking it is not possible because you do not have all the past records and you
do not have access to the future data on flood. Hence one has to go for some sort of
a sampling scheme and collect some data and based on this data make inference or
decisions. Sometimes it may not be worth going for a 100% survey. Suppose that the
claim is that the average annual income per household in Kerala is less than or equal
to Rs 10 000. Suppose that there are about one lakh households. It is not wise of you
to go for a 100% survey to collect this single item about the expected annual income
because it is not worth the money spent. Thus, even if it is possible to conduct a 100%
survey, it may be unwise and may not be worth it to do so.

The first topic in statistical inference that we are going to consider is statistical es-
timation problem. The idea is to use a representative sample from a given population
and then estimate some aspects of the population. If the population under consider-
ation is waiting time, t, at a given bus stop and if t is exponentially distributed with
expectedwaiting time some unknown quantity θ then our aimheremay be to come up
with an estimate of the expected waiting time, or to come up with an estimate of this
unknown quantity θ. Here, wewant to estimate a parameter in a specified population.
Suppose that in the same situation of waiting time being exponentially distributed,
someone is interested to estimate the probability that the waiting time there is greater
than or equal to 5 minutes, time being measured in minutes. Then this probability, p,
is given by the following:

p = Pr{t ≥ 5} = ∫
∞

5

1
θ
e−

t
θ dt = e−

5
θ = p(θ).

Here, this is a function of the unknown parameter θ and hence we can look upon this
problem as the problem of estimating a probability or estimating a function of a given
parameter.

As another example, we can look at the growth of a child, measured in terms of
height. The growth pattern may be more or less a straight line model until the age of
10 to 11. Then all of a sudden, the child shoots up and attains the maximum height by
11 or 12. There is a change-point in the growth pattern, somewhere between 10 and 11
years of age. Onemay be interested to estimate this change point. As another example,
consider x, the amount of gold in every ton of gold bearing rock in a mountain range.
The density function of x itself is unknown and we would like to estimate the den-
sity function itself. Such an estimation problem is called “density estimation”. Thus,
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so far, we have considered the problem of estimating a parameter in a well-defined
distribution, estimation of a certain probability, estimation of a parametric function,
estimation of a density itself and the estimation of a change-point in amodel building
situation. Then there are problems where one may be interested in testing whether
two variables x and y are statistically independently distributed (this is called testing
independence), one may want to check and see whether the occurrence of a defec-
tive item in a production process is a random phenomenon or occurring according to
some specific pattern (this is called testing for randomness), onemaywant tomeasure
the association or affinity between two variables, etc. All these problems involve some
estimation of some characteristics before a testing procedure can be devised.

11.2 Parametric estimation

Out of the various situations that we considered above, one situation is that we have
a well-defined population or populations and well-defined parameter or parameters
therein. The estimation process involves estimating either such a parameter or param-
eters or a parametric function.

Definition 11.1 (Parametric estimation). Estimation of a parameter or parameters
or functions of parameters, coming from well-defined populations, is known as a
parametric estimation problem.

Even here, there are different situations. We may want to estimate the expected
life-time of a machine part, the life-time may be exponentially distributed with ex-
pected value θ hours. In this case, we want to estimate this θ. Theoretically this ex-
pected life time could be any real non-negative number, or in this case 0 < θ < ∞.

Definition 11.2 (Parameter space). The set of all possible values awell-defined pa-
rameter or parameters can take is called theparameter space, usually denotedbyΩ.

For example, in an exponential density there is usually one parameter θwhere 0 <
θ < ∞. Here, the parameter spaceΩ = {θ ∣ 0 < θ < ∞}. In a normal population N(μ,σ2),
there are two parameters μ and σ2 and here the parameter space isΩ = {(μ,σ2) ∣ −∞ <
μ < ∞, 0 < σ2 < ∞}. Consider a gamma density with shape parameter α, scale param-
eter β and location parameter γ. Then the parameter space is given by Ω = {(α,β,γ) ∣
0 < α < ∞, 0 < β < ∞, −∞ < γ < ∞}. Thus the set of all possible values the parameters
can take will constitute the parameter space, whatever be the number of parameters
involved.

You see advertisements by commercial outfits, such as a toothpastemanufacturer
claiming that their toothpaste will reduce cavities, (whatever that may be), by 21 to
46%. If p is the true percentage reduction, the manufacturer is giving an interval say-
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ing that this true unknown quantity is somewhere on the interval [0.21,0.46]. A single
number is not given but an interval is given. A saree shop may be advertising saying
that in that shop the customer will save between Rs 500 and Rs 1 000 on the average
per saree, compared to other shops. If the expected saving is θ, then the claim is that
this unknown θ is somewhere on the interval [500, 1000]. An investment company
maybe advertising that the expected return in this companywill be 10% for anymoney
invested with that firm. If the true percentage return is p, then the estimate given by
that firm is that p̂ = 0.10, where p̂ is the estimated value of p. A frequent traveler is
claiming that the expected waiting time at a particular bus stop for a particular bus is
10 minutes. If θ is the unknown expected waiting time, then the traveler is claiming
that an estimate for this θ is 10 or θ̂ = 10.

We have looked into several situations where sometime points or single units are
given as estimates for a given parameter and sometime an interval is given, claiming
that the unknown parameter is somewhere on this interval. The first type of param-
eter estimates, where single points are given as estimates for given parameters, are
called point estimates and the procedure is called point estimation procedure. When
an interval is given saying that the unknown parameter is somewhere on that interval,
then such an estimate will be called an interval estimate and the procedure is called
an interval estimation procedure or the procedure for setting up confidence intervals.
In the case of interval estimation problem if two parameters are involved, then a re-
gion will be given saying that the two-dimensional point is somewhere on this region.
Similarly, if k parameters are involved, then k-dimensional Euclidean region will be
given, which will be then called a confidence region for k = 2,3,…. These will be de-
fined properly in the next chapter.

We will start with point estimation procedure in this chapter. But before dis-
cussing point estimation procedures we will look into some desirable properties that
we would like to have for point estimates. We have already defined what is meant by
a statistic in Chapter 10.

Definition 11.3 (Point estimators). If a statistic is used to estimate a parameter or
a parametric function then that statistic is called a point estimator for that para-
metric function and a specific value assumed by that estimator is called a point
estimate. An estimator is a random variable and an estimate is a value assumed by
that random variable.

A desirable property of a point estimator is the property known as unbiasedness.
The property comes from the desire of having the estimator coinciding with the para-
metric function, on the average, in the long run. For example, if someone is throwing
a dart at a small circle on a dart board then an estimate of the probability of hit is
available from the relative frequency of hit. Repeat the experiment 100 times and if 45
hits are there then the relative frequency of hit or the average is 45

100 = 0.45. Repeat the
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experiment another 100 times. If 52 hits are there, then an estimate of the true proba-
bility of hit p is the estimate p̂ = 52

100 = 0.52. We would like to have this average or the
relative frequency agreeing with the true value p in the long run in the sense when
the same experiment of throwing 100 times is repeated such batches of 100 throws
infinitely many times.

Definition 11.4 (Unbiasedness of estimators). Let T = T(x1,… ,xn) be an estimator
of a parametric function g(θ), where θ ∈ Ω some parameter space. If E[T] = g(θ) for
all values of θ ∈ Ω, then we say that the estimator T is unbiased for g(θ) or T is an
unbiased estimator for g(θ).

If E(T) = g(θ) holds for some values of θ only, such as θ > θ0 = 5, then T is not
unbiased for g(θ). The condition must hold for each and every value of θ in the whole
parameter space Ω. In Chapter 10, we have seen that when we have iid variables or
simple random sample from a population withmean value μ and variance σ2 then the
sample mean x̄ is unbiased for the populationmean value μ, as long as μ is finite, and
∑n
j=1(xj − x̄)2/(n − 1) is unbiased for the population variance, as long as σ2 < ∞. That

is, for all values of μ < ∞, whatever be the population,

E[x̄] = μ < ∞ (11.1)

and

E[
∑n
j=1(xj − x̄)2

n − 1
] = σ2 < ∞, (11.2)

for σ2 finite. These are some general results, irrespective of the populations.

Remark 11.1. Due to unbiasedness of the statistic T =
∑nj=1(xj−x̄)

2

n−1 for the population
variance σ2, some people are tempted to define this T as the sample variance. But
this approach is inconsistent with the definition of population variance as σ2 =
E[x −E(x)]2 take, for example, a discrete distribution where the probability masses
1/n each are distributed at the points x1,… ,xn then

E[x − E(x)]2 =
∑n
j=1(xj − x̄)2

n
≠

∑n
j=1(xj − x̄)2

n − 1
. (11.3)

Besides, variance is the square of a “distance” measure, measuring per unit scat-
ter from a point of location, namely, E(x) if we consider the population and x̄ if we
consider sample values. Thus the dividing factor should be n, not n − 1. Also, unbi-
asedness may not be a desirable property in many situations. Suppose that someone
wants to cross a river. If he has the depths at every meter across the river, the average
may be half a meter and this information is of no use to cross the river. The deepest
point may be 5 meters deep.
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Example 11.1. Compute the expected value of (1): (−2)x when x is a Poisson random
variable with parameter λ > 0; (2): (−1)x when x is a binomial random variable with
parameters (n,p), 0 < p < 1, q = 1−p, p < 1

2 , and construct unbiased estimators for e−3λ

and (1 − 2p)n, respectively, and make comments.

Solution 11.1. (1) For the Poisson case the probability function is

f1(x) =
λx

x!
e−λ , λ > 0, x = 0, 1, 2,…

and f1(x) = 0 elsewhere. Then the expected value of (−2)x is given by the following:

E[(−2)x] =
∞

∑
x=0

(−2)x λ
x

x!
e−λ = e−λ

∞

∑
x=0

(−2λ)x

x!
= e−λe−2λ = e−3λ , 0 < e−3λ < 1.

Thus the statistic (−2)x is unbiased for e−3λ in this case. Note that for λ > 0, 0 < e−3λ < 1
whereas (−2)x is 1 or 2 or ≥ 1 or a negative quantity. Hence this statistic T(x) = (−2)x

is a meaningless estimator for e−3λ , even though it is an unbiased estimator for e−3λ .
(2) For the binomial case, the probability function is given by

f2(x) = (
n
x
)pxqn−x , 0 < p < 1, q = 1 − p, n = 0, 1,… ,n

and f2(x) = 0 elsewhere. Then the expected value of (−1)x is given by the following:

E((−1)x) =
n
∑
x=0

f2(x)

= (q − p)n = (1 − 2p)n.

But for p < 1
2 , (1 − 2p)n > 0 and not equal to ±1. The estimator is (−1)x = 1 or −1, and

hence this unbiased estimator is a meaningless estimator for the parametric function
(1 − 2p)n.

Remark 11.2. Many such unbiased estimators for parametric functions can be con-
structed as in Example 11.1. Hence one should not take unbiasedness as a univer-
sally very desirable property for estimators.

Definition 11.5 (Estimable function). Let g(θ) be a parametric function. If there ex-
ists at least one unbiased estimator for g(θ), then we say that g(θ) is estimable. If
there is no T = T(x1,… ,xn) such that E(T) = g(θ) for all θ, then we say that g(θ) is
not estimable.

Suppose that we are constructing an estimator for E(xj) = μ as a linear function of
the iid variables x1,… ,xn, then any estimator in this class of linear functions will be



11.2 Parametric estimation | 309

of the form u = a1x1 + ⋯ + anxn. Then estimation of μ in the class of linear functions
will imply that

E(u) = μ = a1μ + ⋯ + anμ ⇒ a1 + ⋯ + an = 1.

That is, any unbiased estimator for μ in this linear class must satisfy the condition
a1 + ⋯ + an = 1, which will then be the estimability condition here.

Example 11.2. Construct an unbiased estimator for (1) p2 where p is the expected bi-
nomial proportion; (2) λ2 where λ is the mean value in a Poisson population; (3) θ2

where θ is the mean value in an exponential population.

Solution 11.2. (1) Let x be binomially distributed with parameters (n,p), 0 < p < 1.
Then we know that

E[x(x − 1)] = n(n − 1)p2 ⇒ E[u] = E[ x(x − 1)
n(n − 1)

] = p2.

Hence u = x(x−1)
n(n−1) here is an unbiased estimator for p2.

(2) Let x be a Poisson random variable with parameter λ. Then we know that

E[x(x − 1)] = λ2 ⇒ u = x(x − 1)

is unbiased for λ2 when x is a Poisson variable.
(3) Let x be an exponential random variable with mean value θ. Then we know

that the population variance is θ2. Let x1,… ,xn be iid variables distributed as the ex-
ponential variable x. For any population with finite variance σ2, we know that

E[
n
∑
i=1

(xi − x̄)2

n − 1
] = σ2.

Hence u = ∑n
i=1
(xi−x̄)2
n−1 is unbiased for θ2.

Definition 11.6 (Bias in an estimator). Let T = T(x1,… ,xn) be an estimator for a
parametric function g(θ). Let the expected value of T be g1(θ). If T is unbiased,
then g1(θ) = g(θ). Otherwise b(θ) = g1(θ) − g(θ) is called the bias in this estimator
for estimating g(θ).

Another desirable property can be defined in terms of a measure of distance. Let
x1,… ,xn be a simple random sample from a population with parameter θ and let g(θ)
be a function of θ to be estimated. Let T1 = T1(x1,… ,xn) and T2 = T2(x1,… ,xn) be two
estimators for g(θ). A measure of distance between T1 and g(θ) and that between T2
and g(θ) are the following:

E[|Ti(x1,… ,xn) − g(θ)|
r]

1
r , r ≥ 1, i = 1, 2. (11.4)
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If the distance between an estimator T and a parametric function g(θ) is small, then T
is close to g(θ) orwe say that it is a goodestimator or smaller thedistancemore efficient
the estimator. If the distance is zero, then that is the best estimator but distance is zero
only for deterministic situations or for degenerate random variables. Hence we will
adopt the terminology “smaller the distance better the estimator”. A criterion called
relative efficiency is defined in terms of the above distance measure in (11.4) for r = 2
and by using the square of the distance measure when r = 2. It is only for convenience
that r = 2 is taken.

Definition 11.7 (Relative efficiency of estimators). Let T1 and T2 be estimators for
the same parametric function g(θ). If E[T1 − g(θ)]2 < E[T2 − g(θ)]2 for all θ, then we
say that T1 is relatively more efficient than T2 for estimating g(θ).

Remark 11.3. If T1 and T2 are unbiased for g(θ) also, then E[Ti − g(θ)]2 = Var(Ti)
and then the criterion becomes the following: If Var(T1) < Var(T2), then we say that
T1 is relatively more efficient than T2 in estimating g(θ).

Example 11.3. Let x1,… ,xn be iid variables with E(xj) = μ and Var(xj) = σ2 < ∞. Con-
sider the estimates (a) u1 = 2x1 − x2, u2 = 1

2 (x1 + x2); (b) u1 = x1 + x2, u2 = x1 − x2; (c) u1 =
2x1 − x2, u2 = x1 + x2. Which is more efficient in estimating μ?

Solution 11.3. (a) Let us compute the squared distances from μ. Let the distances be
denoted by d1 and d2, respectively. Then

d21 = E[u1 − μ]2 = E[2x1 − x2 − μ]2 = E[2(x1 − μ) − (x2 − μ)]2

= E[4(x1 − μ)2 + (x2 − μ)2 − 4(x1 − μ)(x2 − μ)]
= 4σ2 + σ2 − 0 = 5σ2

since the covariance is zero. Similarly,

d22 = E[u2 − μ]2 = E[ 1
2
(x1 + x2) − μ]

2
= 1
4
E[(x1 − μ) + (x2 − μ)]2

=
1
4
E[(x1 − μ)2 + (x2 − μ)2 + 2(x1 − μ)(x2 − μ)]

=
1
4
[σ2 + σ2 + 0] =

1
2
σ2.

Hence u2 is relatively more efficient than u1 in this case. Note that both u1 and u2 are
unbiased for μ also in this case.

(b)
d21 = E[u1 − μ]2 = E[x1 + x2 − μ]2 = E[(x1 − μ) + (x2 − μ) + μ]2

= E[(x1 − μ)2] + E[(x2 − μ)2] + μ2 + 2E[(x1 − μ)(x2 − μ)]
+ 2μE[(x1 − μ)] + 2μE[(x2 − μ)]
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= σ2 + σ2 + μ2 + 0 = 2σ2 + μ2.

d22 = E[u2 − μ]2 = E[x1 − x2 − μ]2 = E[(x1 − μ) − (x2 − μ) − μ]2

= σ2 + σ2 + μ2 − 0 = 2σ2 + μ2.

Here, both u1 and u2 are equally efficient in estimating μ and both are not unbiased
also.

(c)
d21 = E[u1 − μ]2 = E[2x1 − x2 − μ]2 = 5σ2.

This is already done above. Note that u1 is unbiased for μ also here.
d22 = E[u2 − μ]2 = E[x1 + x2 − μ]2 = 2σ2 + μ2.

This is computed above. Note that u2 is not unbiased for μ. If 5σ2 > 2σ2 +μ2 or 3σ2 > μ2,
then u2, even though not unbiased, is relatively more efficient in estimating μ.

The smaller the distance of an estimator T from a parametric function g(θ) bet-
ter the estimator T for estimating g(θ). If T is unbiased also then it is equivalent to
saying: smaller the variance better the estimator. Now, if we consider the class of un-
biased estimators then there may be an estimator having the least variance. Then that
estimator will be a very good estimator. Then, combining the two properties of un-
biasedness and relative efficiency one can come up with a desirable estimator called
minimum variance unbiased estimator or MVUE. We will discuss this aspect later on.

Observe that all the desirable properties of point estimators that we have de-
scribed so far, namely unbiasedness and relative efficiency, are fixed sample size
properties or the sample size n remains the same. But we may want to look at es-
timators if we take more and more sample values or when the sample size n goes
to infinity. Then such a property can be called “large sample property”, compared
to fixed sample size or “small sample properties”. If we are estimating a parametric
function g(θ) and if T = T(x1,… ,xn) is an estimator for g(θ), then it is desirable to
have the probability of having |T − g(θ)| < ϵ, where ϵ is a very small positive quantity,
is one or nearly one for every sample size n, that is, if we have one variable x1 or two
variables x1, x2, etc. But this may not be possible. Then the next best thing is to have
this property holdingwhen n→ ∞. Thismeans that the probability that T goes to g(θ)
goes to one when n goes to infinity or

Pr{|T − g(θ)| < ϵ} → 1 as n→ ∞ or lim
n→∞

Pr{|T − g(θ)| < ϵ} = 1.

Definition 11.8 (Consistency of estimators). Let T = T(x1,… ,xn) be an estimator
for a parametric function g(θ). Then if limn→∞ Pr{|Tn − g(θ)| > ϵ} = 0 for every ϵ > 0
or Pr{Tn → g(θ)} → 1 as n→ ∞ or limn→∞ Pr{|Tn − g(θ)| < ϵ} = 1 for every ϵ > 0 how-
ever small it may be, or Tn converges to g(θ) in probability then Tn is called a con-
sistent estimator for g(θ) and the property is called consistency of estimators.
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Hence one can say that consistency is nothing but stochastic convergence of an
estimator to the parametric function to be estimated, when the sample size n goes to
infinity. From Chebyshev’s inequality of Chapter 9, we have the following result: Let
Tn = T(x1,… ,xn) be an estimator for g(θ). Let E(Tn) = g1(θ) if it is not unbiased for g(θ).
Then from Chebyshev’s inequality,

Pr{|Tn − E(Tn)| ≥ k} ≤ Var(Tn)
k2

. (11.5)

Then we have the following possibilities. Either E[Tn] = g1(θ) = g(θ) and Var(Tn) → 0
as n → ∞ or E(Tn) = g1(θ) → g(θ) and Var(Tn) → 0 as n → ∞. In both of these situa-
tions, Tn goes to g(θ) with probability 1. Hence a practical way of checking for consis-
tency of an estimator is the following: Check for

E[T(x1,… ,xn)] → g(θ) as n→ ∞ (i)
Var(Tn) → 0 as n→ ∞ (ii)

then Tn is consistent for g(θ).

Example 11.4. Check for the consistency of (1) sample mean as an estimator for the
population mean value μ for any population with finite variance σ2 < ∞, (2) sample
variance as an estimator for the population variance when the population is N(μ,σ2).

Solution 11.4. (1) Let x1,… ,xn be iid variables with E(xj) = μ and Var(xj) = σ2 < ∞.
Let the sample mean x̄ = 1

n (x1 + ⋯ + xn). Then we know that E(x̄) = μ and Var(x̄) = σ2
n .

Then from Chebyshev’s inequality,

Pr{|x̄ − μ| ≥ k} ≤ Var(x̄)
k2

= σ2

nk2
→ 0 as n→ ∞.

Therefore, x̄ is consistent for μ whatever be the population as long as σ2 < ∞.
(2) The sample variance

s2 =
n
∑
i=1

(xi − x̄)2

n
and E[s2] =

(n − 1)
n

σ2 → σ2 as n→ ∞

for all populations with finite variance. For computing the variance of s2, we will con-
sider the casewhen the population is normal,N(μ,σ2). For other populations, one has
to work out the variance separately. When the population is normal one can use the
properties of chi-square variables because (see Chapter 10)

n
∑
i=1

(xi − x̄)2

σ2
∼ χ2n−1

with

E[χ2n−1] = (n − 1) and Var(χ2n−1) = 2(n − 1).
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Hence

Var(s2) = 1
n2

Var(
n
∑
j=1

(xj − x̄)2) = (σ2)2

n2
Var(

n
∑
j=1

(xj − x̄)2

σ2
)

= σ4

n2
Var(χ2n−1) = 2(n − 1)σ4

n2
→ 0 as n→ ∞.

E(s2) = σ2

n
E[

n
∑
j=1

(xj − x̄)2

σ2
] = σ2

n
E[χ2n−1]

= σ2(n − 1)
n

→ σ2 as n→ ∞.

Hence from (i) and (ii) above, s2 is consistent for the population variance σ2. Also from
(i) and (ii), the following result is obvious.

Result 11.1. If Tn is a consistent estimator for g(θ), then bnTn is consistent for bg(θ)
when bn → b and b2n goes to a finite constant when n→ ∞.

Example 11.5. Consider auniformpopulationover [0,θ] anda simple randomsample
of size n from this population. Are the largest order statistic xn∶n and the smallest order
statistic xn∶1 consistent for θ?

Solution 11.5. See Section 10.5 in Chapter 10 for a discussion of order statistics. Let
y1 = xn∶1 and y2 = xn∶n. The distribution function F(x) of x, when x is uniformover [0,θ],
is given by

F(x) =
{{{
{{{
{

0, −∞ < x < 0
x
θ , 0 ≤ x ≤ θ
1, x ≥ θ.

The densities for the largest order statistic, denoted by f(n)(y2), and the smallest order
statistic, denoted by f(1)(y1), are given by the following:

f(n)(y2) =
d
dx

[F(x)]n|
x=y2

= d
dx

[x
θ
]
n
|
x=y2

=
nxn−1

θn
|
x=y2

=
nyn−12
θn

, 0 ≤ y2 ≤ θ, n ≥ 1

and zero elsewhere, and

f(1)(y1) = − d
dx

[1 − F(x)]n|
x=y1

=
n
θ
[1 − x

θ
]
n−1

|
x=y1

=
n
θ
[1 − y1

θ
]
n−1

, 0 ≤ y1 ≤ θ
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and zero elsewhere.

E[y2] =
n
θn

∫
θ

0
y2(y2)n−1dy2

= n
θn

θn+1

n + 1
= n
n + 1

θ→ θ as n→ ∞.

E[y22] = n
θn

∫
θ

0
y22(y2)n−1dy2 = n

θn
θn+2

n + 2

= n
n + 2

θ2.

Therefore,

Var(y2) = E[y2] − [E(y2)]
2 = n

n + 2
θ2 − n2

(n + 1)2
θ2

= θ2[ n
n + 2

− n2

(n + 1)2
] → 0 as n→ ∞

since limn→∞
n
n+2 = 1 and limn→∞

n2
(n+1)2 = 1. Thus, from properties (i) and (ii) of Def-

inition 11.8, the largest order statistic here is consistent for θ. Now, let us examine
y1 = xn∶1, the smallest order statistic.

E[y1] =
n
θ

∫
θ

0
y1[1 −

y1
θ

]
n−1

dy1

= nθ∫
1

0
u(1 − u)n−1du, u = y1

θ

= nθΓ(2)Γ(n)
Γ(n + 2)

= θ
n + 1

→ 0 as n→ ∞.

E[y21 ] = n
θ

∫
θ

0
y21[1 −

y1
θ

]
n−1

dy1 = nθ2 ∫
1

0
u2(1 − u)n−1du

= nθ2 Γ(3)Γ(n)
Γ(n + 3)

= 2nθ2

n(n + 1)(n + 2)
→ 0 as n→ ∞.

Here, E(y1) → 0 as well as Var(y1) → 0 as n→ ∞. Hence y1 is not consistent for θ.
Another desirable property of an estimator is known as sufficiency. Let T =

T(x1,… ,xn) be an estimator for a parameter θ. If the joint density/probability func-
tion of the sample values x1,… ,xn, given the statistic T, meaning the conditional
distribution of x1,… ,xn, given the statistic T, is free of the parameter θ, then all the
information about θ, that can be obtained from the sample x1,… ,xn, is contained in
T because once T is known the conditional distribution of x1,… ,xn becomes free of θ.
Once T is known there is no need to know the whole sample space if our aim is to say
something about θ. For example, for n = 2, knowing the sample means knowing every
point (x1,x2) in 2-space where the joint density/probability function of (x1,x2) has the
non-zero form. Let T = x1 + x2, the sample sum. Then x1 + x2 = a given quantity such as
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Figure 11.1: Reduction of data.

x1 + x2 = 2 is only a line, as shown in Figure 11.1. Knowing T = x1 + x2 means knowing
only the points on this line. This enables us a large reduction of the data points. If T
is sufficient for θ, then it means that if our aim is to say something about θ then we
need to confine our attention only on the line x1 + x2 = 2 and need not worry about the
whole (x1,x2)-plane. This is a very strong property.

Definition 11.9 (Sufficient estimators). AnestimatorT = T(x1,… ,xn) is called suffi-
cient for a parameter θ ϵΩ if the conditional joint distribution of the sample values
x1,… ,xn, given T, is free of θ for all values of θ ϵΩ, whereΩ is the parameter space.
If r statistics T1,… ,Tr are such that the conditional distribution of x1,… ,xn, given
T1,… ,Tr , is free of the parameters θ1,… ,θs, r ≥ s or r < s, thenwe say that {T1,… ,Tr}
are jointly sufficient for {θ1,… ,θs}.

Example 11.6. Let x1,… ,xn be a simple random sample from N(μ, 1). Let x̄ = 1
n (x1 +

⋯ + xn). Is x̄ sufficient for μ?

Solution 11.6. Joint density of x1,… ,xn, denoted by f (x1,… ,xn), is given by the fol-
lowing since the variables are iid.

f (x1,… ,xn) =
1

(√2π)n

n
∏
j=1

e−
1
2 (xj−μ)

2

= 1
(√2π)n

e−
1
2 [∑

n
j=1(xj−μ)

2].

Note that
n
∑
j=1

(xj − μ)2 =
n
∑
j=1

(xj − x̄)2 + n(x̄ − μ)2.

When xj ∼ N(μ, 1), we know that x̄ ∼ N(μ, 1n ). The density function of x̄, denoted by
f1(x̄), is the following:

f1(x̄) =
√n
√2π

e−
n
2 (x̄−μ)

2
.

The joint density of x1,… ,xn and x̄ is the same as the joint density of x1,… ,xn because
no independent variable is added by incorporating x̄, which is a linear function of the
sample values x1,… ,xn. Hence the conditional density of x1,… ,xn, given x̄, denoted
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by g(x1,… ,xn|x̄), is given by the following:

g(x1,… ,xn|x̄) =
joint density of x1,… ,xn and x̄

f1(x̄)

= joint density of x1,… ,xn
f1(x̄)

= f (x1,… ,xn)
f1(x̄)

=
[(√2π)−n exp{− 1

2 ∑n
j=1(xj − x̄)

2 − n
2 (x̄ − μ)2}]

√n[(√2π)−1 exp{− n
2 (x̄ − μ)2}]

= √n(√2π)−(n−1) exp{− 1
2

n
∑
j=1

(xj − x̄)2} (11.6)

which is free of μ and hence x̄ is sufficient for μ here.

Example 11.7. Let x1,… ,xn be iid as a uniform over [0,θ]. Let y2 =max{x1,… ,xn} and
y1 =min{x1,… ,xn} (other notations for largest and smallest order statistics). Is y2 suf-
ficient for θ?

Solution 11.7. From Section 10.5 of Chapter 10, the density for the largest order statis-
tic is given by the following:

f(n)(y2) =
nyn−12
θn

, 0 ≤ y2 ≤ θ, n ≥ 1.

The joint density of x1,… ,xn, which is the same as the joint density of x1,… ,xn and
max{x1,… ,xn} = y2, is given by

f (x1,… ,xn) =
1
θn

, 0 ≤ xj ≤ θ, j = 1,… ,n.

Hence the conditional density, g(x1,… ,xn|T), of x1,… ,xn, given T = y2, is the follow-
ing:

g(x1,… ,xn|T =m) = f (x1,… ,xn)
f(n)(y2)

|
T=m

= 1
θn

θn

nyn−12
|
y2=m

= 1
nmn−1 , (11.7)

for m ≠ 0, which is free of θ. Hence the largest order statistic, namely, xn∶n or
max{x1,… ,xn} is sufficient for θ here.

Observe that if T is given, that is, T = c where c is a given constant, then c1T = c1c
is also given for c1 ≠ 0 because c1T = c1c = a constant. Also if we take a one to one
function of T, say, h(T), T ↔ h(T) then when T is given h(T) is also given and vice
versa. This shows that if T is sufficient for θ then h(T) is also sufficient for θ.

Result 11.2. If T is a sufficient estimator for θ and if T to h(T) is a one to one function,
then h(T) is also sufficient for θ.



11.2 Parametric estimation | 317

For example, consider Example 11.6. Let h(T) = 2x̄ − 5 = given = 7, say, then this
means that x̄ = 7+5

2 = 6 = given or vice versa.

Example 11.8. Let x1,… ,xn be iid as a Poisson with probability function

f (x) = λx

x!
e−λ , x = 0, 1, 2,… , λ > 0

and zero elsewhere. Let u = x1 + ⋯ + xn. Is u sufficient for λ?

Solution 11.8. The joint probability function of x1,… ,xn is given by

f (x1,… ,xn) =
n

∏
j=1

λxj
xj!

e−λ

= λx1+⋯+xne−nλ

x1!x2!⋯xn!
, xj = 0, 1, 2,… , j = 1,… ,n

and zero elsewhere. But the moment generating function (mgf) of xj is given by

Mxj (t) = eλ(et−1)

which shows that the mgf of u = x1 + ⋯ + xn is a Poisson with parameter nλ, and the
probability function of u is the following:

f1(u) =
(nλ)u

u!
e−nλ , u = 0, 1,…

and zero elsewhere. Note that the joint probability function of x1,… ,xn and u is the
same as the joint probability function of x1,… ,xn since u is a function of x1,… ,xn and
not an independent variable. The conditional probability function of x1,… ,xn, given
u, is then

f (x1,… ,xn|u) =
f (x1,… ,xn)

f1(u)
for f1(u) ≠ 0

= λue−nλ

x1!⋯xn!
u!

(nλ)ue−nλ

= m!
x1!⋯xn!

( 1
n
)
m

for u =m (11.8)

which is free of λ, and hence u = x1 + ⋯ + xn is sufficient for λ.

Note 11.1. Note that for a given u =m the last part of (11.8) is a multinomial prob-
ability function with p1 = ⋯ = pn = 1

n and x1 + ⋯ + xn = m. Hence the conditional
probability function is a multinomial probability law here.
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Example 11.9. Consider a simple random sample x1,… ,xn of size n from a N(μ,σ2)
population. Show that the sample mean x̄ and ∑n

j=1(xj − x̄)2 are jointly sufficient for
the population parameters μ and σ2.

Solution 11.9. When the population is N(μ,σ2), we know from Chapter 10 that u1 =
∑n
j=1(xj − x̄)

2 and u2 = x̄ are independently distributed.Hence the joint density of u1 and
u2 is the product of the marginal densities, denoted by f1(u1) and f2(u2), respectively.
Further, we know that u2 = x̄ ∼ N(μ, σ

2

n ). Hence

f2(u2) =
√n

σ(√2π)
e−

n
2σ2 (x̄ − μ)2.

We also know from Chapter 10 that

u = u1
σ2

=
∑n
j=1(xj − x̄)

2

σ2
∼ χ2n−1

⇒ u1 ∼ σ2χ2n−1.

The density of u, denoted by g(u), is given by the following:

g(u) = u
n−1
2 −1

2
n−1
2 Γ( n−12 )

e−
u
2 , u ≥ 0

and free of all parameters. Put u1 = σ2u⇒ du = 1
σ2 du1. Hence the density of u1 denoted

by f1(u1) is the following:

f1(u1)du1 =
u

n−1
2 −1

1 e−
u1
2σ2

σn−12
n−1
2 Γ( n−12 )

du1

=
[∑n

j=1(xj − x̄)
2]

n−1
2 −1

σ(n−1)2
n−1
2 Γ( n−12 )

e−
1

2σ2

n
∑
j=1

(xj − x̄)2du1.

The joint density of u1 and u2 is f1(u1)f2(u2). The joint density of x1,… ,xn and u1 and
u2 is the same as the joint density of x1,… ,xn, which has the form in (11.6). Hence
dividing by f1(u1)f2(u2)we obtain the conditional density of x1,… ,xn,u1,u2, given u1 =
a,u2 = b, denoted by g(x1,… ,xn|u1 = a,u2 = b), is given by the following: Note that the
exponential part in (11.6) will be canceled.

g(x1,… ,xn|u1 = a,u2 = b) =
√n2

n−1
2 Γ( n−12 )

a
n−1
2 −1

which is free of the parameters μ and σ2. Hence u1 = ∑n
j=1(xj − x̄)

2 and u2 = x̄ are jointly
sufficient for μ and σ2.
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Note 11.2. Another concept associated with sufficiency is minimal sufficiency.
There may be different sets of statistics which are jointly sufficient for a set of pa-
rameters θ1,… ,θr . The first set of statistics may contain s1 statistics, the second set
may contain s2 statistics and so on. Which set we should take in such a situation?
Onemay be tempted to go for the set containing theminimum number of statistics.
But observe that our aim of selecting a sufficient statistic is the reduction in data.
Hence that set which allows the maximal reduction of data is the preferable set
and such a set which allows the maximal reduction of data is called the set ofmin-
imal sufficient statistics. But we will not go further into the properties of sufficient
statistics.

Before concluding this section, we will introduce a factorization theorem given
by Neyman and it is known as Neyman factorization theorem. The students are likely
to misuse this factorization theorem when checking for sufficiency by using this fac-
torization, and hence I have postponed the discussion to the end. The students are
advised to use the definition of conditional distributions rather than going for the fac-
torization theorem.

Result 11.3 (Neyman factorization theorem). Let x1,… ,xn be a sample coming from
some population and let the joint probability/density function of x1,… ,xn be denoted
by f (x1,… ,xn,θ), where θ stands for all the parameters in the population. Let the
support or the range of the variables with non-zero probability/density function be
free of the parameters θ. Let T = T(x1,… ,xn) be a statistic or an observable function
of the sample values. (The sample need not be a simple random sample). If the joint
probability/density function allows a factorization of the form

f (x1,… ,xn,θ) = f1(T ,θ)f2(x1,… ,xn), (11.9)

where f1(T ,θ) is a function of T and θ alone and f2(x1,… ,xn) is free of all parameters
θ in the parameter space Ω, then T is called a sufficient statistic for θ.

The proof is beyond the scope of this book, and hence deleted. The students are
advised to use the rule only in populations such as Gaussian where −∞ < x < ∞ or
gamma where 0 ≤ x < ∞ etc where the range does not depend on the parameters,
and not in situations such as uniform over [a,b] where a ≤ x ≤ b with a and b being
parameters.

Exercises 11.2

11.2.1. Consider iid variables x1,… ,xn distributed as uniform over [a,b], b > a. (1)
Show that the largest order statistic is a consistent estimator for b; (2) Is the small-
est order statistic consistent for a? Prove your assertion.
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11.2.2. Let f (x) = cx2, 0 ≤ x ≤ θ and zero elsewhere. (1) Compute c if f (x) is a density;
(2) compute Pr{y2 ≥ 0.8} and Pr{y1 ≤ 0.1} where y1 and y2 are the smallest and largest
order statistics for a sample of size 5 coming from the population in (1).

11.2.3. Let f (x) = 3
θ3 x

2, 0 ≤ x ≤ θ and zero elsewhere. For a sample of size 6 from this
population, compute (1) Pr{y1 ≥ θ

4 }; (2) Pr{y2 ≥ 3
4θ}, where y1 and y2 are the smallest

and largest order statistics, respectively.

11.2.4. Consider the same population as in Exercise 11.2.3. Is the largest order statistic
for a sample of size n from this population (1) unbiased for θ; (2) consistent for θ?

11.2.5. Consider the function

f (x) = c
{{{
{{{
{

x2, 0 ≤ x ≤ θ
θ(2θ − x), θ ≤ x ≤ 2θ
0, elsewhere.

If f (x) is a density function then (1) compute c; (2) the density of (a) the smallest order
statistic, (b) the largest order statistic, for a sample of size 3 from this population.

11.2.6. For the population in Exercise 11.2.5 compute the probabilities (1) Pr{y1 ≤ θ
2 };

(2) Pr{y2 ≥ 3
2θ}, where y1 and y2 are the smallest and largest order statistics, respec-

tively.

11.2.7. For the order statistics in Exercise 11.2.6 is y1 or y2 unbiased for θ; (2) consistent
for θ?

11.2.8. Show that (11.7) is a density function for max{x1,… ,xn} = m = a given num-
ber.

11.2.9. Show that the conditional statement in (11.6) is in fact a density function for
x̄ =m = a given number.

11.2.10. Let x1,… ,xn be a sample from some population with all parameters denoted
by θ. Let u1 = x1,… ,un = xn be n statistics. Then show that u1,… ,un are jointly suffi-
cient for all the parameters θ.

11.3 Methods of estimation

There are many methods available in the literature for getting point estimates for pa-
rameters of a given population. Some of the most frequently used methods will be
described here. Usually one selects a particular method of estimation in a given situ-
ation based on the following criteria: (1) Convenience and simplicity in the use of the
particular method; (2) The estimators available through that method have some desir-
able properties that you would like to have. Hence no particular method can be better
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than another method or no method is the best method universally. Each method has
its own motivating factors in being selected as a method of estimation.

11.3.1 The method of moments

From the weak law of convergence in Chapter 9, we have seen that for iid variables
a sample moment converges to the corresponding population moment as the sam-
ple size goes to infinity. Taking this property as the motivational factor the method
of moments suggests to equate the sample moments to the corresponding population
moments and by using such equations estimate the parameters involved in the popu-
lation moments. Take as many equations as necessary. Let x1,… ,xn be a simple ran-
dom sample. Then the sample moments are given by ∑n

j=1
xrj
n = mr , r = 1, 2,…. These

are the sample integer moments. If r here is replaced by a general h where h could be
fractional or even complex, then we have the general sample moments. We are going
to take only integer moments. Let the corresponding population moments be denoted
by μ′r = E[xr] where E denotes the expected value. Now the principle of method of
moments says to equatemr and μ′r . Naturally μ′r will contain the parameters from the
population. That is, consider the equation

mr = μ′r , r = 1, 2,… (11.10)

Take asmany equations as needed from (11.10) and estimate the parameters. Note that
(11.10) does not hold universally or for all values of the parameters. It holds only at the
estimated points. Hence when writing the right side in (11.10) replace the parameters
θ by θ̂, meaning the estimated point. We will use the same notation θ̂ to denote the
estimator (random variable) as well as the estimate (a number), the use will be clear
from the context.

Example 11.10. Estimate the parameters in (1) an exponential population, (2) gamma
population, (3) in a Bernoulli population, when there is a simple random sample
of size n. Construct the estimates when there is an observed sample {2,0,5} in (1);
{5, 1,0, 2} in (2); {1,0,0,0, 1} in (3).

Solution 11.10. (1) Let the population density be

f1(x) =
1
θ
e−

x
θ , x ≥ 0, θ > 0

and zero elsewhere. Then we know that E(x) = θ = μ′1 . The first sample moment m1 =
∑n
j=1

xj
n = x̄. Consider the equation (11.10) for r = 1 at the estimated point. That is,x̄ = θ̂

or the parameter θ here is estimated by x̄ and x̄ is the estimator here or the estimator
by using the method of moments. For the observed sample point, {2,0,5} the value of
x̄ = 1

3 (2 + 0 + 5) = 7
3 , which is the estimate by using the method of moments.
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(2) Here, the population is gamma with density function, denoted by f2(x), is the
following:

f2(x) =
xα−1e−

x
β

βαΓ(α)
, α > 0, β > 0, x ≥ 0

and zero elsewhere. We know that

E(x) = αβ, E(x2) = α(α + 1)β2 and m1 = x̄, m2 =
n
∑
j=1

x2j
n

.

We may take two equations from (11.10) for r = 1, 2 and perhaps we may be able to
estimate the twoparameters α and β byusing these two equations. Since the equations
are non-linear, there is no guarantee that two equations will enable us to solve for α
and β. Let us try.

x̄ = α̂β̂ (i)
n
∑
j=1

x2j
n

= α̂(α̂ + 1)(β̂)2. (ii)

From (i), we have [x̄]2 = [α̂β̂]2 and from (ii)

[α̂β̂]2 + α̂[β̂]2 =
n
∑
j=1

x2j
n

and hence

α̂[β̂]2 =
n
∑
j=1

x2j
n

− [x̄]2 =
n
∑
j=1

(xj − x̄)2

n
= s2. (iii)

Hence from (i) and (iii), we have

β̂ =
s2

x̄
and from (i) and (iii) α̂ =

[x̄]2

s2
(iv)

where s2 is the sample variance. Thequantities given in (iv) are the estimators (random
variables). For the observed sample point {5, 1,0, 2}, we have

x̄ =
1
4
(5 + 1 + 0 + 2) = 2

and

s2 = 1
4
[(5 − 2)2 + (1 − 2)2 + (0 − 2)2 + (2 − 2)2]

= 14
4

= 7
2
.

Hence the estimates are β̂ = 7
(2)(2) =

7
4 and α̂ = 4( 27 ) =

8
7 .
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(3) Here, the population is Bernoulli with the probability function

f3(x) = pxq1−x , x = 0, 1, 0 < p < 1, q = 1 − p

and zero elsewhere. Here, E(x) = ∑1
x=0 xp

xq1−x = p. Perhaps one populationmoment is
sufficient to estimate p since there is only one parameter. The first sample moment is
m1 = x̄ = 1

n (x1 +⋯+ xn), which is actually the binomial proportion because the sample
sum in the Bernoulli case is the binomial random variable x and then x̄ becomes the
binomial proportion. Therefore, the estimator by the method of moment, also called
the moment estimator, is the binomial proportion p̂ = x

n where x is the binomial vari-
able with n number of trials. For the observed sample point {1,0,0,0, 1}, the sample
proportion is 1

5 (1 + 0 + 0 + 0 + 1) = 2
5 . Hence the estimate in this case or the moment

estimate is p̂ = 2
5 .

11.3.2 The method of maximum likelihood

Another method of estimation is the method of maximum likelihood. The likelihood
function L is defined in Chapter 10 (Definition 10.2). It is the joint density/probability
function of the sample values at an observed sample point. This procedure requires
the maximization of the likelihood function, with respect to all the parameters there,
and thus select the estimates. The motivation behind this method is to assign those
values to the parameterswhere the likelihood or the joint density/probability function
of getting that sample point is the maximum.

Example 11.11. Obtain the maximum likelihood estimators of the parameters (1) p in
a Bernoulli population; (2) θ in an exponential population.

Solution 11.11. (1) The probability function in a Bernoulli population is

f1(xj) = pxjq1−xj , xj = 0, 1, 0 < p < 1, q = 1 − p

and zero elsewhere. The likelihood function

L =
n

∏
j=1

pxjq1−xj = p∑
n
j=1 xjqn−∑

n
j=1 xj = pxqn−x , x =

n
∑
j=1

xj .

Since L to lnL is a one to one function, maximization of L is the same asmaximization
of lnL and vice versa. In this case,

lnL = x lnp + (n − x) ln(1 − p).

Here, the technique of calculus is applicable. Hence, differentiate lnL with respect to
p, equate to zero and solve for p to obtain the critical points.

d
dp

lnL = 0 ⇒ x
p

− (n − x)
1 − p

= 0 (i)
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⇒ p̂ = x
n
. (ii)

Here, x is the sample sum in the iid Bernoulli case, andhence x is the binomial random
variable and, therefore, the only critical point here is the binomial proportion. Since
(i) does not hold for all p the point where it holds is denoted by p̂. Now, consider the
second-order derivative.

d2

dp2
lnL = [− x

p2
− (n − x)

(1 − p)2
] < 0

for p = p̂. Hence p̂ = x
n corresponds to a maximum, and this p̂ is the maximum likeli-

hood estimator (MLE) of p here and an observed value of x will give an observed value
of p̂ and then it will be called a maximum likelihood estimate (MLE). We will use the
same abbreviation MLE for the estimator as well as for the estimate. Similarly, a hat,
that is, θ̂ will be used to denote the estimator as well as estimate of θ, the difference
in the use will be clear from the context.

Note 11.3. If we take a sample of size 1 from a binomial population then the popu-
lation probability function is

L1 = f (x) = (
n
x
)pxqn−x ,

x = 0, 1,… ,n, 0 < p < 1, q = 1− p. Then the MLE of p here is given by p̂ = x
n , the same

as the one obtained in the Solution 11.11 where the population is Bernoulli and a
sample of size n is available. But the likelihood function in the Bernoulli case is

L = pxqn−x , x = 0, 1,… ,n, 0 < p < 1, q = 1 − p.

Observe that the number of combinations (nx ) ismissing here, but both L and L1 will
lead to the same MLE for p.

(2) Here the density function is given by

f (x) = e−
x
θ

θ
, θ > 0, x ≥ 0

and zero elsewhere. Therefore,

L =
n

∏
j=1

f (xj) =
1
θn
e−∑

n
j=1

xj
θ ⇒ lnL = −n lnθ − (

n
∑
j=1

xj)( 1
θ
).

By using calculus, we differentiate and equate to zero to obtain the critical points.

d
dθ

lnL = −n
θ

+
(∑n

j=1 xj)
θ2

= 0 (i)
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⇒ θ̂ = 1
n

n
∑
j=1

xj = x̄ = sample mean (ii)

Taking the second-order derivative

d2

dθ2
lnL = [ n

θ2
− 2nx̄

θ3
]|

θ=x̄

= n
(x̄)2

[1 − 2] = − n
(x̄)2

< 0.

Hence the only critical point θ̂ = x̄ corresponds to amaximumor x̄ is theMLE of θ here.

Example 11.12. Evaluate the MLE of μ and σ2 in N(μ,σ2) population, assuming that a
simple random sample of size n is available from here.

Solution 11.12. The likelihood function in this case is the following:

L =
n

∏
j=1

1
σ(√2π)

e−
1

2σ2
(xj−μ)2 = 1

σn(√2π)n
e−

1
2σ2
∑nj=1(xj−μ)

2
.

Then

lnL = −n
2
lnσ2 − 1

2σ2
n
∑
j=1

(xj − μ)2.

Here, there are two parameters μ and θ = σ2. We can apply calculus here. Consider the
partial derivatives of lnL, with respect to μ and θ = σ2, and equate to zeros to obtain
the critical points.

𝜕
𝜕μ

lnL = 0 ⇒ 1
θ

n
∑
j=1

(xj − μ) = 0

⇒ μ̂ = x̄ (i)

𝜕
𝜕θ

lnL = 0 ⇒ −
n
2θ̂

+
1
2θ̂2

n
∑
j=1

(xj − x̄)2 = 0

⇒ θ̂ = ̂σ2 = 1
n

n
∑
j=1

(xj − x̄)2 = s2 (ii)

where s2 is the sample variance. Hence there is only one critical point (μ,σ2) = (x̄, s2).
Taking all the second-order derivatives we have the following:

𝜕2

𝜕μ2
lnL = −n

θ
𝜕2

𝜕θ𝜕μ
lnL|

μ=x̄
= − 1

θ2
n
∑
j=1

(xj − x̄) = 0
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𝜕2

𝜕θ2
lnL = [ n

2θ2
− 1
θ3

n
∑
j=1

(xj − μ)2]|
μ=x̄,θ=s2

= n
θ̄2

[ 1
2

− s2

θ̂
] = − n

2(s2)2
< 0.

Hence the matrix of second-order derivatives, evaluated at the critical point (μ,θ) =
(x̄, s2), is the following:

[
− n
s2 0
0 − n

2(s2)2
]

which is negative definite and hence the critical point (μ,θ) = (x̄, s2) corresponds to a
maximum.

Note 11.4. Instead of computing all second-order derivatives and checking for the
negativedefiniteness of thematrix of second-order derivatives, evaluatedat the crit-
ical point, one can also use the following argument in this case. Examine lnL for
all possible values of μ, −∞ < μ < ∞ and θ = σ2 > 0. We see that lnL goes from −∞
to −∞ through some finite values. Hence the only critical point must correspond to
a maximum because lnL does not stay at −∞ all the time.

Note 11.5. The students are likely to ask the following question: If we had differ-
entiated with respect to σ instead of θ = σ2 would we have ended up with the same
MLE μ̂ = x̄ and ̂σ2 = s2? The answer is in the affirmative and the student may ver-
ify this by treating σ as the parameter and going through the same steps. This is
coming from a general result on differentiation. For any function g(θ), we have

d
dθ

g(θ) = [ d
dh(θ)

g(θ)][ d
dθ

h(θ)] (i)

and hence as long as d
dθh(θ) ≠ 0 we have

d
dθ

g(θ) = 0 ⇒ d
dh(θ)

g(θ) = 0 (ii)

and vice versa. Hence both the procedures should arrive at the same result as long
as h(θ) is not a trivial function of θ. The following is a general result.

Result 11.4. If θ̂ is the MLE of θ and if h(θ) is a non-trivial function of θ, that is,
d
dθh(θ) ≠ 0, then h(θ̂) is the MLE of h(θ).

Example 11.13. Evaluate theMLE of a and b in a uniformpopulation over [a,b], a < b,
assuming that a simple random sample of size n is available.
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Solution 11.13. The likelihood function in this case is the following:

L = 1
(b − a)n

, a ≤ xj ≤ b, j = 1,… ,n

and zero elsewhere. Note that the method of calculus fails here. Hence we may use
other arguments. Observe that a ≤ xj ≤ b for each j. Maximum of 1

(b−a)n means themin-
imum of (b − a)n, which means the minimum possible value that can be assigned for
b−a. When we substitute b̂ = a function of x1,… ,xn and â = a function of x1,… ,xn we
should get the minimum possible value for b̂ − â. This means that we should assign
the minimum possible value for b and the maximum possible value for a. Since all
observations are greater than or equal to a the maximum possible value that can be
assigned to a is the smallest of the observations. Similarly, the smallest possible value
that can be assigned to b is the largest of the observations. Then the MLE are

â = xn∶1 = smallest order statistic, b̂ = xn∶n = largest order statistic (11.11)

Note 11.6. If the uniform density is written as f (x) = 1
b−a , a < x < b what are the

MLE of a and b? If a < x < b, that is, x is in the open interval (a,b) then there is no
MLE for either a or b because the observations can never attain a or b and hence no
value from the observations can be assigned to a or b. If a < x ≤ b, then the MLE for
b is b̂ = xn∶n = the largest order statistic but there is no MLE for a. If a ≤ x < b, then
there is no MLE for b but the MLE for a is â = Xn∶1 = smallest order statistic.

Example 11.14. Consider an exponential density with scale parameter θ and location
parameter γ. That is, the density is of the form

f (x) = e−
(x−γ)
θ

θ
, θ > 0, x ≥ γ

and zero elsewhere. Evaluate the MLE of θ and γ, if they exist.

Solution 11.14. The likelihood function in this case is the following:

L = 1
θn
e−∑

n
j=1(xj−γ), xj ≥ γ, j = 1,… ,n, θ > 0.

By using calculus, we can obtain the MLE of θ, as done before, and θ̂ = x̄ but calcu-
lus fails to obtain the MLE of γ. We may use the following argument: For any fixed θ,
maximum of L means the minimum possible value for ∑n

j=1(xj − γ), which means the
maximum possible value that can be assigned to γ because all observations x1,… ,xn
are fixed. Since each observation xj ≥ γ, the maximum possible value that can be as-
signed to γ is the smallest of the observations or the MLE of γ is γ̂ = xn∶1 = smallest
order statistic.

There are several large sample properties for maximum likelihood estimators,
which we will consider later on, after introducing some more methods of estimation.
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Note 11.7. The student is likely to ask the question that if the likelihood function
L(θ)has several localmaxima thenwhat is to be done? Thenwe take θ̂ =MLEas that
point corresponding to the largest of the maxima or supθ∈Ω L(θ) or the supremum.

Another method of estimation, which is applicable in situations where we have
data which is already classified into a number of groups and we have only the infor-
mation of the type that n1 observations are there in the first group, n2 observations are
in the second group or ni observations in the i-th group, i = 1, 2,… ,k for a given k. An
examplemay be of the following type: Onemay be observing the life-times of the same
type of amachine component. n1 may be the number of components which lasted 0 to
10 hours, n2 may be the number of components which lasted between 10 and 20 hours
and so on, and n10 may be the number of components which lasted between 90 and
100 hours. Let t denote the life-time then the intervals are 0 < t ≤ 10,… ,90 < t ≤ 100.
Suppose that there is a total of n1 + ⋯ + nk = n observations, say, for example, n = 50
components in the above illustration with n1 = 1, n2 = 5, n3 = 3, n4 = 6, n5 = 5, n6 = 6,
n7 = 6, n8 = 5, n9 = 10, n10 = 3. If the life-time is exponentially distributed with density
f (t) = 1

θe
− tθ , t ≥ 0, then the true probability of finding a life-time between 0 and 10,

denoted by p1 = p1(θ) is given by

p1 = p1(θ) = ∫
10

0

e−
t
θ

θ
= 1 − e−

10
θ .

In general, let pi(θ) be the true probability of finding an observation in the i-th group.
The actual number of observations or frequency in the i-th group is ni and the expected
frequency is npi(θ) where n is the total frequency. We have a multinomial probabil-
ity law with the true probabilities p1(θ),… ,pk(θ) with p1(θ) + ⋯ + pk(θ) = 1 and the
frequencies as n1,… ,nk with n1 + ⋯ + nk = n. The probability function, denoted by
f (n1,… ,nk) is the following:

f (n1,… ,nk) =
n!

n1!⋯nk !
[p1(θ)]

n1 ⋯[pk(θ)]
nk ,

with pi(θ) ≥ 0, i = 1,… ,k, p1(θ) + ⋯ + pk(θ) = 1, for all θ ∈ Ω (parameter space), ni =
0, 1,… ,n, n1 + ⋯ + nk = n or it is a (k − 1)-variate multinomial law. We have the vec-
tor of true probabilities P′ = (p1(θ),… ,pk(θ)) and we have the corresponding relative
frequencies Q′ = ( n1n ,… , nkn ), where a prime denotes transpose. A goodmethod of esti-
mation of θ is to minimize a distance between the two vectors P and Q. A measure of
generalized distance between P and Q is Karl Pearson’s X2 statistic, which is given by

X2 =
k
∑
j=1

[ (ni − npi(θ))2

npi(θ)
] ≈ χ2k−s−1 (11.12)

which can be shown to be approximately a chi-squarewith k− s− 1 degrees of freedom
under some conditions on n,k,p1(θ),… ,pk(θ).
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Note 11.8. The quantity in (11.12) is only approximately a chi-square under some
conditions such as npi(θ) ≥ 5 for all θ and for each i = 1,… ,k, and k itself is ≥ 5.
When k = 2 note that

X2 = (n1 − np1)2

np1
+ (n2 − np2)2

np2
, p1 + p2 = 1, n1 + n2 = n.

Let p1 = p, then p2 = 1 − p = q and n2 = n − n1. Then

(n2 − np2)2

np2
= (n − n1 − n(1 − p))2

nq
= (n1 − np1)2

nq
.

Then

X2 = (n1 − np)2

n
[ 1
p

+ 1
q
] = (n1 − np)2

npq
(11.13)

which is the square of a standardized binomial random variable n1, having a good
normal approximation for n as small as 20 provided p is near 1

2 . Hence X
2 will be

approximately a χ21 for n ≥ 20, np ≥ 5, nq ≥ 5. For k = 3 and k = 4 also for large values
of n, one can have a good approximation to chi-square provided no pi is near to
zero or one. Students must compute the exact probabilities by using a multinomial
law and compare with chi-square approximation to realize that strict conditions on
n and npi are needed to have a good approximation. The conditions npi ≥ 5, k ≥ 5,
i = 1,… ,k will be a sufficient condition for a good approximation, in general, but
when pi = pi(θ) is unknown then there is no way of checking this condition unless
we have some information beforehand about the behavior of pi(θ) for all θ.

11.3.3 Method of minimum Pearson’s X2 statistic or minimum chi-square method

As mentioned above, this method is applicable in situations where one has catego-
rized data in hand. The principle is to minimize X2 over θ and estimate θ. Here, θ rep-
resents all the parameters involved in computing the exact probabilities in the various
classes. Then

min
θ∈Ω

n
∑
j=1

[
(ni − npi(θ))2

npi(θ)
] ⇒ θ = θ̂. (11.14)

From (11.14), observe that minimization of X2 for k = 2 and p1(θ) = θ gives the estimate
as θ̂ = n1

n , the binomial proportion.
This Pearson’s X2 statistic is quite often misused in applications. The misuse

comes by taking it as a chi-square without checking for the conditions on n and pi ’s
for the approximation to hold.
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Estimators of parameters in a multinomial population can be done in a similar
way as in the binomial case. If (x1,… ,xk) has a (k − 1)-variate multinomial law then
the probability function is the following:

f (x1,… ,xk) =
n!

x1!⋯xk !
px11 ⋯pxkk ,

where pi ≥ 0, i = 1,… ,k, p1 + ⋯ + pk = 1, ni = 0, 1,… ,n, n1 + ⋯ + nk = n. Since the sum
x1 +⋯+ xk is fixed as n, one of the variables can be written in terms of the others, that
is, for example, xk = n − x1 − ⋯ − xk−1 and pk = 1 − p1 − ⋯ − pk−1. We know that

E(xi) = npi , i = 1,… ,k ⇒ p̂i =
xi
n

, i = 1,… ,k (11.15)

are the moment estimates. For computing the maximum likelihood estimates (MLE),
either consider one observation (x1,… ,xk) from the multinomial law or iid variables
from the point Bernoulli multinomial trials. Take ln f (x1,… ,xk) and use calculus, that
is, differentiate partially with respect to pi, i = 1,… ,k, equate to zero and solve. This
will lead to the MLE as p̂i =

xi
n , i = 1,… ,k, the same as the moment estimates. [This

derivation and illustration that the matrix of second-order derivatives, at this criti-
cal point (p1,… ,pk) = ( x1n ,… , xkn ), is negative definite, are left to the students. When
trying to show negative definiteness remember that there are only k − 1 variables
x1,… ,xk−1 and only k − 1 parameters p1,… ,pk−1.] On the other hand, if we consider
point Bernoulli multinomial trials, then we have iid variables and the i-th variable
takes the value (x1i ,… ,xki ) where only one of xji ’s is 1 and the remaining are zeros for
each suchn trials so that xj = ∑n

i=1 xji, j = 1,… ,k so that the likelihood functionbecomes

L = px11 ⋯pxkk

and note that the multinomial coefficient n!
x1!⋯xk !

is absent. Now, proceed with the
maximization of this L and we will end up with the same estimates as above. Calculus
can also be used here.

11.3.4 Minimum dispersion method

This method, introduced by this author in 1967, is based on the principle of minimiza-
tion of a measure of “dispersion” or “scatter” or “distance”. Let x1,… ,xn be a sample
from a specified population with parameter θ to be estimated. Let T = T(x1,… ,xn) be
an arbitrary estimator for the parameter θ. Then E|T − θ| is a measure of distance be-
tween T and θ. Similarly, {E|T − θ|r}

1
r , r ≥ 1 is a measure of distance between T and θ

or a measure of dispersion or scatter in T from the point of location θ. If there exists a
T such that a pre-selectedmeasure of scatter in T from the point of location θ is amin-
imum, then such a T is the minimum dispersion estimator. In Decision Theory, |T − θ|
is called a “loss function” (the terminology in Decision Theory is not that proper be-
cause (T −θ) is understood by a layman to be loss or gain in using T to estimate θ, and
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then taking the expected loss as risk also is not that logical) and the expected value
of the loss function is called the “risk” function, which, in fact, will be a one to one
function of the dispersion in T from the point of location θ. Some general results asso-
ciated with squared distances will be considered later, and hence further discussion
is postponed.

For the next properties to be discussed, we need to recall a few results from earlier
chapters. These will be stated here as lemmas without proofs.

Lemma 11.1. Let x be a real random variable and α be an arbitrary constant. Then
that value of α for which E[x − α]2 is a minimum is α = E(x) or minα E[x − α]2 ⇒ α =
E(x), and that value of β for which E|x − β| is a minimum is β = the median of x, that
is,minβ E|x − β| ⇒ β = median of x. That is,

min
α

E[x − α]2 ⇒ α = E(x) (11.16)

min
β

E|x − β| ⇒ β =median of x. (11.17)

Lemma 11.2. Let y and x be real random variables and let g(x) be an arbitrary func-
tion of x at a given value of x. Then

min
g

E[y − g(x)]2|
x=given

⇒ g(x) = E(y|x) (11.18)

or g(x = b) is the conditional expectation of y at the given value of x = b, which will
minimize the squared distance between y and an arbitrary function of x at a given x.

Lemma 11.3.

E(y) = Ex[E(y|x)] (11.19)

whenever all the expected values exist, where the inside expectation is taken in the
conditional space of y given x, and the outside expectation is taken in the marginal
space x. Once the inside expectation is taken, then the given value of x is replaced by
the random variable x and then the expectation with respect to x is taken. This is the
meaning of expectation of the conditional expectation.

Lemma 11.4.

Var(y) = E[Var(y|x)] +Var[E(y|x)] (11.20)

whenever all the variances exist. That is, the variance of y is the sum of the expected
value of the conditional variance of y given x and the variance of the conditional ex-
pectation of y given x.
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11.3.5 Some general properties of point estimators

We have looked into the property of relative efficiency of estimators. We have also
looked intominimumdispersion estimators andminimumrisk estimators. Do such es-
timators really exist?We can obtain some general properties which will produce some
bounds for the distance of the estimator from the parameter for which the estimator is
constructed. One such property is in terms of what is known as Fisher’s information.
Consider a simple random sample from a population with density/probability func-
tion f (x,θ). Then the joint density/probability function, denoted by L = L(x1,… ,xn), is
the following:

L =
n

∏
j=1

f (xj ,θ) ⇒ lnL =
n
∑
j=1

ln f (xj ,θ).

Let us differentiate partially with respect to θ. For the time being, we will take θ as a
real scalar parameter. Then we have

𝜕
𝜕θ

lnL =
n
∑
j=1

𝜕
𝜕θ

ln f (xj ,θ). (11.21)

Since the total probability is 1, we have

∫
∞

−∞
⋯∫
∞

−∞
Ldx1 ∧ ⋯ ∧ dxn = 1 (11.22)

when the variables are continuous. Replace the integrals by sums when discrete. We
will illustrate the results for the continuous case. The steps will be parallel for the
discrete case. Let us differentiate both sides of (11.22) with respect to θ. The right side
gives zero. Can we differentiate the left side inside the integral sign? If the support
of f (x,θ) or the interval where f (x,θ) is non-zero contains the parameter θ, such as a
uniform density over [0,θ], then we cannot take the derivative inside the integral sign
because the limits of integration will contain θ also. Hence the following procedure
is not applicable in situations where the support of f (x,θ) depends on θ. If we can
differentiate inside the integral, then we have the following, by writing the multiple
integral as ∫X and the wedge product of differentials as dx1 ∧ ⋯ ∧ dxn = dX, where
X′ = (x1,… ,xn), prime denoting the transpose:

∫
X

𝜕L
𝜕θ

dX = 0. (11.23)

But note that 𝜕L𝜕θ = [ 𝜕𝜕θ lnL]L so that we can write (11.23) as an expected value

∫
X

𝜕L
𝜕θ

dX = 0 ⇒ ∫
X
[ 𝜕
𝜕θ

lnL]LdX = 0

⇒ E[ 𝜕
𝜕θ

lnL] = 0. (11.24)

Then from (11.21),
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E[ 𝜕
𝜕θ

lnL] =
n
∑
j=1

E[ 𝜕
𝜕θ

ln f (xj ,θ)] = nE[ 𝜕
𝜕θ

ln f (xj ,θ)] (11.25)

since x1,… ,xn are iid variables. Let T = T(x1,… ,xn) be an estimator for θ. If T is unbi-
ased for θ then E(T) = θ, otherwise E(T) = θ + b(θ) where b(θ) is the bias in using T to
estimate θ. Writing it as an integral and then differentiating both sides with respect to
θ and differentiating inside the integral sign, we have the following:

∫
X
TLdX = θ + b(θ) ⇒ ∫

X
T 𝜕L

𝜕θ
dX = 1 + b′(θ)

𝜕
𝜕θ

(TL) = T(𝜕L
𝜕θ

) = T[ 𝜕
𝜕θ

lnL]L. (11.26)

Note that T does not contain θ. Writing as expected values, we have

∫
X
T[ 𝜕

𝜕θ
lnL]LdX = 1 + b′(θ) ⇒

E[T( 𝜕
𝜕θ

lnL)] = 1 + b′(θ).

For any two real random variables u and v, we have the following results for covari-
ances and correlations:

Cov(u, v) = E[(u − E(u))(v − E(v))]

= E[u(v − E(v))] = E[v(u − E(u))]

because the second terms will be zeros due to the fact that for any random variable u,
E[u − E(u)] = 0. Further, since correlation, in absolute value, is ≤ 1, we have

[Cov(u, v)]2 ≤ Var(u)Var(v)

which is also Cauchy–Schwarz inequality. Since E[ 𝜕𝜕θ lnL] = 0 from (11.24) and since
E[T( 𝜕𝜕θ lnL)] = Cov(T , 𝜕𝜕θ lnL)we have the following result, which holds under the fol-
lowing regularity conditions: (i) The support of f (xj ,θ) is free of θ; (ii) f (xj ,θ) is differ-
entiable with respect to θ; (iii) ∫xj

𝜕
𝜕θ f (xj ,θ)dxj exists; (iv) Var(

𝜕
𝜕θ ln f (xj ,θ)) is finite and

positive for all θ ∈ Ω.

Result 11.5 (Cramer–Rao inequality). For the quantities defined above,

[Cov(T , 𝜕
𝜕θ

lnL)]
2
= [1 + b′(θ)]2 ≤ Var(T)Var( 𝜕

𝜕θ
lnL) ⇒

Var(T) ≥ [1 + b′(θ)]2

Var( 𝜕𝜕θ lnL)
= [1 + b′(θ)]2

nVar( 𝜕𝜕θ ln f (xj ,θ))

= [1 + b′(θ)]2

E[ 𝜕𝜕θ lnL]
2

= [1 + b′(θ)]2

nE[ 𝜕𝜕θ ln f (xj ,θ)]
2

(11.27)

which gives a lower bound for the variance of the estimator T.
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Note that since x1,… ,xn are iid variables and sinceE[
𝜕
𝜕θ lnL] = 0 andE[ 𝜕𝜕θ f (xj ,θ)]=

0 we have

Var( 𝜕
𝜕θ

lnL) = E[ 𝜕
𝜕θ

lnL]
2
= nE[ 𝜕

𝜕θ
ln f (xj ,θ)]

2
. (11.28)

The result in (11.27) is known as Cramer–Rao inequality. If T is unbiased for θ, then
b(θ) = 0⇒ b′(θ) = 0 and then

Var(T) ≥ 1
In(θ)

= 1
nI1(θ)

(11.29)

where In(θ) = Var( 𝜕𝜕θ lnL) which has the various representations given in (11.28).
This In(θ) is called Fisher’s information about θ in the sample of size n and I1(θ) is
Fisher’s information in one observation. Hence the bounds for variance of T, given
in (11.27) and (11.29) are called information bound for the variance of an estimator.
Since Var(T) and In(θ) are inversely related, smaller the variance means larger the
information content, which is also consistent with a layman’s visualization of “infor-
mation” about θ that is contained in the sample. Larger the variance means smaller
the information and smaller the variance means larger the information content be-
cause in this case the estimator T is concentrated around θ when the variance is
small.

Note 11.9. “Information” in “Information Theory” is different from Fisher’s infor-
mation given in (11.29). The information in Information Theory is a measure of lack
of uncertainty in a given schemeof events and the correspondingprobabilities. This
lack of “information” is also called “entropy” and this is the measure appearing in
Communication Theory, Engineering and Physics problems. Students who wish to
know more about Information Theory may look into the book [14], a copy is avail-
able in CMS library.

We can also obtain an alternative representation for In(θ). Let us consider the
equation E[ 𝜕𝜕θ lnL] = 0 and let us differentiate both sides with respect to θ.

E[ 𝜕
𝜕θ

lnL] = 0 ⇒ ∫
X
(

𝜕
𝜕θ

lnL)LdX = 0

⇒ ∫
X

𝜕
𝜕θ

[( 𝜕
𝜕θ

lnL)L]dX = 0

⇒ ∫
X
{(

𝜕2

𝜕θ2
lnL)L + ( 𝜕

𝜕θ
lnL)𝜕L

𝜕θ
} = 0

⇒ ∫
X
{( 𝜕2

𝜕θ2
lnL)L + ( 𝜕

𝜕θ
lnL)

2
L}dX = 0

⇒ ∫
X
( 𝜕
𝜕θ

lnL)
2
LdX = −∫

X
( 𝜕2

𝜕θ2
lnL)LdX.
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This shows that

Var( 𝜕
𝜕θ

lnL) = E[ 𝜕
𝜕θ

lnL]
2
= −E[ 𝜕2

𝜕θ2
lnL]

= nE[ 𝜕
𝜕θ

ln f (xj ,θ)]
2
= −nE[ 𝜕2

𝜕θ2
ln f (xj ,θ)]. (11.30)

This may be a more convenient formula when computing Fisher’s information.

Example 11.15. Checkwhether theminimumvariance bound or information bound is
attained for themoment estimator of the parameter (1) θ in an exponential population,
(2) p in a binomial population.

Solution 11.15. (1) The exponential density is given by

f (x,θ) = 1
θ
e−

x
θ , θ > 0, x ≥ 0

and zero elsewhere. Hence

ln f (xj ,θ) = − lnθ −
xj
θ

⇒ 𝜕
𝜕θ

ln f (xj ,θ) = − 1
θ

+
xj
θ2

− 𝜕2

𝜕θ2
ln f (xj ,θ) = − 1

θ2
+
2xj
θ3

.

Hence

−nE[ 𝜕2

𝜕θ2
ln f (xj ,θ)] = − n

θ2
+
2nE(xj)
θ3

= − n
θ2

+ 2nθ
θ3

=
n
θ2

= nI1(θ) = In(θ).

The moment estimator of θ is x̄ and

Var(x̄) = Var(x)
n

=
θ2

n
=

1
In(θ)

.

Hence the information bound is attained or x̄ is the minimum variance unbiased esti-
mator (MVUE) for θ here.

(2) For the binomial case the moment estimator of p is p̂ = x
n and

Var(p̂) = Var(x)
n2

= np(1 − p)
n2

= p(1 − p)
n

.
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The likelihood function for the Bernoulli population is

L = px(1 − p)n−x , x = 0, 1,… .

[One can also take the binomial probability function as it is, taken as a sample of size
1 from a binomial population, namely f (x) = (nx )px(1 − p)n−x .]

lnL = x lnp + (n − x) ln(1 − p)

d
dp

lnL = x
p

− (n − x)
1 − p

,

d2

dp2
lnL = − x

p2
− (n − x)

(1 − p)2

E[− d2

dp2
lnL] = E(x)

p2
+ n − E(x)

(1 − p)2
= n
p(1 − p)

⇒ Var(p̂) = 1
In(p)

.

Hence p̂ here is the MVUE for p.

Exercises 11.3
11.3.1. By using the method of moments estimate the parameters α and β in (1) type-1
beta populationwith parameters (α,β); (2) type-2 beta populationwith the parameters
(α,β).

11.3.2. Prove Lemmas 11.1 and 11.2.

11.3.3. Prove Lemmas 11.3 and 11.4.

11.3.4. Consider the populations (1) f1(x) = αxα−1, 0 ≤ x ≤ 1, α > 0, and zero elsewhere;
(2) f2(x) = β(1 − x)β−1, 0 ≤ x ≤ 1, β > 0 and zero elsewhere. Construct two unbiased esti-
mators each for the parameters α and β in (1) and (2).

11.3.5. Show that the sample mean is unbiased for (1) λ in a Poisson population
f1(x) = λx

x! e
−λ , x = 0, 1, 2,… ,λ > 0 and zero elsewhere; (2) θ in the exponential popula-

tion f2(x) =
1
θe
−x/θ , x ≥ 0, θ > 0 and zero elsewhere.

11.3.6. For θ in a uniform population over [0,θ] construct an estimate T = c1x1 +
c2x2 + c3x3, where x1, x2, x3 are iid, as uniform over [0,θ], such that E(T) = θ. Find
c1, c2, c3 such that two unbiased estimators T1 and T2 are obtained where T1 = 2x̄,
x̄ = the sample mean. Compute E[T1 − θ]2 and E[T2 − θ]2. Which is relatively more
efficient?

11.3.7. Consider a simple random sample of size n from a Laplace density or double
exponential density
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f (x) = 1
2
e−|x−θ|, −∞ < x < ∞, −∞ < θ < ∞.

Evaluate the MLE of θ. Is it MVUE of θ?

11.3.8. For the population in Exercise 11.2.6, let T1 be themoment estimator and T2 be
the MLE of θ. Check to see whether T1 or T2 is relatively more efficient.

11.3.9. In Exercise 11.2.6, is the moment estimator (1) consistent, (2) sufficient, for θ?

11.3.10. In Exercise 11.2.6, is themaximum likelihood estimator (1) consistent, (2) suf-
ficient, for θ?

11.3.11. Consider a uniform population over [a,b], b > a. Construct the moment esti-
mators for a and b.

11.3.12. In Exercise 11.3.4, is themoment estimator or MLE relatively more efficient for
(1) a when b is known, (2) b when a is known.

11.3.13. In Exercise 11.3.4, are the moment estimators sufficient for the parameters in
situations (1) and (2) there?

11.3.14. In Exercise 11.3.4, are the MLE sufficient for the parameters in situations (1)
and (2) there?

11.4 Point estimation in the conditional space

11.4.1 Bayes’ estimates

So far, we have been considering one given or pre-selected population having one or
more parameters which are fixed but unknown constants.Wewere trying to give point
estimates based on a simple random sample of size n from this pre-selected popula-
tion with fixed parameters. Now we consider the problem of estimating one variable
by observing or preassigning another variable. There are different types of topics un-
der this general procedure. General model building problems fall in this category of
estimating or predicting one or more variables by observing or preassigning one or
more other variables. We will start with a Bayesian type problem first.

Usual Bayesian analysis in the simplest situation is stated in terms of one variable,
and one parameter having its own distribution. Let x have a density/probability func-
tion for a fixed value of the parameter θ. If θ is likely to have its own distribution, then
we denote the density of x as a conditional statement, f (x|θ) or the density/probability
function of x at a given θ. If θ has a density/probability function of its own, denoted
by g(θ), then the joint density/probability function of x and θ, denoted by f (x,θ), is
the following:

f (x,θ) = f (x|θ)g(θ).
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Wemay use the following technical terms: g(θ) as the prior density /probability func-
tion of θ and f (x|θ) as the conditional density /probability functionof x, at preassigned
value of θ. Then the unconditional density/probability function of x, denoted by fx(x),
is available by integrating out (or summing up in the discrete case) the variable θ from
the joint density/probability function. That is,

fx(x) = ∫
θ
f (x|θ)g(θ)dθ when θ is continuous (11.31)

= ∑
θ
f (x|θ)g(θ) when θ is discrete. (11.32)

Then the conditional density of θ at given value of x, denoted by g(θ|x), which may
also be called the posterior density/probability function of θ as opposed to prior den-
sity/probability function of θ, is the following:

g(θ|x) = f (x,θ)
fx(x)

= f (x|θ)g(θ)
∫θ f (x|θ)g(θ)dθ

(11.33)

and replace the integral by the sum in the discrete case.
If we are planning to estimate or predict θ by using x or at a preassigned value of

x, then from Lemma 11.2 we see that the “best” estimate or best predictor of θ, given
x, is the conditional expectation of θ, given x. Here, we are asking the question: what
is a very good estimate of θ once x is observed or what is a good estimate of θ in the
presence of a preassigned value of x? Then from Lemma 11.2 we have the answer as
the ‘best” estimator, best in the minimum mean square sense, is the conditional ex-
pectation of θ, given x. This is the Bayes’ estimate, given by

E(θ|x) = ∫
θ
θg(θ|x)dθ if θ is continuous

= ∑
θ
θg(θ|x) if θ is discrete. (11.34)

Example 11.16. An experiment started with n = 20 rabbits. But rabbits die out one by
one before the experiment is completed. Let x be the number that survived and let p
be the true probability of survival for reach rabbit. Then x is a binomial random vari-
able with parameters (p,n = 20). Suppose that in this particular experiment 15 rabbits
survived at the completionof the experiment. This pneednot be the same for all exper-
imental rabbits. Suppose that p has a type-1 beta densitywith parameters (α = 3,β = 5).
Compute the Bayes’ estimate of p in the light of the observation x = 15.

Solution 11.16. According to our notation,

f (x|p) = (
n
x
)px(1 − p)n−x , x = 0, 1,… ,n, 0 < p < 1



11.4 Point estimation in the conditional space | 339

and

g(p) = Γ(α + β)
Γ(α)Γ(β)

pα−1(1 − p)β−1, 0 ≤ p ≤ 1, α > 0,β > 0.

The joint probability function

f (x,p) = f (x|p)g(p)

= (
n
x
) Γ(α + β)

Γ(α)Γ(β)
pα+x−1(1 − p)β+n−x−1, x = 0, 1,… ,n

0 ≤ p ≤ 1, α > 0, β > 0.

The unconditional probability function of x is given by

fx(x) = ∫
1

0
f (x,p)dp = (

n
x
) Γ(α + β)

Γ(α)Γ(β)
∫
1

0
pα+x−1(1 − p)β+n−x−1dp

= (
n
x
) Γ(α + β)

Γ(α)Γ(β)
Γ(α + x)Γ(β + n − x)

Γ(α + β + n)
.

Therefore,

g(p|x) = f (x,p)
fx(x)

= Γ(α + β + n)
Γ(α + x)Γ(β + n − x)

pα+x−1(1 − p)β+n−x−1, 0 ≤ p ≤ 1.

Hence

E(p|x) = ∫
1

0
pg(p|x)dp

= Γ(α + β + n)
Γ(α + x)Γ(β + n − x)

∫
1

0
p × pα+x−1(1 − p)β+n−x−1dp

= Γ(α + β + n)
Γ(α + x)Γ(β + n − x)

Γ(α + x + 1)Γ(β + n − x)
Γ(α + β + n + 1)

=
α + x

α + β + n
.

This is the Bayes’ estimator as a function of x. Since we have α = 3, β = 5, n = 20 and x
is observed as 15, the Bayes’ estimate of p, denoted by E[p|x = 15], is given by

E[p|x = 15] = 3 + 15
3 + 5 + 20

=
9
14

.

The moment estimator and the maximum likelihood estimator of p is p̂ = x
n and the

corresponding estimate is 15
20 = 9

12 . Bayes’ estimate here is slightly reduced from 9
12 to

9
14 and the unconditional expected value of p is

α
α + β

=
3

3 + 5
=
3
8
.
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Example 11.17. Let the conditional density of x given θ be a gamma density of the
type

f (x|θ) = θα

Γ(α)
xα−1e−θx , x ≥ 0, α > 0, θ > 0

and the prior density of θ be again a gamma of the form

g(θ) = γβ

Γ(β)
θβ−1e−γθ , γ > 0, θ > 0, β > 0.

Compute the unconditional density of x.

Solution 11.17. The joint density of x and θ is given by

f (x,θ) = γβ

Γ(β)Γ(α)
xα−1θα+β−1e−θ(x+γ)

for θ > 0, x ≥ 0, γ > 0, α > 0, β > 0. The unconditional density of x is given by

fx(x) = ∫
∞

θ=0
f (x,θ)dθ

= γβxα−1

Γ(α)Γ(β)
∫
∞

0
θα+β−1e−θ(x+γ)dθ

= Γ(α + β)
Γ(α)Γ(β)

γβxα−1(x + γ)−(α+β), x ≥ 0, γ > 0,α > 0, β > 0

= Γ(α + β)
γαΓ(α)Γ(β)

xα−1(1 + x
γ
)
−(α+β)

for x ≥ 0, γ > 0, α > 0, β > 0 and zero elsewhere.

Note 11.10. The last expression for fx(x) above is also known as superstatistics in
physics. For α = 1, γ = 1

q−1 , β+ 1 = 1
q−1 , q ≥ 1 it is Tsallis statistics, for q ≥ 1, in physics

in the area of non-extensive statistical mechanics. Lots of applications are there in
various areas of physics and engineering.

11.4.2 Estimation in the conditional space: model building

Suppose that a farmer is watching the growth of his nutmeg tree from the time of ger-
mination, growth being measured in terms of its height h and time t being measured
in units of weeks. At t = 0, the seed germinated and the height, h = 0. When t = 1, af-
ter one week, let the height be 10 cm. Then at t = 1, h = 10, height being measured in
centimeters. The question is whether we can predict or estimate height h by observ-
ing t so that will we be able to give a “good” estimated value of h at a preassigned
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value such as t = 100, that is, after 100 weeks what will be the height h? Let g(t) be an
arbitrary function of t which is used to predict or estimate h. Then E|h − g(t)|2 is the
square of a distance between h and g(t), E denoting the expected value. Suppose that
this distance is minimized over all possible functions g and then come up with that g
for which this distance is the minimum. Such an estimator can be called a good esti-
mator of h. That is, ming E|h− g(t)|2 ⇒ g = ? at a preassigned value of t. This is already
available from Lemma 11.2 and the answer is that g(t) = E[h|t] or it is the conditional
expectation of h, given t, which is the “best” estimator of h, best in the sense of mini-
mizing the expected squared error. This conditional expectation or the function g can
be constructed in the following situations: (1) the joint density of h and t is available,
(2) the joint density of h and t is not available but the conditional density of h, given t,
is available. In general, the problems of this type is to estimate or predict a vari-
able y at a preassigned value of x where x may contain one or more variables.
The best estimator or the best predictor, best in the minimum mean square sense, is
the conditional expectation of y given x.

Example 11.18. Construct the best estimator of y at x = 1
3 if x and y have the following

joint density:

f (x,y) = 1
√2π

e−
1
2 (y−2−3x)

2
, −∞ < y < ∞, 0 ≤ x ≤ 1

and zero elsewhere.

Solution 11.18. Here, y can be easily integrated out.

∫
∞

−∞
f (x,y)dy = ∫

∞

−∞

1
√2π

e−
1
2 (y−2−3x)

2dy = 1

from the total probability of a normal density with μ = 2 + 3x and σ2 = 1. Hence the
marginal density of x is uniform over [0, 1]. That is,

f1(x) =
{
{
{

1, 0 ≤ x ≤ 1
0, elsewhere.

Then, naturally, the conditional density of y given x is normal N(μ = 2 + 3x,σ2 = 1).
Therefore, the conditional expectation of y, given x, is E[y|x] = 2 + 3x, which is the
best predictor or estimator of y at any preassigned value of x. Hence the best predicted
value or the best estimated value of y at x = 1

3 is 2+ 3( 13 ) = 3. Problems of this type will
be taken up later in the chapter on regression problems and hence this method will
not be elaborated here.

In Sections 11.3.1 to 11.3.4, we examined point estimation procedures of estimating
a parameter or parametric function, a fixed quantity, in a density/probability function
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of x by taking observations on x. Then in Sections 11.4.1 and 11.4.2, we examined two
situations of estimating one variable by observing or preassigning another variables
or other variables. Nowwewill examine how to estimate a density function itself, after
examining some more properties of estimators.

11.4.3 Some properties of estimators

Some interesting properties can be obtained in the conditional space, connecting the
properties of unbiasedness and sufficiency of estimators. Let x1,… ,xn be iid from the
population designated by the density/probability function f (x,θ). Let g(θ) be a func-
tion of θ. Let u = u(x1,… ,xn) be an unbiased estimator of g(θ). Let T = T(x1,… ,xn) be
a sufficient statistic for θ. Let the conditional expectation of u given T be denoted by
h(T), that is, h(T) = E[u|T]. From the unbiasedness, we have E[u] = g(θ). Now, going
to the conditional space with the help of Lemma 11.3 we have

g(θ) = E[u] = E[E(u|T)] = E[h(T)] ⇒ E[h(T)] = g(θ) (11.35)

or, h(T) is also unbiased for g(θ). Thus we see that if there exists a sufficient statistic
T for θ and if there exists an unbiased estimator u for a function of θ, namely, g(θ),
then the conditional expectation of u for given values of the sufficient statistic T is
also unbiased for g(θ). Now, we will obtain an interesting result on the variance of
any unbiased estimator for g(θ) and the variance of h(T), a function of a sufficient
statistic for θ. From Lemma 11.4, we have

Var(u) = E[u − g(θ)]2 = Var(E[u|T]) + E[Var(E(u|T))]

= Var(h(T)) + δ, δ ≥ 0

where δ is the expected value of a variance, and variance of a real random vari-
able, whether in the conditional space or in the unconditional space, is always
non-negative. Hence what we have established is that the variance of an unbiased
estimator for g(θ), if there exists an unbiased estimator, is greater than or equal to the
variance of a function of a sufficient statistic, if there exists a sufficient statistic for θ.
That is,

Var(u) ≥ Var(h(T)) (11.36)

where h(T) = E[u|T] is the conditional expectation of u given T, which is a function
of a sufficient statistic for θ. The result in (11.36) is known as Rao–Blackwell theorem,
named after C.R. Rao andDavid Blackwell who derived the inequality first. The beauty
of the result is that if we are looking for theminimum variance bound for unbiased es-
timators then we need to look only in the class of functions of sufficient statistics, if
there exists a sufficient statistic for the parameter θ. We have seen earlier that if one
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sufficient statistic T exists for a parameter θ then there exist many sufficient statistics
for the same θ. Let T1 and T2 be two sufficient statistics for θ. Let E[u|Ti] = hi(Ti), i = 1, 2.
Shouldwe take h1(T1) or h2(T2) if we are trying to improve the estimator u, in the sense
of finding another unbiased estimator which has a smaller variance? Uniqueness for
h(T) cannot be achieved unless the estimator T satisfies one more condition of com-
pleteness. Note that

g(θ) = E(u) = E[h1(T1)] = E[h2(T2)] ⇒ E[h1(T1) − h2(T2)] = 0. (11.37)

Definition 11.10 (Complete statistics). Let T be a statistic and let k(T) be an arbi-
trary function of T . If E[k(T)] = 0 for all θ in the parameter space Ω implies that
k(T) ≡ 0 with probability one then we say that T is a complete statistic for the pa-
rameter θ.

Observe that completeness is a property of the density/probability function of T
and it tells more about the structure of the density/probability function. If T is a suf-
ficient and complete statistic for θ, then E[u|T] = h(T) is unique. Thus, in a practi-
cal situation, if we try to improve an unbiased estimator u for a parametric function
g(θ) then look for a complete sufficient statistic T, if there exists such a T, then take
h(T) = E[u|T] which will give an improved estimator in the sense of having a smaller
variance compared to the variance of u, and h(T) is unique here also.

Example 11.19. Let x1, x2 be iid as exponential with parameter θ. That is, with the
density

f (x) = 1
θ
e−

x
θ , θ > 0, x ≥ 0

and zero elsewhere. Let u1 = 0.6x1 + 0.4x2, u2 = x1 + x2. Then we know that u1 is unbi-
ased for θ and u2 is a sufficient statistic for θ. Construct h(u2) = E[u1|u2] and show that
it has smaller variance compared to the variance of u1.

Solution 11.19. Let us transform x1, x2 to u1, u2. Then

u1 = 0.6x1 + 0.4x2 and u2 = x1 + x2 ⇒

x1 = −2u2 + 5u1 and x2 = 3u2 − 5u1

and the Jacobian is 5. Let the joint densities of x1, x2 and u1, u2 be denoted by f (x1,x2)
and g(u1,u2), respectively. Then

f (x1,x2) =
1
θ2
e−(x1+x2)/θ , θ > 0, x1 ≥ 0, x2 ≥ 0

and zero elsewhere, and

g(u1,u2) =
5
θ2
e−

u2
θ
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and zero elsewhere, where 5
3u1 < u2 < 5

2u1 and 0 < u1 < ∞, or 2
5u2 < u1 < 3

5u2 and 0 <
u2 < ∞. Since x1 and x2 are iid exponential, the sum u2 is a gamma with parameters
(α = 2,β = θ) or the density function of u2, denoted by f2(u2), is given by

f2(u2) =
u2
θ2
e−

u2
θ , u2 ≥ 0, θ > 0

and zero elsewhere. Hence the conditional density of u1, given u2, denoted by g(u1|u2),
is available as

g(u1|u2) =
g(u1,u2)
f2(u2)

= 5
u2

, 2
5
u2 < u1 <

3
5
u2.

Hence the conditional expectation of u1, given u2, is the following:

E[u1|u2] =
5
u2

∫
3
5 u2

2
5 u2

u1du1 =
5
u2

[u
2
1
2

]
3
5 u2

2
5 u2

= 5
2u2

[ 9
25
u22 − 4

25
u22] = u2

2
.

Denoting this conditional expectation as h(u2) =
u2
2 and treating it as a function of the

random variable u2 we have the variance of h(u2) as follows:

Var(h(u2)) = 1
4
Var(x1 + x2) =

1
4
(θ2 + θ2) = 0.5θ2.

But

Var(u1) = Var(0.6x1 + 0.4x2) = (0.6)2θ2 + (0.4)2θ2 = 0.52θ2.

This shows that h(u2) has a smaller variance compared to the variance of the unbiased
estimator u1. This illustrates the Rao–Blackwell theorem.

11.4.4 Some large sample properties of maximum likelihood estimators

Here, we will examine a few results which will show that the maximum likelihood es-
timator of a parameter θ possesses some interesting large sample (as the sample size
becomes larger and larger) properties. Rigorous proofs of these results are beyond the
scope of this book. We will give an outline of the derivations. In the following deriva-
tions, we will be using differentiability of the density/probability function, f (x,θ), dif-
ferentiation with respect to a parameter θ inside the integrals or summations, etc.,
and hence the procedures are not applicable when the support of f (x,θ) (where f (x,θ)
is non-zero) depends on the parameter θ. These aspects should be kept in mind. The
regularity conditions in Result 11.5 must hold.
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Let x1,… ,xn be iid with density/probability function f (x,θ). The joint density/
probability function, denoted by Ln(X,θ), X′ = (x1,… ,xn), a prime denoting a trans-
pose, is given by

Ln(X,θ) =
n

∏
j=1

f (xj ,θ).

Then

𝜕
𝜕θ

lnLn(X,θ) = 0 (11.38)

is called the likelihood equation. Let a solution of the likelihood equation be denoted
by θ̂. Let the true value of the parameter be denoted by θ0. Then from equation (11.24),
we know that

E[ 𝜕
𝜕θ

ln f (xj ,θ)|
θ=θ0

] = 0. (11.39)

From (11.38), we have

𝜕
𝜕θ

lnLn(X,θ)|
θ=θ̂

= 0 ⇒
n
∑
j=1

[ 𝜕
𝜕θ

ln f (xj ,θ)|
θ=θ̂

] = 0.

But from the weak law of large numbers (see Chapter 9),

1
n

n
∑
j=1

𝜕
𝜕θ

ln f (xj ,θ)|
θ=θ̂

→ E[ 𝜕
𝜕θ

ln f (xj ,θ)|
θ=θ0

]

as n→ ∞. But the right side expected value is already zero at the true parameter value
θ0 by equation (11.24). Hence as n → ∞, θ̂ goes to the true parameter value θ0 with
probability one, or

Pr{|θ̂ − θ0| < ϵ} → 1 as n→ ∞.

This shows that θ̂, a solution of the likelihood equation (11.38), is a consistent estima-
tor of the true parameter value θ0.

Result 11.6. Consider a density/probability function f (x,θ) where the support does
not depend on θ, and the regularity conditions of Result 11.5 hold, then the MLE for
the parameter θ is a consistent estimator for θ when the sample size n→ ∞.

This means that θ̂ is in the neighborhood of the true parameter value θ0. Let us
expand 0 = 𝜕𝜕θ lnLn(X,θ)|θ=θ̂ in the neighborhood of the true parameter value θ0 to the
second-order terms. Then

0 = 𝜕
𝜕θ

lnLn(X,θ)|
θ=θ0

+ (θ̂ − θ0)
𝜕2

𝜕θ2
lnLn(X,θ)|

θ=θ0
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+ (θ̂ − θ0)2

2
𝜕3

𝜕θ3
lnLn(X,θ)|

θ=θ1
(11.40)

where |θ̂−θ1| < |θ̂−θ0|. From (11.40), bymultiplying both sides by√n and rearranging
terms we have the following:

√n(θ̂ − θ0) =
− 1
√n
𝜕
𝜕θ lnLn(X,θ)|θ=θ0

1
n
𝜕2
𝜕θ2 lnLn(X,θ)|θ=θ0 + 1

n
(θ̂−θ0)

2
𝜕3
𝜕θ3 lnLn(X,θ)|θ=θ1

(11.41)

The second term in the denominator of (11.41) goes to zero because θ̂ → θ0 as n→ ∞
and the third derivative of lnLn(X,θ) is assumed to be bounded. Then the first term in
the denominator is such that

1
n

𝜕2

𝜕θ2
lnLn(X,θ)|

θ=θ0
= 1
n

n
∑
j=1

𝜕2

𝜕θ2
ln f (xj ,θ)|

θ=θ0

→ −Var[ 𝜕
𝜕θ

ln f (xj ,θ)]|
θ=θ0

by (11.30), which is the information bound I1(θ0). Hence

1
n

𝜕2

𝜕θ2
lnLn(X,θ)|

θ=θ0
→ −I1(θ0)

where I1(θ0) is assumed to be positive. Hence we may rewrite (11.41) as follows:

√I1(θ0)√n(θ̂ − θ0) ≈
√n

√I1(θ0)
1
n

n
∑
j=1

𝜕
𝜕θ

ln f (xj ,θ)|
θ=θ0

where 𝜕𝜕θ ln f (xj ,θ) has expected value zero and variance I1(θ0). Further, f (xj ,θ) for j =
1,… ,n are iid variables. Hence by the central limit theorem

√n
√I(θ0)

1
n

n
∑
j=1

𝜕
𝜕θ

ln f (xj ,θ) → N(0, 1), as n→ ∞

where N(0, 1) is the standard normal, or we may write

1
√n

n
∑
j=1

𝜕
𝜕θ

ln f (xj ,θ)|
θ=θ0

→ N(0, I1(θ0))

which shows that the left side

√I1(θ0)√n(θ̂ − θ0) → N(0, 1). (11.41a)

Since I1(θ0) is free of n, this is also the same as saying

√n(θ̂ − θ0) → N(0, 1
I1(θ0)

) (11.41b)

which also shows that √nθ̂ attains its minimum variance bound as n → ∞ or θ̂ is
relatively most efficient for θ0 when n→ ∞. Thus, we have the following result.
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Result 11.7. When the regularity conditions of Result 11.5 hold, the MLE θ̂ of the true
parameter value θ0 is at least asymptotically (as n→ ∞) the most efficient and

√n(θ̂ − θ0) → N(0, 1
I1(θ0)

) as n→ ∞.

Note 11.11. Equations (11.41a) and (11.41b) are very often misinterpreted in statis-
tical literature. Hence the student must be very careful in using and interpreting
(11.41a) and (11.41b). Misinterpretation comes from assuming that θ̂ is approxi-
mately normal for large values of the sample size n, in the light of (11.41b) or
(11.41a), which is incorrect. When n becomes larger and larger the density/proba-
bility function of θ̂ may come closer and closer to a degenerate density and not to
an approximate normal density. For each n, as well as when n→ ∞, θ̂, may have its
own distribution. For example, if θ is themean value in the exponential population
then θ̂ = x̄, the sample mean, but x̄ has a gamma distribution for all n, and not an
approximate normal distribution. A certain weighted and relocated θ̂, as shown in
(11.41a) and (11.41b), has approximate normal distribution as n becomes larger and
larger, and finally when n→ ∞ a normal distribution.

Example 11.20. Illustrate the properties of the maximum likelihood estimator of θ in
the exponential population with density

f (x,θ) = 1
θ
e−

x
θ , x ≥ 0, θ > 0

and zero elsewhere.

Solution 11.20. Let x1,… ,xn be iid with the density as above. Then the joint density
of X′ = (x1,… ,xn), prime denoting the transpose, is given by

Ln(X,θ) = 1
θn

exp{− 1
θ
(x1 + ⋯ + xn)},

and

lnLn(X,θ) = −n lnθ −
1
θ
(x1 + ⋯ + xn)

𝜕
𝜕θ

lnLn(X,θ) = 0 ⇒ −n
θ

+ 1
θ2

(x1 + ⋯ + xn) = 0

⇒ θ̂ = x̄.

Thus, θ̂ is a solution of the likelihood equation.We know fromexponential population
that E(x̄) = θ0 and Var(x̄) = θ20

n , where θ0 is the true parameter value, for all n. Hence
√n(θ̂ − θ0) = √n(x̄ − θ0). But by the central limit theorem

x̄ − θ0
√Var(x̄)

=
√n(x̄ − θ0)

θ0
→ N(0, 1) as n→ ∞. (a)
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This also shows that √n(x̄ − θ0) → N(0,θ20) as n→ ∞ since θ20 is free of n. Now,

𝜕2

𝜕θ2
ln f (xj ,θ) =

𝜕
𝜕θ

(− 1
θ

+
xj
θ2

)

= 1
θ2

−
2xj
θ3

.

Hence

−E[ 𝜕2

𝜕θ2
ln f (xj ,θ)] = − 1

θ2
+
2E(xj)
θ3

= 1
θ2

= I1(θ). (b)

Therefore, we may write the result in (a) as

√n(θ̂ − θ0) → N(0, 1
I1(θ0)

) as n→ ∞ (c)

which illustrates the result on asymptotic (as n→ ∞) efficiency and normality of the
MLE of θ here.

Exercises 11.4
11.4.1. Derive theBayes’ estimator of the parameter λ in a Poissonpopulation if λ has a
prior (1) exponential distributionwith known scale parameter, (2) gammadistribution
with known scale and shape parameters.

11.4.2. If the conditional density of x, given θ, is given by

f (x|θ) = c1xα−1e−θ
δxγ

for α > 0, θ > 0, γ > 0, δ > 0, x ≥ 0 and zero elsewhere and θ has a prior density of the
form

g(θ) = c2θϵ−1e−ηθ
δ

for ϵ > 0, η > 0, δ > 0, θ > 0 and zero elsewhere, (1) evaluate the normalizing constants
c1 and c2, (2) evaluate the Bayes’ estimate of θ if ϵ, η and δ are known.

11.4.3. Write down your answer in Exercise 11.4.2 for the following special cases:
(1) δ = 1; (2) δ = 1, α = 1; (3) δ = 1, α = 1, ϵ = 1; (4) γ = 1, δ = 1.

11.4.4. Derive the best estimator, best in the minimum mean square sense, of y at
preassigned values of x, if the joint density of x and y is given by the following: (1)

f (x,y) = e−
y

2+3x

2 + 3x
, y ≥ 0, 0 ≤ x ≤ 1
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and zero elsewhere; (2)

f (x,y) = 6x5

2 + 3x
e−

y
2+3x , y ≥ 0, 0 ≤ x ≤ 1

and zero elsewhere.

11.4.5. Evaluate the best estimator of y at (1) x = 1
2 ; (2) x = 1

5 in Exercise 11.4.4.

11.4.6. Evaluate the best predictor or the best estimator of y at preassigned values of
x if the conditional density of y, given x, is the following:

g(y|x) = 1
√2π

exp{− 1
2
(y − 2 − 3x − 5x2)2}, −∞ < y < ∞

and evaluate the best estimate of y when (1) x = 0; (2) x = 1.

11.4.7. Check for asymptotic (as n→ ∞) unbiasedness, efficiency, normality and con-
sistency of themaximum likelihood estimator of the parameter (1) λ in a Poissonpopu-
lation; (2) p in aBernoulli population; (3) μ inN(μ,σ2)with σ2 known; (4) σ2 inN(μ,σ2)
where μ is known; (5) α in a type-1 beta with β = 1; (6) β in a type-1 beta when α = 1.
Assume that a simple random sample of size n is available in each case.

11.4.8. Check for the asymptotic normality of a relocated and re-scaled MLE of θ in
a uniform population over [0,θ], assuming that a simple random sample of size n is
available.

11.4.9. Is the MLE in Exercise 11.4.8 consistent for θ?

11.4.10. Verify (a) Cramer–Rao inequality, (b) Rao–Blackwell theorem with reference
to the MLE of the parameter (1) p in a Bernoulli population; (2) λ in a Poisson popula-
tion; (3) θ in an exponential population, by taking suitable sufficient statistics when-
ever necessary. Assume that a simple random sample of size n is available.

11.5 Density estimation

Here, we will consider a few situations where one can uniquely determine a den-
sity/probability function from some known characteristics. When such characteristic
properties are not available, then we will try to estimate the density from data points.

11.5.1 Unique determination of the density/probability function

Suppose that for a real positive continuous scalar random variable x the density is
unknown but its h-th moment is available as

E(xh) = C Γ(α + h)
Γ(α + β + h)

, α > 0, β > 0 (11.42)
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and C is such that when h = 0 the right side is one. If (11.42) is available for an arbi-
trary h, including complex values of h, then we know that a type-1 beta random vari-
able has the h-th moment of the type in (11.42). We can identify the density of x as

f (x) = Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1, 0 ≤ x ≤ 1, α > 0, β > 0

and zero elsewhere. From the structure of the moment if one cannot see the density
right away, then one may go through the inverse Mellin transform formula

f (x) = x−1 1
2πi

∫
c+i∞

c−i∞
[E(xh)]x−hdh, i = √−1 (11.43)

and c in the contour is such that c > −α. In general, if for some positive real scalar
random variable, E(xh) is available, for an arbitrary h, thenwemay go through the for-
mula in (11.43) to obtain the density f (x). The conditions under which f (x) is uniquely
determined are the conditions for the existence of the inverse Mellin transform. The
discussion of the conditions is beyond the scope of this book. (Details are available
in the book [2].) Hence a practical procedure is to search in the list of h-th moments
of known variables and identify the variable if the h-th moment is in the class of
moments known to you.

If the characteristic function of a real scalar random variable is available, then we
may go through the inverse Fourier transform and obtain the corresponding density
function. If the Laplace transform of a positive real scalar random variable, Mx(−t)
where Mx(t) is the moment generating function (mgf), is available then we may go
through the inverse Laplace transform and obtain the density.

Instead of the transform of the density, such as Mellin transform (arbitrary mo-
ments for positive random variables), Laplace transform (mgf with t replaced by −t
for positive random variables), Fourier transform (characteristic function) or other
transforms, suppose that some properties of the random variable are available. If
such properties are unique properties of some specific random variables, then from
the properties one can reach the random variable through mathematical techniques
of integral equations, functional equations, differential equations, algebraic manip-
ulations, etc. This area is known as characterizations of distributions. (An insight
into this area is available from the book [11].) If the properties are not characteristic
properties, still we can come upwith a class of functions having those properties, and
thus we can narrow down the set of functions where the underlying density function
belongs. These are some of the procedures for uniquely determining the densities
from known characteristics.

11.5.2 Estimation of densities

Suppose that such characteristics as described in Section 11.5.1 are not available but
only an observed sample (a set of numbers) is available. Can we identify or at least
estimate the underlying density function, if there is one? Observe that infinitely many
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distributions can give rise to the data at hand, and hence unique determination of the
underlying density is not possible. This point should be kept in mind when looking at
any method of density estimation from observations.

One method is to take the sample distribution (cumulative relative frequencies)
function as a representative of the population distribution function (cumulative prob-
ability function) F(x).

Definition 11.11 (Sample distribution function). Let x1,… ,xn be the n observa-
tions. Let

Sn(x) =
number of observations less than or equal to x

n
(11.44)

for −∞ < x < ∞. Then Sn(x) is called the sample distribution function or empirical
distribution function based on n observations.

Example 11.21. Construct the sample distribution function if the following is a set of
observations from some population: −3, 2, 1,5.

Solution 11.21. For −∞ < x < −3, Sn(x) = 0 because there are no observations there.
Sn(x) = 1

4 at x = −3 and it remains the same until x = 1. Then Sn(x) = 2
4 at x = 1 and in

the interval 1 ≤ x < 2, and so on. That is,

Sn(x) =

{{{{{{{{{{{
{{{{{{{{{{{
{

0, −∞ < x < −3
1
4 , −3 ≤ x < 1
2
4 , 1 ≤ x < 2
3
4 , 2 ≤ x < 5

1, x ≥ 5

Note that it is a step function. [The student is asked to draw the graph to see that the
graph is looking like steps.] We will examine some basic properties of this Sn(x).

Let u = nSn(x) = the number of observations less than or equal to x. Let p be the
true probability of finding an observation less than or equal to x. Then p = F(x) = the
population distribution function of the underlying population. Then u is distributed
as a binomial random variables with parameters (p = F(x),n). Then from the binomial
probability law

E[nSn(x)] = E(u) = np = nF(x)
⇒ E[Sn(x)] = p = F(x) (11.45)

and

Var(nSn(x)) = Var(u) = np(1 − p) = nF(x)(1 − F(x))
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⇒ Var(Sn(x)) = F(x)(1 − F(x))
n

. (11.46)

Note that Var(Sn(x)) → 0 as n→ ∞ and E[Sn(x)] = F(x) for all x and n. From the weak
law of large numbers or from Chebyshev inequality, we have stochastic convergence
of Sn(x) to the true distribution function F(x) or

lim
n→∞

Pr{|Sn(x) − F(x)| < ϵ} = 1

for ϵ > 0, however small itmay be. Thus,we can say that Sn(x) is a representative of the
true distribution function F(x). Then, when F(x) is differentiable, we have the density
f (x), given by

f (x) = lim
δ→0

F(x + δ) − F(x)
δ

and hence we may make the approximation

f (x) ≈ F(x + h) − F(x − h)
2h

.

Hence let

f ∗n (x) = Sn(x + hn) − Sn(x − hn)
2hn

(11.47)

where hn is any positive sequence of real numbers converging to zero. This f ∗n (x) can
be taken as an estimate of the true density f (x).

Exercises 11.5

11.5.1. Determine the density of the non-negative random variable x where x has the
h-th moment, for arbitrary h, of the form:

(i) E(xh) =
Γ(1 + h)
Γ(2 + h)

, (ii) E(xh) = Γ(1 + h)Γ(1 − h).

11.5.2. Determine the density of x if the characteristic function is ϕ(t) = e−t2 .

11.5.3. Determine thedensity of anon-negative randomvariable x if the Laplace trans-
form of the density f (x) is Lf (t) = (1 + t)−

1
2 , 1 + t > 0.

11.5.4. Let f (x) be the density of a continuous real scalar random variable x. Then
Shannon’s entropy is given by S = −c∫x f (x) ln f (x)dx, where c is a constant. By using
calculus of variation, or otherwise, determine that f for which S is maximum, subject
to the condition that E(x) = ∫x xf (x)dx = d < ∞.
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11.5.5. Someone is throwing a dart at a target on a plane board. Let the point of hit
be (x,y) under a rectangular coordinate system on the board. Let the density function
of (x,y) be f (x,y). Let the Euclidean distance of the point of hit from the origin of the
rectangular coordinate systembe r = √x2 + y2. Under the assumption that f (x,y) = g(r)
where g is some unknown function, and assuming that x and y are independently dis-
tributed, derive the densities of x and y and show that x and y are identically normally
distributed.





12 Interval estimation

12.1 Introduction

In Chapter 11, we looked into point estimation in the sense of giving single values
or points as estimates for well-defined parameters in a pre-selected population den-
sity/probability function. If p is the probability that someone contesting an election
will win and if we give an estimate as p = 0.7, then we are saying that there is exactly
70% chance of winning. From a layman’s point of view, such an exact number may
not be that reasonable. If we say that the chance is between 60 and 75%, it may be
more acceptable to a layman. If the waiting time in a queue at a check-out counter
in a grocery store is exponentially distributed with expected waiting time θ minutes,
time being measured in minutes, and if we give an estimate of θ as between 5 and 10
minutes it may be more reasonable than giving a single number such as the expected
waiting time is exactly 6 minutes. If we give an estimate of the expected life-time of
individuals in a certain community of people as between 80 and 90 years, it may be
more acceptable rather than saying that the expected life time exactly 83 years. Thus,
when the unknown parameter θ has a continuous parameter space Ω it may be more
reasonable to comeupwith an interval so thatwe can say that the unknownparameter
θ is somewhere on this interval. We will examine such interval estimation problems
here.

12.2 Interval estimation problems

In order to explain the various technical terms in this area, it is better to examine a
simple problem and then define various terms appearing there, in the light of the il-
lustrations.

Example 12.1. Let x1,… ,xn be iid variables froman exponential populationwith den-
sity

f (x,θ) = 1
θ
e−x/θ , x ≥ 0, θ > 0

and zero elsewhere. Compute the densities of (1) u = x1 + ⋯ + xn; (2) v = u
θ and then

evaluate a and b such that Pr{a ≤ v ≤ b} = 0.95.

Solution 12.1. The moment generating function (mgf) of x is known and it isMx(t) =
(1−θt)−1, 1−θt > 0. Since x1,… ,xn are iid, themgf of u = x1 +⋯+xn isMu(t) = (1−θt)−n,
1 − θt > 0 or u has a gamma distribution with parameters (α = n,β = θ). The mgf of v is
available fromMu(t) asMv(t) = (1−t)−n, 1−t > 0. In otherwords, v has agammadensity
with the parameters (α = n,β = 1) or it is free of all parameters since n is known. Let the
density of v be denoted by g(v). Then all sorts of probability statements can be made

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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on the variable v. Suppose that we wish to find an a such that Pr{v ≤ a} = 0.025 then
we have

∫
a

0

vn−1

Γ(n)
e−vdv = 0.025.

We can either integrate by parts or use incomplete gamma function tables to obtain
the exact value of a since n is known. Similarly, we can find a b such that

Pr{x ≥ b} = 0.025 ⇒ ∫
∞

b

vn−1

Γ(n)
e−vdv = 0.025.

This b is also available either integrating by parts or from the incomplete gamma func-
tion tables. Then the probability coverage over the interval [a,b] is 0.95 or

Pr{a ≤ v ≤ b} = 0.95.

We are successful in finding a and b because the distribution of v is free of all pa-
rameters. If the density of v contained someparameters, thenwe could not have found
a and b because those points would have been functions of the parameters involved.
Hence the success of our procedure depends upon finding a quantity such as v here,
which is a function of the sample values x1,… ,xn and the parameter (or parameters)
under consideration, but whose distribution is free of all parameters. Such quantities
are called pivotal quantities.

Definition 12.1 (Pivotal quantities). A function of the sample values x1,… ,xn and
the parameters under consideration butwhose distribution is free of all parameters
is called a pivotal quantity.

Let us examine Example 12.1 once again. We have a probability statement

Pr{a ≤ v ≤ b} = 0.95.

Let us examine the mathematical inequalities here.

a ≤ v ≤ b ⇒ a ≤ (x1 + ⋯ + xn)
θ

≤ b

⇒
1
b

≤ θ
(x1 + ⋯ + xn)

≤ 1
a

⇒
(x1 + ⋯ + xn)

b
≤ θ ≤ (x1 + ⋯ + xn)

a
.

Since these inequalities are mathematically identical, we must have the probability
statements over these intervals identical. That is,

Pr{a ≤ (x1 + ⋯ + xn)
θ

≤ b} = Pr{(x1 + ⋯ + xn)
b

≤ θ ≤ (x1 + ⋯ + xn)
a

}. (12.1)

Thus, we have converted a probability statement over v into a probability statement
over θ. What is the difference between these two probability statements? The first one
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says that the probability that the random variable falls on the fixed interval [a,b] is
0.95. In the second statement, θ is not a random variable but a fixed but unknown
parameter and the random variables are at the end points of the interval or here the
interval is random, not θ. Hence the probability statement over θ is to be interpreted
as the probability for the random interval [ ub ,

u
a ] covers the unknown θ is 0.95.

In this example, we have cut off 0.025 area at the right tail and 0.025 area at the
left tail so that the total area cut off is 0.025 + 0.025 = 0.05. If we had cut off an area
α
2 each at both the tails then the total area cut off is α and the area in the middle if
1 − α. In our Example 12.1, α = 0.05 and 1 − α = 0.95. We will introduce some standard
notations which will come in handy later on.

Notation 12.1. Let y be a random variable whose density f (y) is free of all parame-
ters. Then we can compute a point b such that from that point onward to the right
the area cut off is a specified number, say α. Then this b is usually denoted as yα
or the value of y from there onward to the right the area under the density curve or
probability function is α or

Pr{y ≥ yα} = α. (12.2)

Then from Notation 12.1 if a is a point below which of the left tail area is α then
the point a should be denoted as y1−α or the point from where onward to the right the
area under the curve is 1 − α or the left tail area is α. In Example 12.1 if we wanted to
compute a and b so that equal areas α

2 is cut off at the right and left tails, then the first
part of equation (12.1) could have been written as

Pr{v1− α2 ≤ v ≤ v α
2
} = 1 − α.

Definition 12.2 (Confidence intervals). Let x1,… ,xn be a sample from the popula-
tion f (x|θ) where θ is the parameter. Suppose that it is possible to construct two
functions of the sample values ϕ1(x1,… ,xn) and ϕ2(x1,… ,xn) so that the probabil-
ity for the random interval [ϕ1,ϕ2] covers the unknown parameter θ is 1 − α for a
given α. That is,

Pr{ϕ1(x1,… ,xn) ≤ θ ≤ ϕ2(x1,… ,xn)} = 1 − α

for all θ in the parameter space Ω. Then 1 − α is called the confidence coefficient,
the interval [ϕ1,ϕ2] is called a 100(1− α)% confidence interval for θ, ϕ1 is called the
lower confidence limit, ϕ2 is called the upper confidence limit and ϕ2 −ϕ1 the length
of the confidence interval.

When a random interval [ϕ1,ϕ2] is givenwe are placing 100(1−α)% confidence on
our interval saying that this interval will cover the true parameter value θ with proba-
bility 1 − α. The meaning is that if we construct the same interval by using samples of
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the same size n then in the long run 100(1 − α)% of the intervals will contain the true
parameter θ. If one interval is constructed, then that interval need not contain the true
parameter θ, the chance that this interval contains the true parameter θ is 1−α. In our
Example 12.1, we were placing 95% confidence in the interval [ (x1+⋯+xn)v0.025

, (x1+⋯+xn)v0.975
] to

contain the unknown parameter θ.
From Example 12.1 and the discussions above, it is clear that wewill be successful

in coming up with a 100(1−α)% confidence interval for a given parameter θ if we have
the following:
(i) A pivotal quantity Q, that is, a quantity containing the sample values and the pa-

rameter θ but whose distribution is free of all parameters. [Note that there may be
many pivotal quantities in a given situation.]

(ii) Q enables us to convert a probability statement on Q into a mathematically equiv-
alent statement on θ.

Howmany such 100(1−α)% confidence intervals can be constructed for a given θ,
if one such interval can be constructed? The answer is: infinitely many. From our Ex-
ample 12.1, it is seen that instead of cutting off 0.025 or in general α

2 at both ends we
could have cut off α at the right tail, or α at the left tail or any α1 at the left tail and α2
at the right tail so that α1 + α2 = α. In our example, vα ≤ v < ∞ would have produced
an interval of infinite length. Such an interval may not be of much use because it is of
infinite length, but our aim is to give an interval which covers the unknown θ with a
given confidence coefficient 1 − α, and if we say that an interval of infinite length will
cover the unknown parameter then such a statementmay not havemuch significance.
Hence a very desirable property is that the expected length of the interval is as short
as possible.

Definition 12.3 (Central intervals). Confidence intervals, obtained by cutting off
equal areas α

2 at both the tails of the distribution of the pivotal quantity so that we
obtain a 100(1 − α)% confidence interval, are called central intervals.

It can be shown that if the pivotal quantity has a symmetric distribution then the
central interval is usually the shortest in expected value. Observe also that when the
length, which is the upper confidence limitminus the lower confidence limit, is taken,
it may be free of all variables. In this case, the length and the expected length are one
and the same.

12.3 Confidence interval for parameters in an exponential
population

We have already given one example for setting up confidence interval for the parame-
ter θ in the exponential population
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f (x|θ) = 1
θ
e−

x
θ , x ≥ 0, θ > 0

and zero elsewhere. Our pivotal quantity was u = (x1+⋯+xn)θ where u has a gamma dis-
tributionwith the parameters (α = n,β = 1)where n is the sample size, which is known.
Hence there is no parameter and, therefore, probabilities can be read from incomplete
gamma tables or can be obtained by integration by parts. Then a 100(1 − α)% confi-
dence interval for θ in an exponential population is given by

[ (x1 + ⋯ + xn)
u α

2

, (x1 + ⋯ + xn)
u1− α2

] = a 100(1 − α)% confidence interval

where

∫
u1− α2

0
g(u)du = α

2

∫
∞

u α
2

g(u)du = α
2

(12.3)

and

g(u) = un−1

Γ(n)
e−u, u ≥ 0.

Example 12.2. Construct a 100(1 − α)% confidence interval for the location parame-
ter γ in an exponential population, where the scale parameter θ is known, say θ = 1.
Assume that a simple random sample of size n is available.

Solution 12.2. The density function is given by

f (x|γ) = e−(x−γ), x ≥ γ

and zero elsewhere. Let us consider the MLE of γ which is the smallest order statistic
xn∶1 = y1. Then the density of y1 is available as

g(y1|γ) = −
d
dz

[Pr{xj ≥ z}]n|
z=y1

= ne−n(y1−γ), y1 ≥ γ

and zero elsewhere. Let u = y1 −γ. Then u has the density, denoted by g1(u), as follows:

g1(u) = ne−nu, u ≥ 0

and zero elsewhere. Thenwe can read off u α
2
and u1− α2 for any given α from this density.

That is,

∫
u1− α2

0
ne−nudu = α

2
⇒ 1 − e−nu1− α2 = α

2



360 | 12 Interval estimation

⇒ u1− α2 = − 1
n
ln(1 − α

2
) (a)

∫
∞

u α
2

ne−nudu = α
2

⇒ e−nu α
2 = α

2

⇒ u α
2
= − 1

n
ln(α

2
). (b)

Now, we have the probability statement

Pr{u1− α2 ≤ y1 − γ ≤ u α
2
} = 1 − α.

That is,

Pr{y1 − u α
2
≤ γ ≤ y1 − u1− α2 } = 1 − α.

Hence a 100(1 − α)% confidence interval for γ is given by

[y1 − u α
2
,y1 − u1− α2 ]. (12.4)

For example, for an observed sample 2,8,5 of size 3, a 95% confidence interval for
gamma is given by the following:

α = 0.05 ⇒ α
2

= 0.025.

u α
2
= − 1

n
ln(α

2
) = − 1

3
ln(0.025).

u1− α2 = − 1
3
ln(0.975).

An observed value of y1 = 2. Hence a 95% confidence interval for γ is [2 + 1
3 ln(0.025),

2 + 1
3 ln(0.975)].

Note 12.1. If both scale parameter θ and location parameter γ are present, then we
need simultaneous confidence intervals or a confidence region for the point (θ,γ).
Confidence region will be considered later.

Note 12.2. In Example 12.2,wehave taken thepivotal quantity as the smallest order
statistic y1 = xn∶1. We could have constructed confidence interval by using a single
observation or sum of observations or the sample mean.

12.4 Confidence interval for the parameters in a uniform density

Consider x1,… ,xn, iid from a one parameter uniform density

f (x|θ) = 1
θ
, 0 ≤ x ≤ θ

and zero elsewhere. Let us construct a 100(1 − α)% confidence interval for θ. Assume
that a simple random sample of size n is available. The largest order statistic seems to
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be a convenient starting point since it is the MLE of θ. Let yn = xn∶n be the largest order
statistic. Then yn has the density

g(yn|θ) =
d
dz

[Pr{xj ≤ z}]n|
z=yn

= n
θn
yn−1n , 0 ≤ yn ≤ θ.

Let us take the pivotal quantity as u = yn
θ . The density of u, denoted by g1(u) is given

by

g1(u) = nun−1, 0 ≤ u ≤ 1

and zero elsewhere. Hence

∫
u1− α2

0
nun−1du = α

2
⇒ u1− α2 = [α

2
]

1
n

and

∫
1

u α
2

nun−1du = α
2

⇒ u α
2
= [1 − α

2
]

1
n
.

Therefore,

Pr{u1− α2 ≤ u ≤ u α
2
} = 1 − α

⇒ Pr{[α
2
]

1
n
≤ yn

θ
≤ [1 − α

2
]

1
n
} = 1 − α

⇒ Pr{ yn
(1 − α

2 )
1
n

≤ θ ≤ yn
( α2 )

1
n
} = 1 − α.

Hence a 100(1 − α)% confidence interval for θ in this case is

[ yn
(1 − α

2 )
1
n
, yn
( α2 )

1
n
]. (12.5)

For example, for an observed sample 8, 2,5 from this one parameter uniform popula-
tion a 90% confidence interval for θ is given by [ 8

(0.95)
1
3
, 8
(0.05)

1
3
].

Note 12.3. If the uniform population is over [a,b], b > a, then by using the largest
and smallest order statistics one can construct confidence intervals for bwhen a is
known, for awhen b is known. Simultaneous intervals for a and bwill be discussed
later.

12.5 Confidence intervals in discrete distributions

Here, we will consider a general procedure of setting up confidence intervals for the
Bernoulli parameter p and the Poisson parameter λ. In discrete cases, such as a bi-
nomial, cutting off tail probability equal to α

2 each may not be possible because the
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probability masses are at individually distinct points. When we add up the tail prob-
abilities we may not get exact values α

2 , for example, 0.025. When we add up a few
points, the sum of the probabilities may be less than 0.025 and when we add up the
next probability the total may exceed 0.025. Hence in discrete situations we take the
tail probabilities as ≤ α

2 so that the middle probability will be ≥1 − α. Take the nearest
point so that the tail probability is closest to α

2 but less than or equal to
α
2 .

12.5.1 Confidence interval for the Bernoulli parameter p

We can set up confidence intervals for the Bernoulli parameter p by taking n observa-
tions from a Bernoulli population or one observation from a binomial population. The
binomial population has the probability function

f (x,p) = (
n
x
)px(1 − p)n−x , 0 < p < 1, x = 0, 1,… ,n

and zero elsewhere. We can assume n to be known. We will see that we cannot find
a pivotal quantity Q so that the probability function of Q is free of p. For a binomial
random variable x, we can make a statement

Pr{x ≤ x1− α2 } ≤
α
2
, (12.6)

that is, the left tail probability is less than or equal to α
2 for any given α if p is known.

But since x is not a pivotal quantity x1− α2 will be a function of p, that is x1− α2 (p). For
a given p, we can compute x1− α2 for any given α. For a given p, we can compute two
points x1(p) and x2(p) such that

Pr{x1(p) ≤ x ≤ x2(p)} ≥ 1 − α (a)

or we can select x1(p) and x2(p), for a given p, such that

Pr{x ≤ x1(p)} ≤
α
2

(b)

and

Pr{x ≥ x2(p)} ≤ α
2
. (c)

For every given p, the points x1(p) and x2(p) are available. If we plot x = x1(p) and x =
x2(p), against p then we may get the graphs as shown in Figure 12.1. Let the observed
value of x be x0. If the line x = x0 cuts the bands x1(p) and x2(p), then the inverse
images will be p1 and p2 as shown in Figure 12.1. The cut on x1(p)will give p2 and that
on x2(p) will give p1 or a 100(1 − α)% confidence interval for p is [p1,p2]. Note that the
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region below the line x = x0 is characterized by the probability α
2 and similarly the

region above the line x = x0 is characterized by α
2 . Hence the practical procedure is

the following: Consider equation (b) with x1(p) = x0 and search through the binomial
table for a p, then the solution in (b) will give p2. Take equation (c) with x2(p) = x0 and
search through the binomial tables for a p, then the solution in (c) gives p1.

Figure 12.1: Lower and upper confidence bands.

Note that in some situations the line x = x0 may not cut one or both of the curves x1(p)
and x2(p). We may have situations where p1 and p2 cannot be found or p1 may be 0 or
p1 may be 1.

Let the observed value of x be x0, for example suppose that we observed 3 suc-
cesses in n = 10 trials. Then our x0 = 3. We can take x1(p) = x1− α2 (p) = x0 and search for
that p, say p2, which will satisfy the inequality

x0
∑
x=0

(
n
x
)px2 (1 − p2)n−x ≤ α

2
. (12.7)

Thiswill give one value of p, namely, p2 forwhich (12.6) holds. Now consider the upper
tail probability. Consider the inequality

Pr{x ≥ x α
2
(p)} ≤ α

2
. (12.8)

Again let us take x2(p) = x α
2
= x0 and search for p for which (12.8) holds. Call it p1. That

is,

n
∑
x=x0

(
n
x
)px1 (1 − p1)n−x ≤

α
2
. (12.9)

Then

Pr{p1 ≤ p ≤ p2} ≤ 1 − α (12.10)

is the required 100(1 − α)% confidence interval for p.
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Example 12.3. If 10 Bernoulli trials gave 3 successes, compute a 95% confidence in-
terval for the probability of success p. Note that for the same p both (12.7) and (12.9)
cannot hold simultaneously.

Solution 12.3. Consider the inequality
3
∑
x=0

(
10
x
)px2 (1 − p2)10−x ≤ 0.025.

Look through a binomial table for n = 10 and all values of p. From tables, we see that
for p = 0.5 the sum is 0.1710 which indicates that the value of p2 is bigger than 0.5.
Most of the tables are given only for p up to 0.5. The reason being that for p > 0.5 we
can still use the same table. By putting y = n − x and writing

3
∑
x=0

(
10
x
)px(1 − p)10−x =

3
∑
x=0

(
10
y
)qy(1 − q)n−y

=
10
∑
y=7

(
10
y
)qy(1 − q)10−y ≤ 0.025

where q = 1 − p. Now looking through the binomial tables we see that q = 0.4. Hence
p2 = 1 − q = 0.6. Now we consider the inequality

10
∑
x=3

(
10
x
)px1 (1 − p1)10−x ≤ 0.025,

which is the same as saying
2
∑
x=0

(
10
x
)px1 (1 − p1)10−x ≥ 0.975.

Now, looking through the binomial table for n = 10 and all p we see that p1 = 0.05.
Hence the required 95% confidence interval for p is [p1,p2] = [0.05,0.60]. We have 95%
confidence on this interval.

Note 12.4. We can use this exact procedure of this section to construct confidence
interval for the parameter θ of a one-parameter distribution whether we have a piv-
otal quantity or not. Take any convenient statistic T for which the distribution can
be derived. This distribution will contain θ. Let T0 be the observed value of T . Con-
sider the inequalities

Pr{T ≤ T0} ≤
α
2

(a)

and

Pr{T ≥ T0} ≤
α
2
. (b)
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If the inequalities have solutions, note that both cannot be satisfied by the same
θ value, then the solution of (a) gives θ2 and the solution of (b) gives θ1 and then
[θ1,θ2] is a 100(1 − α)% confidence interval for θ. As an exercise, the student is ad-
vised to use this exact procedure to construct confidence interval for θ in an expo-
nential population. Use the sample sum as T .

This exact procedure can be adopted for getting confidence intervals for the Pois-
son parameter λ. In this case, make use of the property that the sample sum is again
a Poisson with the parameter nλ. This is left as an exercise to the student.

Exercises 12.2–12.5
12.5.1. Construct a 95% confidence interval for the location parameter γ in an expo-
nential population in Example 12.2 by using (1) x̄ the sample mean of a sample of size
n; (2) the sample sum for a sample of size 2; (3) one observation from the population.

12.5.2. By using the observed sample 3,8,4,5 from an exponential population,

f (x|θ,γ) = 1
θ
e−(x−γ), x ≥ γ, θ > 0

and zero elsewhere, construct a 95% confidence interval for (1): θ if γ = 2; (2): γ if θ = 4.

12.5.3. Consider a uniform population over [a,b], b > a. Assume that the observed
sample 2,8,3 is available from this population. Construct a 95% confidence interval
for (1) a when b = 8; (2) b when a = 1, by using order statistics.

12.5.4. Consider the same uniform population in Exercise 12.5.3 with a = 0. Assume
that a sample of size 2 is available. (1) Compute the density of the sample sum y =
x1 + x2; (2) by using y construct a 95% confidence interval for b if the observed sample
is 2,6.

12.5.5. Construct a 90% confidence interval for the Bernoulli parameter p if 2 suc-
cesses are obtained in (1) 10 trials; (2) eight trials.

12.5.6. Consider a Poisson population with parameter λ. Construct a 90% confidence
interval for λ if 3,7,4 is an observed sample.

12.6 Confidence intervals for parameters in N(μ,σ2)

First, we will consider a simple problem of constructing a confidence interval for the
mean value μ in a normal population when the population variance is known. Then
we will consider intervals for μ when σ2 is not known. Then we will look at inter-
vals for σ2. In the following situations, we will be constructing the central intervals
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for convenience. These central intervals will be the shortest when the pivotal quan-
tities have symmetric distributions. In the case of confidence intervals for the popu-
lation variance, the pivotal quantity taken is a chi-square variable, which does not
have a symmetric distribution, and hence the central interval cannot be expected to
be the shortest, but for convenience we will consider the central intervals in all situa-
tions.

12.6.1 Confidence intervals for μ

Case 1 (Population variance σ2 is known). Here, we can take a pivotal quantity as the
standardized sample mean

z =
√n(x̄ − μ)

σ
∼ N(0, 1)

which is free of all parameters when σ is known. Hence we can read off z α
2
and z1− α2 so

that

Pr{z1− α2 ≤ z ≤ z α
2
} = 1 − α.

Since a standard normal density is symmetric at z = 0, we have z1− α2 = −z α
2
. Let us

examine the mathematical inequalities.

−z α
2
≤ z ≤ z α

2
⇒ −z α

2
≤

√n(x̄ − μ)
σ

≤ z α
2

⇒ −z α
2

σ
√n

≤ x̄ − μ ≤ z α
2

σ
√n

⇒ x̄ − z α
2

σ
√n

≤ μ ≤ x̄ + z α
2

σ
√n

and hence

Pr{−z α
2
≤ z ≤ z α

2
} = Pr{x̄ − z α

2

σ
√n

≤ μ ≤ x̄ + z α
2

σ
√n

}

= 1 − α.

Hence a 100(1 − α)% confidence interval for μ, when σ2 is known, is given by

[x̄ − z α
2

σ
√n

, x̄ + z α
2

σ
√n

]. (12.11)

The following Figure 12.2 gives an illustration of the construction of the central confi-
dence interval for μ in a normal population with σ2 known.

Example 12.4. Construct a 95% confidence interval for μ in a N(μ,σ2 = 4) from the
following observed sample: −5,0, 2, 15.
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Figure 12.2: Confidence interval for μ in a N(μ,σ2),
σ2 known.

Solution 12.4. Here, the sample mean x̄ = (−5 + 0 + 2 + 15)/4 = 3. 1 − α = 0.95 means
α
2 = 0.025. From a standard normal table, we have z0.025 = 1.96 approximately. σ2 is
given to be 4, and hence σ = 2. Therefore, from (12.6), one 95% confidence interval for
μ is given by

[x̄ − z α
2

σ
√n

, x̄ + z α
2

σ
√n

] = [3 − 1.96(2
2
),3 + 1.96(2

2
)]

= [1.04,4.96].

We have 95% confidence that the unknown μ is on this interval.

Note that the length of the interval in this case is

[x̄ + z α
2

σ
√n

] − [x̄ − z α
2

σ
√n

] = 2z α
2

σ
√n

which is free of all variables, andhence it is equal to its expected value, or the expected
length of the interval in this case is 2z α

2

σ
√n = 2(1.96) = 3.92 in Example 12.4.

Example 12.5. For a binomial random variable x, it is known that for large n (n ≥ 20,
np ≥ 5, n(1 − p) ≥ 5) the standardized binomial variable is approximately a standard
normal. By using this approximation set up an approximate 100(1 − α)% confidence
interval for p the probability of success.

Solution 12.5. We will construct a central interval. We have
x − np

√np(1 − p)
≈ z, z ∼ N(0, 1).

From a standard normal table, we can obtain z α
2
so that an approximate probability is

the following:

Pr{−z α
2
≤ x − np

√np(1 − p)
≤ z α

2
} ≈ 1 − α.

The inequality can be written as

(x − np)2

np(1 − p)
≤ z2α

2
.

Opening this up as a quadratic equation in p, when the equality holds, and then solv-
ing for p, one has
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p =
(x + 1

2z
2
α
2
) ∓ √(x + 1

2z
2
α
2
)2 − x2(1 + 1

nz
2
α
2
)

n(1 + 1
nz

2
α
2
)

. (12.12)

These two roots are the lower and upper 100(1 − α)% central confidence limits for p
approximately. For example, for n = 20, x = 8, α = 0.05 we have z0.025 = 1.96. Substitut-
ing these values in (12.12) we obtain the approximate roots as 0.22 and 0.61. Hence an
approximate 95% central confidence interval for the binomial parameter p in this case
is [0.22,0.61]. [Simplifications of the computations are left to the student.]

Case 2 (Confidence intervals for μ when σ2 is unknown). In this case, we cannot take
the standardized normal variable as our pivotal quantity because, even though the
distribution of the standardized normal is free of all parameters, we have a σ present
in the standardized variable, which acts as a nuisance parameter here.

Definition 12.4 (Nuisance parameters). These are parameters which are not rele-
vant for the problem under consideration but which are going to be present in the
computations.

Hence our aim is to come up with a pivotal quantity involving the sample values
and μ only and whose distribution is free of all parameters. We have such a quantity
here, which is the Student-t variable. Consider the following pivotal quantity, which
has a Student-t distribution:

√n(x̄ − μ)
s1

∼ tn−1, s21 =
∑n
j=1(xj − x̄)2

n − 1
(12.13)

where s21 is an unbiased estimator for the population variance σ2. Note that a Student-t
distribution is symmetric around t = 0. Hencewe can expect the central interval being
the shortest interval in expected value. For constructing a central 100(1 − α)% confi-
dence interval for μ read off the upper tail point tn−1, α2 such that

Pr{tn−1 ≥ tn−1, α2 } =
α
2
.

Then we can make the probability statement

Pr{−tn−1, α2 ≤ tn−1 ≤ tn−1, α2 } = 1 − α. (12.14)

Substituting for tn−1 and converting the inequalities into inequalities over μ, we have
the following:

Pr{x̄ − tn−1, α2
s1
√n

≤ μ ≤ x̄ + tn−1, α2
s1
√n

} = 1 − α (12.15)

which gives a central 100(1 − α)% confidence interval for μ. Figure 12.3 gives the illus-
tration of the percentage points.
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Figure 12.3: Percentage points from a Student-t density.

The interval is of length 2tn−1, α2
s1
√n , which contains the variable s1, and hence it is a ran-

dom quantity. We can compute the expected value of this length by using the fact that

(n − 1)s21
σ2

∼ χ2n−1

where χ2n−1 is a chi-square variable with (n − 1) degrees of freedom.

Example 12.6. Construct a 99% confidence interval for μ in a normal populationwith
unknown variance, by using the observed sample 1,0,5 from this normal population.

Solution 12.6. The sample mean x̄ = (1 + 0 + 5)/3 = 2. An observed value of s21 is given
by

s21 = 1
2
[(1 − 2)2 + (0 − 2)2 + (5 − 2)2] = 7

⇒ s1 = √7 = 2.6457513.

Now, our α = 0.01⇒ α
2 = 0.005. From a Student-t table for n− 1 = 2 degrees of freedom,

t2,0.005 = 9.925. Hence a 99% central confidence interval for μ here is given by

[2 − 9.925
√7
√3

, 2 + 9.925
√7
√3

] ≈ [−13.16, 17.16].

Note 12.5. In some books, the students may find the statement that when the sam-
ple size n ≥ 30 one can get a good normal approximation for Student-t, and hence
take zα from a standard normal table instead of tν,α from the Student-t table with
ν degrees of freedom, for ν ≥ 30. The student may look into the exact percentage
points from the Student-t table to see that even for the degrees of freedom ν = 120
the upper tail areas of the standard normal and Student-t do not agree with each
other. Hence taking zα instead of tν,α for ν ≥ 30 is not a proper procedure.

12.6.2 Confidence intervals for σ2 in N(μ,σ2)

Here, we can consider two situations. (1) μ is known, (2) μ is not known, and we wish
to construct confidence intervals for σ2 in N(μ,σ2). Convenient pivotal quantities are
the following: When μ is known we can use
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n
∑
j=1

(xj − μ)2

σ2
∼ χ2n and

n
∑
j=1

(xj − x̄)2

σ2
∼ χ2n−1.

Then from a chi-square density we have

Pr{χ2n,1− α2 ≤
n
∑
j=1

(xj − μ)2

σ2
≤ χ2n, α2 } = 1 − α (12.16)

and

Pr{χ2n−1,1− α2 ≤
n
∑
j=1

(xj − x̄)2

σ2
≤ χ2n−1, α2 } = 1 − α. (12.17)

The percentage points are marked in Figure 12.4.

Figure 12.4: Percentage points from a chi-square density.

Note that (12.16) can be rewritten as

Pr{
∑n
j=1(xj − μ)

2

χ2n, α2
≤ σ2 ≤

∑n
j=1(xj − μ)

2

χ2n,1− α2
} = 1 − α.

A similar probability statement can be obtained by rewriting (12.17). Therefore, a
100(1 − α)% central confidence interval for σ2 is the following:

[
∑n
j=1(xj − μ)

2

χ2n, α2
,
∑n
j=1(xj − μ)

2

χ2n,1− α2
]; [

∑n
j=1(xj − x̄)2

χ2n−1, α2
,
∑n
j=1(xj − x̄)2

χ2n−1,1− α2
]. (12.18)

Note that a χ2 distribution is not symmetric and hence we cannot expect to get the
shortest interval by taking the central intervals. The central intervals are taken only
for convenience. When μ is unknown, then we cannot use ∑

n
j=1(xj−μ)

2

σ2 ∼ χ2n because the
nuisance parameter μ is present. We can use the pivotal quantity

n
∑
j=1

(xj − x̄)2

σ2
∼ χ2n−1

and construct a 100(1−α)% central confidence interval, and it is the second one given
in (12.18). When μ is known, we can also use the standardized normal

√n(x̄ − μ)
σ

∼ N(0, 1)

as a pivotal quantity to construct confidence interval for σ, thereby the confidence
interval for σ2. Note that if [T1,T2] is a 100(1 − α)% confidence interval for θ then
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[g(T1),g(T2)] is a 100(1 − α)% confidence interval for g(θ) when θ to g(θ) is a one to
one function.

Example 12.7. If −2, 1,7 is an observed sample from a N(μ,σ2), construct a 95% per-
cent confidence interval for σ2 when (1) μ = 1, (2) μ is unknown.

Solution 12.7. x̄ = (−2+1+7)3 = 2,∑3
j=1(xj − x̄)

2 = (−2− 2)2 + (1− 2)2 + (7− 2)2 = 42.∑3
j=1(xj −

μ)2 = (−2− 1)1 + (1− 1)2 + (7− 1)2 = 45. 1− α = 0.95⇒ α
2 = 0.025. From a chi-square table

χ2n, α2 = χ23,0.025 = 9.35, χ2n−1, α2 = χ22,0.025 = 7.38, χ2n,1− α2 = χ23,0.975 = 0.216, χ2n−1,1− α2 = χ22,0.975 =
0.0506. (2) Then when μ is unknown a 95% central confidence interval for σ2 is given
by

[
∑n
j=1(xj − x̄)

2

χ2n−1, α2
,
∑n
j=1(xj − x̄)

2

χ2n−1,1− α2
] = [ 42

7.38
, 42
0.0506

]

= [5.69,830.04].

(1) When μ = 1, we can use the above interval as well as the following interval:

[
∑n
j=1(xj − μ)

2

χ2n, α2
,
∑n
j=1(xj − μ)

2

χ2n,1− α2
] = [ 45

9.35
, 45
0.216

]

= [4.81, 208.33].

Note that when the information about μ is used the interval is shorter.

Note 12.6. The student may be wondering whether it is possible to construct con-
fidence intervals for σ, once confidence interval for σ2 is established. Then take the
corresponding square roots. If [ϕ1(x1,… ,xn),ϕ2(x1,… ,xn)] is a 100(1 − α)% confi-
dence interval for θ, then [h(ϕ1),h(ϕ2)] is a 100(1− α)% confidence interval for h(θ)
as long as θ to h(θ) is a one to one function.

Exercises 12.6
12.6.1. Consider a 100(1 − α)% confidence interval for μ in a N(μ,σ2) where σ2 is
known, by using the standardized samplemean. Construct the interval so that the left
tail area left out is α1 and the right tail area left out is α2 so that α1 + α2 = α. Show that
the length of the interval is shortest when α1 = α2 = α

2 .

12.6.2. Let x1,… ,xn be iid as N(μ,σ2)where σ2 is known. Construct a 100(1−α)% cen-
tral confidence interval for μ by using the statistic c1x1 + ⋯ + cnxn where c1,… , cn are
known constants. Illustrate the result for c1 = 2, c2 = −3, c3 = 5 and based on the ob-
served sample 2, 1, −5.
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12.6.3. Construct (1) a 90%, (2) a 95%, (3) a 99% central confidence interval for μ in
Exercise 12.6.1 with σ2 = 2 and based on the observed sample −1, 2,5,7.

12.6.4. Do the same Exercise 12.6.3 if σ2 is unknown.

12.6.5. Compute the expected length in the central interval for the parameter μ in a
N(μ,σ2), where σ2 is unknown, and based on a Student-t statistic.

12.6.6. Compute the expected length as in Exercise 12.6.5 if the interval is obtained by
cutting off the areas α1 at the left tail and α2 at the right tail. Show that the expected
length is least when α1 = α2.

12.6.7. Construct a 95% central confidence interval for μ in a N(μ,σ2), when σ2 is un-
known, by using the statistic u = 2x1 + x2 − 5x3, and based on the observed sample
5, −2,6.

12.6.8. Byusing the standardnormal approximation for a standardizedbinomial vari-
able construct a 90% confidence interval (central) for p the probability of success if
(1) 7 successes are obtained in 20 trials; (2) 12 successes are obtained in 22 trials.

12.6.9. The grades obtained by students in a statistics course are assumed to be nor-
mally distributed with mean value μ and variance σ2. Construct a 95% confidence in-
terval for σ2 when (1) μ = 80, (2) μ is unknown, based on the following observed sam-
ple: 75,85,90,90; (a) Consider central intervals, (b) Consider cutting off 0.5 at the right
tail.

12.6.10. Show that for the problem of constructing confidence interval for σ2 in a
N(μ,σ2), based on a pivotal quantity having a chi-square distribution, the central in-
terval is not the shortest in expected length when the degrees of freedom is small.

12.7 Confidence intervals for linear functions of mean values

Here, we are mainly interested in situations of the following types: (1) A new drug is
administered to lower blood pressure in human beings. A random sample of n individ-
uals is taken. Let xj be the blood pressure before administering the drug and yj be the
blood pressure after administering the drug on the j-th individual, for j = 1,… ,n. Then
we have paired values (xj ,yj), j = 1,… ,n. Our aim may be to estimate the expected
difference, namely μ2 − μ1, μ2 = E(yj), μ1 = E(xj) and test a hypothesis that (xj ,yj),
j = 1,… ,n are identically distributed. But obviously, y = the blood pressure after ad-
ministering the drug depends on x = the blood pressure before administering the drug.
Here, x and y are dependent variables and may have a joint distribution. (2) A sample
of n1 test plots are planted with corn variety 1 and a sample of n2 test plots are planted
with corn variety 2. Let x1,… ,xn1 be the observations on the yield x of corn variety 1 and
let y1,… ,yn2 be the observations on the yield y of corn variety 2. Let the test plots be
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homogeneous in all respects. Let E(x) = μ1 and E(y) = μ2. Someone may have a claim
that the expected yield of variety 2 is 3 times that of variety 1. Then our aim may be
to estimate μ2 − 3μ1. If someone has the claim that variety 2 is better than variety 1,
then our aim may be to estimate μ2 − μ1. In this example, without loss of generality,
we may assume that x and y are independently distributed. (3) A random sample of
n1 students of the same background are subjected to method 1 of teaching (consisting
of lectures followed by one final examination), and a random sample of n2 students
of the same background, as of the first set of students, are subjected to method 2 of
teaching (may be consisting of each lecture followed by problem sessions and three
cumulative tests). Our aim may be to claim that method 2 is superior to method 1. Let
μ2 = E(y), μ1 = E(x)where x and y represent the grades under method 1 andmethod 2,
respectively. Then we may want to estimate μ2 − μ1. Here also, it can be assumed that
x and y are independently distributed. (3) Suppose that a farmer has planted 5 vari-
eties of paddy (rice). Let the yield per test plot of the 5 varieties be denoted by x1,… ,x5
with μi = E(xi), i = 1,… ,5. The market prices of these varieties are respectively Rs 20,
Rs 25, Rs 30, Rs 32, Rs 38 per kilogram. Then the farmer’s interest may be to estimate
the money value, that is, 20μ1 + 25μ2 + 30μ3 + 32μ4 + 38μ5. Variety imay be planted in
ni test plots so that the yields are xij, j = 1,… ,ni, i = 1,… ,5, where xij is the yield of the
j-th test plot under variety i.

Problems of the above types are of interest in this section. We will consider only
situations involving two variables. The procedure is exactly parallel when more vari-
ables are involved. In the two variables case also, we will look at situations where
the variables are dependent in the sense of having a joint distribution, and situations
where the variables are assumed to be statistically independently distributed in the
sense of holding product probability property will be considered later.

12.7.1 Confidence intervals for mean values when the variables are dependent

When we have paired variables (x,y), where x and y are dependent, then one way of
handling the situation is to consider u = y − x, in situations such as blood pressure
before administering the drug (x) and blood pressure after administering the drug (y),
if we wish to estimate μ2 − μ1 = E(y) − E(x). If we wish to estimate a linear function
aμ1 + bμ2, then consider the function u = ax + by. For example, a = −1 and b = 1 gives
μ2 − μ1. When (x,y) has a bivariate normal distribution then it can be proved that ev-
ery linear function is univariate normal. That means, u ∼ N(μ̃, σ̃2) where μ̃ = aμ1 + bμ2
and σ̃2 = a2σ21 + b2σ22 + 2abCov(x,y), σ21 = Var(x), σ22 = Var(y). Now, construct confi-
dence intervals for the mean value of u in situations where (1) Var(u) is known, (2)
Var(u) is unknown, and confidence intervals for Var(u) for the cases when (1) E(u) is
known, (2) E(u) is unknown, by using the procedures in Section 12.5. Note that we
need not know about the individual parameters μ1,μ2,σ21 ,σ22 and Cov(x,y) in this pro-
cedure.
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Note 12.7. Many books may proceed with the assumption that x and y are indepen-
dently distributed, in situations like blood pressure example, claiming that the effect
of the drug is washed out after two hours or dependency is gone after two hours. As-
suming statistical independence in such situations is not a proper procedure. When
paired values are available we can handle by using u as described above, which is
a correct procedure when the joint distribution is normal. If the joint distribution is
not normal, then we may evaluate the distribution of a linear function first and then
use a linear function to construct confidence intervals for linear functions for mean
values.

Example 12.8. The following are the paired observations on (x,y) = (1,4), (4,8), (3,6),
(2,7) where x is the amount of a special animal feed and y is the gain in weight. It is
conjectured that y is approximately 3x + 1. Construct a 95% confidence interval for
(1) E(u) = E[y − (3x + 1)] = μ2 − 3μ1 − 1, E(y) = μ2, E(x) = μ1, (2) variance of u, assuming
that (x,y) has a bivariate normal distribution.

Solution 12.8. Let u = y − 3x − 1. Then the observations on u are the following:

u1 = 4 − 2(1) − 1 = 1, u2 = 8 − 2(4) − 1 = −1, u3 = 6 − 2(3) − 1 = −1,

u4 = 7 − 2(2) − 1 = 2, ū = 1
4
(1 − 1 − 1 + 2) = 1

4

s21 =
n
∑
j=1

(uj − ū)2

n − 1
;

Observed value = 1
3
[(1 − 1

4
)
2
+ (−1 − 1

4
)
2
+ (−1 − 1

4
)
2
+ (2 − 1

4
)
2
] = 108

16 × 3
.

√n[ū − E(ū)]
s1

∼ tn−1 = t3 (12.19)

is Student-t with 3 degrees of freedom. [Since all linear functions of normal variables
(correlated or not) are normally distributed, u is N(μ,σ2) where μ = E(u), σ2 = Var(u).]
tn−1, α2 = t3,0.025 = 3.182 from Student-t tables (see the illustration in Figure 12.3). Hence
a 95% central confidence interval for E(u) = μ2 − 3μ1 − 1 is the following:

[ū − tn−1, α2
s1
√n

, ū + tn−1, α2
s1
√n

] = [
1
4

− 3.182
√108
4(√12)

,
1
4

+ 3.182
√108
4(√12)

]

= [−2.14, 2.64].

For constructinga 95% confidence interval for Var(u), one can take thepivotal quantity
as

n
∑
j=1

(uj − ū)2

σ2
∼ χ2n−1 = χ23 ; χ23,0.025 = 9.35, χ23,0.975 = 0.216.

See the illustration of the percentage points in Figure 12.4. Then a 95% central confi-
dence interval is given by the following:
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[
∑n
j=1(uj − ū)

2

χ2n−1, α2
,
∑n
j=1(uj − ū)

2

χ2n−1,1− α2
] = [ 108

16(9.35)
, 108
16(0.216)

]

= [0.72,31.25].

Note 12.8. Note that in the paired variable (x,y) case if our interest is to construct
a confidence interval for μ2 −μ1 then take u = y − x and proceed as above. Whatever
be the linear function of μ1 and μ2, for which a confidence interval is needed, take
the corresponding linear function of x and y as u and then proceed. Do not assume
statistical independence of x and y unless there is theoretical justification to do so.

12.7.2 Confidence intervals for linear functions of mean values when there is
statistical independence

If x and y are statistically independently distributed with E(x) = μ1, E(y) = μ2, Var(x) =
σ21 , Var(y) = σ22 and if simple random samples of sizes n1 and n2 are available from x
and y, then how can we set up confidence intervals for aμ1 + bμ2 + c where a,b, c are
known constants? Let x1,… ,xn1 and y1,… ,yn2 be the samples from x and y, respec-
tively. If x and y are normally distributed then the problem is easy, otherwise one has
towork out the distribution of the linear functionfirst and thenproceed. Let us assume
that x ∼ N(μ1,σ21 ), y ∼ N(μ2,σ22 ) and be independently distributed. Let

x̄ =
∑n1
j=1 xj
n1

, ȳ =
∑n2
j=1 yj
n2

, v21 =
n1
∑
j=1

(xj − x̄)2, v22 =
n2
∑
j=1

(yj − ȳ)2 (12.20)

and u = ax̄ + bȳ + c. Then u ∼ N(μ,σ2), where

μ = E(u) = aE[x̄] + bE[ȳ] + c = aμ1 + bμ2 + c
σ2 = Var(u) = Var(ax̄ + bȳ + c) = Var(ax̄ + bȳ)

= a2 Var(x̄) + b2 Var(ȳ)

since x̄ and ȳ are independently distributed

σ2 = a2 σ
2
1
n1

+ b2 σ
2
2
n2

.

Our interest here is to set up confidence intervals for aμ1 + bμ2 + c. A usual situation
may be to set up confidence intervals for μ2 − μ1. In that case, c = 0, b = 1, a = −1.
Various situations are possible.

Case 1 (σ21 and σ22 are known). In this case, we can take the pivotal quantity as the
standardized u. That is,

u − E(u)
√Var(u)

=
u − (aμ1 + bμ2 + c)

√a2 σ
2
1
n1

+ b2 σ
2
2
n2

∼ N(0, 1). (12.21)
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Hence a 100(1 − α)% central confidence interval for aμ1 + bμ2 + c is the following:

[u − z α
2
√a2 σ

2
1
n1

+ b2 σ
2
2
n2

,u + z α
2
√a2 σ

2
1
n1

+ b2 σ
2
2
n2

] (12.22)

where z α
2
is illustrated in Figure 12.2.

Case 2 (σ21 = σ22 = σ2 = unknown). In this case, the population variances are given to
be equal but it is unknown. In that case, we can use a Student-t statistic. Note from
(12.20) that E[v21 ] = (n1 − 1)σ21 and E[v22] = (n2 − 1)σ22 , and hence when σ21 = σ22 = σ2 then
E[v21 + v22] = (n1 + n2 − 2)σ2 or

E[v2] = E[
(∑n1

j=1(xj − x̄)2 + ∑n2
j=1(yj − ȳ)2)

n1 + n2 − 2
] = σ2. (12.23)

Hence σ̂2 = v2 can be taken as an unbiased estimator of σ2. In the standardized normal
variable if we replace σ2 by σ̂2 , then we should get a Student-t with n1 +n2 − 2 degrees
of freedom because the corresponding chi-square has n1 + n2 − 2 degrees of freedom.
Hence the pivotal quantity that we will use is the following:

(ax̄ + bȳ + c) − (aμ1 + bμ2 + c)

σ̂√ a2
n1

+ b2
n2

= (ax̄ + bȳ + c) − (aμ1 + bμ2 + c)

v√ a2
n1

+ b2
n2

∼ tn1+n2−2 (12.24)

where v is defined in (12.23). Now a 100(1 − α)% central confidence interval for aμ1 +
bμ2 + c is given by

[(ax̄ + bȳ + c) ∓ tn1+n2−2, α2 v√
a2
n1

+ b2
n2

]. (12.25)

The percentage point tn1+n2−2, α2 is available from Figure 12.3 and v is available from
(12.23). If the confidence interval for μ2 − μ1 is needed, then put c = 0, b = 1, a = −1 in
(12.25).

Case 3 (σ21 and σ22 are unknown but n1 ≥ 30, n2 ≥ 30). In this case, one may use the
following approximation to standard normal for setting up confidence intervals.

(ax̄ + bȳ + c) − (aμ1 + bμ2 + c)

√ s21
n1

+ s22
n2

∼ N(0, 1) (12.26)

approximately, where s21 = ∑n1
j=1
(xj−x̄)2
n1

, s22 = ∑n2
j=1
(yj−ȳ)2
n2

are the sample variances. When
n1 and n2 are large, dividing by ni or ni − 1 for i = 1, 2 will not make a difference. Then
the approximate 100(1 − α)% central confidence interval for aμ1 + bμ2 + c is given
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by

(ax̄ + bȳ + c) ∓ z α
2
√a2s21

n1
+
b2s22
n2

(12.27)

where the percentage point z α
2
is available from the standard normal density in Fig-

ure 12.2.

12.7.3 Confidence intervals for the ratio of variances

Here again, we consider two independently distributed normal variables x ∼ N(μ1,σ21 )
and y ∼ N(μ2,σ22 ) and simple random samples of sizes n1 and n2 from x and y, respec-
tively. We would like to construct a 100(1 − α)% confidence interval for θ = σ21

σ22
. We will

make use of the property that

∑n1
j=1(xj − x̄)2

σ21
∼ χ2n1−1

∑n2
j=1(yj − ȳ)2

σ22
∼ χ2n2−1

u( 1
θ
) =

[∑n1
j=1(xj − x̄)2/(n1 − 1)]

[∑n2
j=1(yj − ȳ)2/(n2 − 1)]

( 1
θ
)

∼ Fn1−1,n2−1. (12.28)

From this, one can make the following probability statement:

Pr{Fn1−1,n2−1,1− α2 ≤ u( 1
θ
) ≤ Fn1−1,n2−1, α2 } = 1 − α.

Rewriting this as a statement on θ, we have

Pr{ u
Fn1−1,n2−1, α2

≤ θ ≤ u
Fn1−1,n2−1,1− α2

} = 1 − α (12.29)

where the percentage points Fn1−1,n2−1, α2 and Fn1−1,n2−1,1− α2 are given in Figure 12.5, and

u =
[∑n1

j=1(xj − x̄)2/(n1 − 1)]
[∑n2

j=1(yj − ȳ)2/(n2 − 1)]
∼ θFn1−1,n2−1. (12.30)

Figure 12.5: Percentage points from a F -density.
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Note 12.9. If confidence intervals for a σ21
σ22

= aθ, where a is a constant, is needed
then multiply and divide u in (12.28) by a, absorb the denominator a with θ and
proceed to get the confidence intervals from (12.29). Also note that only the central
interval is considered in (12.29).

Note 12.10. Since F-random variable has the property that Fm,n = 1
Fn,m

we can con-
vert the lower percentage point Fm,n,1−α/2 to an upper percentage point on Fn,m,α/2.
That is,

Fm,n,1− α2 = 1
Fn,m, α2

. (12.31)

Hence usually the lower percentage points are not given in F-tables.

Example 12.9. Nine test plots of variety 1 and 5 test plots of variety 2 of tapioca gave
the following summary data: s21 = 10kg and s22 = 5kg, where s21 and s22 are the sample
variances. The yield x under variety 1 is assumed to be distributed as N(μ1,σ21 ) and the
yield y of variety 2 is assumed to be distributed as N(μ2,σ22 ) and independently of x.
Construct a 90% confidence interval for 3 σ

2
1
σ22
.

Solution 12.9. We want to construct a 90% confidence interval and hence in our no-
tation, α = 0.10, α

2 = 0.05. The parameter of interest is 3θ = 3 σ
2
1
σ22
. Construct interval for

θ and then multiply by 3. Hence the required statistic, in observed value, is

u =
[∑n1

j=1(xj − x̄)2/(n1 − 1)]
[∑n2

j=1(yj − ȳ)2/(n2 − 1)]

= [9s21/(8)]
[5s22/(4)]

∼ F8,4 and in observed value

= [
(9)(10)

8
]/[

(5)(5)
4

] =
9
5
.

From F-tables, we have F8,4,0.05 = 6.04 and F4,8,0.05 = 3.84. Hence a 90% central confi-
dence interval for 3θ is given by

[
27

5(F8,4,0.05)
,

27
5(F8,4,0.95)

] = [
27

5(F8,4,0.05)
,
27(F4,8,0.05)

5
]

= [ 27
5(6.04)

, 27(3.84)
5

] = [0.89, 20.74].

Note 12.11 (Confidence regions). In a population such as gamma (real scalar ran-
dom variable), there are usually two parameters, the scale parameter β, β > 0 and
the shape parameter α, α > 0. If relocation of the variable is involved, then there
is an additional location parameter γ, −∞ < γ < ∞. In a real scalar normal popu-
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lation N(μ,σ2), there are two parameters μ, −∞ < μ < ∞ and σ2, 0 < σ2 < ∞. The
parameter spaces in the 3-parameter gamma density is

Ω = {(α,β,γ) ∣ 0 < α < ∞,0 < β < ∞,−∞ < γ < ∞}.

In the normal case, the parameter space is Ω = {(μ,σ2) ∣ −∞ < μ < ∞,0 < σ2 < ∞}.
Let θ = (θ1,… ,θs) represent the set of all parameters in a real scalar population. In
the above gamma case, θ = (α,β,γ), s = 3 and in the above normal case θ = (μ,σ2),
s = 2. We may be able to come up with a collection of one or more functions of the
sample values x1,… ,xn and some of the parameters from θ, say, P = (P1,… ,Pr) such
that the joint distribution of P is free of all parameters in θ. Then we will be able to
make a statement of the type

Pr{P ϵ R1} = 1 − α (12.32)

for a given α, where R1 is a subspace of Rr = R × R × ⋯ × R where R is the real line.
If we can convert this statement into a statement of the form

Pr{S1 covers θ} = 1 − α (12.33)

where S1 is a subspace of the sample space S, then S1 is the confidence region for
θ. Since computations of confidence regions will be more involved, we will not be
discussing this topic further.

Exercises 12.7

12.7.1. In a weight reduction experiment, a random sample of 5 individuals under-
went a certain dieting program. The weight of a randomly selected person, before
the program started, is x and when the program is finished it is y. (x,y) is assumed
to have a bivariate normal distribution. The following are the observations on (x,y):
(80,80), (90,85), (100,80), (60,55), (65,70). Construct a 95% central confidence inter-
val for (a) μ1 − μ2, when (1) variance of x − y is 4, (2) when the variance of x − y is
unknown; (b) 0.2μ1 −μ2 when (1) variance of u = 0.2x − y is known to be 5, (2) variance
of u is unknown.

12.7.2. Two methods of teaching are experimented on sets of n1 = 10 and n2 = 15 stu-
dents. These students are assumed to have the same backgrounds and are indepen-
dently selected. If x and y are the grades of randomly selected students under the two
methods, respectively, and if x ∼ N(μ1,σ21 ) and y ∼ N(μ2,σ22 ) construct 90% confidence
intervals for (a) μ1 − 2μ2 when (1) σ21 = 2, σ22 = 5, (2) σ21 = σ22 but unknown; (b) 2σ21 /σ22
when (1) μ1 = −10, μ2 = 5, (2) μ1,μ2 are unknown. The following summary statistics are
given, with the usual notations: x̄ = 90, ȳ = 80, s21 = 25, s22 = 10.
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12.7.3. Consider the same problem as in Exercise 12.6.2 with n1 = 40, n2 = 50 but σ21
and σ22 are unknown. Construct a 95% confidence interval for μ1 − μ2, by using the
same summary data as in Exercise 12.7.2.

12.7.4. Prove that Fm,n,1−α = 1
Fn,m,α

.

12.7.5. Let x1,… ,xn be iid variables from some population (discrete or continuous)
with mean value μ and variance σ2 < ∞. Use the result that

√n(x̄ − μ)
σ

∼ N(0, 1)

approximately for large n, and set up a 100(1 − α)% confidence interval for μ when σ2

is known.

12.7.6. The temperature reading x at location 1 and y at location 2 gave the following
data. A simple random sample of size n1 = 5 on x gave x̄ = 20c and s21 = 5c, and a ran-
dom sample of n2 = 8 on y gave ȳ = 30c and s22 = 8c. If x ∼ N(μ1,σ21 ) and y ∼ N(μ2,σ22 )
and independently distributed then construct a 90% confidence interval for σ21

σ22
.



13 Tests of statistical hypotheses

13.1 Introduction

People, organizations, companies, business firms, etc.make all sorts of claims. A busi-
ness establishment producing a new exercise routine may claim that if someone goes
through that routine the expected weight reduction will be 10 kilograms. If θ is the
expected reduction of weight, then the claim here is θ = 10. A coaching centre may
claim that if a student goes through their coaching scheme, then the expected grade in
the national test will be more than 90%. If μ is the expected grade under their coach-
ing scheme, then the claim is that μ > 90. A bird watcher may claim that birds on
the average lay more eggs in Tamilnadu compared to Kerala. If the expected num-
ber of eggs per bird nest in Tamilnadu and Kerala are respectively μ1 and μ2, then
the claim is μ1 > μ2. A tourist resort operator in Kerala may claim that the true pro-
portion of tourists from outside Kerala visiting his resort is 0.9. If the probability of
finding a tourist from outside Kerala in this resort is p, then the claim is that p = 0.9.
An economist may claim that the incomes in community 1 is more spread out com-
pared to the income in community 2. If the spreads are denoted by the standard de-
viations σ1 and σ2, then the claim is that σ1 > σ2. An educationist may claim that the
grades obtained by students in a particular course follow a bell curve. If the typical
grade is denoted by x, then the claim is that x is normally distributed if a traveler
claims that the travel time needed to cover 5 kilometers in Ernakulam during peak
traffic time is longer than the time needed in Trivandrum. Here, the claim is that one
random variable is bigger than another random variable over a certain interval. In
all the above examples, we are talking about quantitative characteristics. If a soci-
ologist claims that the tendency for the destruction of public properties by students
and membership in a certain political party are associated, then the claim is about
the association between two qualitative characteristics. If an engineer claims that in
a certain production process the occurrence of defective items (items which do not
have quality specifications) is a random phenomenon and not following any specific
pattern then we want to test the randomness of this event. If the villagers claim that
snake bite occurring in a certain village follows a certain pattern, then we may want
to test for that pattern or the negation that there is no pattern or the event is a random
event. If a biologist claims that the chance of finding a Rosewood tree in Kerala forest
is much less than that in Karnataka forest, then the claim may be of the form p1 < p2,
where p1 and p2 are the respective probabilities. If a physicist claims that every par-
ticle attracts every other particle, then we classify this hypothesis as a conjecture if
“attraction” is properly defined. This conjecture can be disproved if two particles are
found not having attraction. If a religious preacher claims that the only way to go to
heaven is through his religion, then we will not classify this as a hypothesis because
there are several undefined or not precisely defined items such as “heaven” and the
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method of reaching there, etc. There is no way of collecting data and verifying the
claim.

We are looking at hypotheses where one can take data on some observable ran-
dom variables and test the claims, or test the hypothesis by using some statistical pro-
cedures or we are looking for some verifiable or testable types of claims.

We have looked into various types of claims or hypotheses above. Out of these,
the one about heaven has un-identifiable terms, and hence we do not count it as a
hypothesis, and we cannot collect data either, to verify or test the claim. We will clas-
sify hypotheses into two types: statistical and non-statistical. A statistical hypothesis
has something to say about the behavior of one or more random variables. If the hy-
pothesis is well-defined but no random phenomenon is involved, then we call such
hypotheses as non-statistical hypotheses. Many of the physical laws or mathematical
conjectures are non-statistical hypotheses.

Statistical hypothesis

A hypothesis ↗
↘
Non-statistical hypothesis

In this chapter, we are concernedwith statistical hypotheses only. Out of themany
statistical hypotheses described above, we have noted that some of them are dealing
with parameters of well-defined distributions and others are of the type of testing hy-
potheses on qualitative characteristics, some are about randomness of phenomena,
some are about certain patterns, etc. If a hypothesis is about the parameter(s) of well-
defined distributions, then we call them parametric hypotheses. All other statistical
hypotheses will be called non-parametric hypotheses.

Parametric hypothesis

A statistical hypothesis ↗
↘
Non-parametric hypothesis

First, we will concentrate on parametric statistical hypotheses and later we will
deal with non-parametric hypotheses.

13.2 Testing a parametric statistical hypothesis

We may test a parametric hypothesis of the type that the expected waiting time in a
service station for servicing a car is greater than or equal to 40 minutes, then this hy-
pothesis is of the type θ ≥ 40 where θ is expected waiting time, the waiting time may
have an exponential distribution with expected value θ. Then the hypothesis is on a
parameter of a well-defined distribution. For testing a statistical hypothesis, we may
take some data from that population, then use some test criteria and make a decision
either to reject or not to reject that hypothesis. If the decision is to reject or not to reject,
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then we have a two-decision problem. If our decision is of the form, reject, not to re-
ject, take more observations because a decision cannot be reached with the available
observations, then it is a three-decision problem. Thus we may have a multiple deci-
sion problem in any given parametric statistical hypothesis. First, we will consider a
two-decision situation. Here also, there are several possibilities.We have a hypothesis
that is being tested and the natural alternate against which the hypothesis is tested.
If we are testing the hypothesis that θ ≥ 10, then we are naturally testing it against the
alternate that θ < 10. If we test the hypothesis θ = 20, then we are testing it against its
natural alternate θ ≠ 20.

Definition 13.1 (Null and alternate hypotheses). A hypothesis that is being tested
is called the null hypothesis and it is usually denoted by H0. The alternate hypothe-
sis, against which the null hypothesisH0 is tested, is called the alternate hypothesis
and it is usually denoted by H1 or HA. We will use the notation H1.

A null parametric hypothesis H0

A parametric hypothesis ↗
↘
An alternate parametric hypothesis H1

The term “null” came due to historical reasons. Originally, the claims that were
tested were of the type that there is significant difference between two quantitative
measurements such as the yield of corn without using fertilizers and with the use of
fertilizers. The hypothesis is usually formulated as there is no significant difference
(hypothesis of the type H0 ∶ μ1 = μ2) between expected yields and is tested against the
hypothesis that the difference is significant (hypothesis of the type μ1 ≠ μ2). Nowadays
the term “null” is used to denote the hypothesis that is being tested whatever be the
nature of the hypothesis.

We may also have the possibility that once the hypothesis (null or alternate) is
imposed on the population the whole population may be fully known, in the sense of
no unknown parameters remaining in it or the population may not be fully known. If
the population is exponential with parameter θ and if the hypothesis is H0 ∶ θ = 20,
then when the hypothesis is imposed on the density there are nomore parameters left
and the density is fully known. In this case, we call H0 a “simple hypothesis”. The
alternate in this case is H1 ∶ θ ≠ 20. Then under this alternate, there are still a lot of
values possible for θ, and hence the population is not determined. In such a case, we
call it a “composite” hypothesis.

Definition 13.2 (Simple and composite hypotheses). Once the hypothesis is im-
posed on the population if the population is fully known, then the hypothesis is
called a simple hypothesis and if some unknown quantities are still left or the pop-
ulation is not fully known, then that hypothesis is called a composite hypothesis.
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A simple hypothesis

A parametric hypothesis ↗
↘
A composite hypothesis

Thus, a null parametric hypothesis can be simple or composite and similarly an
alternate parametric hypothesis can be simple or composite. For example, let us take
a normal populationN(μ,σ2). There are two parameters μ and σ2 here. Let us consider
the following null and alternate hypotheses:

H0 ∶ μ = 0, σ2 = 1 (simple), alternate H1 ∶ μ ≠ 0, σ2 ≠ 1 (composite);
H0 ∶ μ = 0 (composite), alternate H1 ∶ μ ≠ 0 (composite), σ2 is unknown;
H0 ∶ μ ≤ 5, σ2 = 1 (composite), alternate H1 ∶ μ > 5, σ2 = 1 (composite);
H0 ∶ μ = 0, σ2 ≤ 4 (composite), alternate H1 ∶ μ = 0, σ2 > 4 (composite).
The simplest testing problem that can be handled is a simple null hypothesis ver-

sus a simple alternate. But before starting the testing procedure wewill examinemore
details. When a decision is taken, after testing H0, either to reject or not to reject H0,
we have the following possibilities. The hypothesis itself may be correct or not correct.
Our decision may be correct or wrong. If a testing procedure gave a decision not to re-
ject the hypothesis that does not mean that the hypothesis is correct. If the expected
waiting time in a queue, θ, is hypothesized as H0 ∶ θ = 10 minutes, this does not mean
that in fact the expected waiting time is 10 minutes. Our hypothesis may be different
from the reality of the situation. We have one of the following four possibilities in a
given testing situation:

Hypothesis H0
↙↘

H0 is true H0 is not true

Reject H0 Type-I error Correct decision

Decision ↗
↘
Not reject H0 Correct decision Type-II error

There are two situations of correct decision and two situations of wrong deci-
sion. The error committed in rejecting the null hypothesis H0 when it is in fact true
is called type-I error and the error of not rejecting when H0 itself is not true is called
type-II error. The probabilities of committing these two errors are denoted by α and β.
That is,

α = Pr{reject H0|H0 is true}, (13.1)
β = Pr{not reject H0|H0 is not true}, (13.2)

where a vertical bar indicates “given”. As an example, consider the following: Suppose
that we want to test the hypothesis H0 ∶ μ = 2 in a normal population N(μ, 1). Here,
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σ2 is known to be one. Suppose that by using some procedure we have come up with
the following test criterion: Take one observation from this normal population. Reject
the null hypothesis if the observation is bigger than 3.75, otherwise not to reject H0.
Here, α is the probability of rejecting H0 when it is true or the probability of rejecting
H0 ∶ μ = 2 when in fact the normal population isN(μ = 2,σ2 = 1). Hence this probability
is given by the following integral:

α = ∫
∞

3.75

1
√2π

e−
1
2 (x−2)

2dx

= ∫
∞

1.75

1
√2π

e−
1
2 y

2dy, y = (x − μ) = (x − 2)

= 0.04

from standard normal tables. Then β is the probability of not rejecting when μ ≠ 2. We
do not reject when x < 3.75 as per our criterion. Then

β = ∫
3.75

−∞

1
√2π

e−
1
2 (x−μ)

2dx

= ∫
3.75−μ

−∞

1
√2π

e−
1
2 y

2dy, y = x − μ

which gives

1 − β = ∫
∞

3.75−μ

1
√2π

e−
1
2 y

2dy.

Note that β as well as 1 − β can be read from standard normal tables for every given μ.
In general, β is a function of μ or β = β(μ). For μ = 2, then 1 − β = α here.

We have seen that once a test criterion is given one can compute α = the probabil-
ity of type-I error and β = the probability of type-II error. But how to come up with a
test criterion? If we can make α = 0 and β = 0 and come up with a criterion then that
is the best possible one. But we can see that we have a random situation or our prob-
lem is not a deterministic type, and hence making α and β or one of them zero is not
possible. Then is it possible to minimize both α and β simultaneously and come up
with a criterion? It can be seen that simultaneous minimization is not possible. This
may be easily seen from the above illustrative example of N(μ, 1) and testing hypoth-
esis H0 ∶ μ = 2. Take a simple situation of a simple H0 versus a simple H1. Suppose
that packets are filled with beans by an automatic filling machine. The machine is set
for filling 2 kilograms (kg) per packet or the expected weight μ = 2kg. If the machine
is filling without cutting and chopping, then weight need not be exactly 2 kg but will
be around 2 kg per packet. Suppose that the machine is operating in Pala where there
is current fluctuation and stoppage almost every minute. At one of the sudden fluc-
tuations, the machine setting went off and the machine started filling 2.1 kg instead
of 2 kg. A shopkeeper bought some of these packets. She wants to know whether the



386 | 13 Tests of statistical hypotheses

packets belong to the 2 kg set or 2.1 kg set. These are the only possibilities. If theweight
distribution is N(μ, 1), then μ can take only two values 2 or 2.1. If H0 is μ = 2, then nat-
urally H1 here is μ = 2.1. Take our illustrative example for this simple H0 versus simple
H1 case. Our criterion was to take one observation and if it is bigger than 3.75 reject
the H0. We can reduce α by shifting our rejection point or critical point to the right
then we see that automatically β is increased, and vice versa. Hence it is clear that si-
multaneous minimization of α and β is not possible. Then what is the next best thing
to do? We prefix either α or β and minimize the other and then come up with a crite-
rion. This procedure is possible. Then the question iswhich one to be pre-fixed?Which
one is usually a more serious error? Suppose that a new drug is being introduced into
themarket for preventing a heart attack. Themanufacturer’s claim is that the drug can
prevent a heart attack if administeredwithin one hour of the appearance of symptoms
of a heart attack. By a testing procedure, suppose that this claim is rejected and the
drug is rejected. Suppose that the claim was correct. The net result is a loss of money
for developing that drug. Suppose that the claim was not correct and the testing pro-
cedure did not reject the drug. The net result is that a lot of lives are lost. Hence usually
a type-II error is more serious than a type-I error. Therefore, what is done is to prefix
α and minimize β or prefix α and maximize 1 − β.

Let us see what is happening when we have a test criterion. If we have one obser-
vation x1, then our sample space is the x-axis or the real line. If the test criterion says
to reject H0 if x1 ≥ 5, then the sample space S is split into two regions C ⊂ S, where
C = {x1 ∣ x1 ≥ 5} and the complementary region C̄ ⊂ S where H0 is not rejected. If we
have two observations (x1,x2), then we have the plane. If the test criterion says to re-
ject H0 if the sample mean is greater than or equal to 1, then the rejection region in
the sample space S is C = {(x1,x2) ∣ x1 + x2 ≥ 2} ⊂ S. Figure 13.1 shows the illustration in
(a), (b), and in (c) the general Venn diagrammatic representation of the sample space
S and the rejection region C is given.

Figure 13.1: Critical regions.

Definition 13.3 (Critical region and size and power of the critical region). The re-
gion C, C ⊂ S where S is the sample space, where the null hypothesisH0 is rejected,
is called the critical region. The probability of rejecting the null hypothesis when it
is true is α, that is, the sample point falls in the critical region when H0 is true, or

α = Pr{x ϵ C|H0} (13.3)
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is called the size of the critical region or size of the test or size of the test criterion,
where x = (x1,… ,xn) represents the sample point. Then 1 − β = the probability of
rejectingH0 when the alternativeH1 is true is called the power of the critical region
C or power of the test.

IfH0 is that θ ϵ w,w ⊂ Ω, that is, θ belongs to the subsetw of the parameter space,
then H1 is that θ ϵ w̄, where w̄ is the complement of w in Ω. In this case, both α and β
will be functions of θ. For example, for the normal population N(μ,σ2 = 1), if the null
hypothesisH0 is μ ≤ 5 thenH1 is μ > 5. In both of the cases, there are plenty of μ values
present, and hence α = α(μ) and β = β(μ). We may write the above details in symbols
as follows:

α = α(θ) = Pr{x ϵ C|H0}, x = (x1,… ,xn), H0 ∶ θ ϵ w ⊂ Ω

= size of the critical region C (13.4)
1 − β = 1 − β(θ) = Pr{x ϵ C|H1}, H1 ∶ θ ϵ w̄ ⊂ Ω

= power of the critical region C. (13.5)

Definition 13.4 (Most powerful (MP) and uniformly most powerful (UMP) tests or
critical regions). IfH0 ∶ θ = θ0 andH1 ∶ θ = θ1 are simple, that is, the populations are
fully known once the hypotheses are implemented, then there are only two points
θ0 and θ1 in the parameter space. If C is the critical region (or test) of size α, which
has more power compared to any other critical region (or test) of the same size α,
then C is called the most powerful critical region (or test). If H0 or H1 or both are
composite, then if C is the critical region of size α(θ) and hasmore power compared
to any other critical region of the same size α(θ), and for all values of θ ϵ w̄ ⊂ Ω then
C is called uniformly most powerful critical region (or test).

Definition 13.5 (Power curve). If the power 1 − β(θ) is drawn against θ, assuming
that θ is a scalar parameter, then the resulting curve is called the power curve.

In Figure 13.2, power curves are drawn for three critical regions C,D,E, all having the
same size α. For θ > θ0, both C and D havemore power compared to E. For θ < θ0, both
C and E have more power compared to D. For all θ ≠ θ0, C has more power compared

Figure 13.2: Power curves.
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to D and E. Thus C is uniformly more powerful compared to D and E. If there is a C,
which is uniformly more powerful than any other critical region (or test) of the same
size α, then C is uniformly the most powerful critical region (or test).

Thus, for constructing a test criterion our procedure will be the following: If it is
the case of simple H0 versus simple H1, then look for the most powerful test (MPT). If
H0 or H1 or both are composite, then look for uniformly most powerful test (UMPT).
First, we will consider the situation of simple H0 versus simple H1. An example of
this type was already discussed, of automatic filling of bags with beans, where the
machinewas set for the expectedweight of the packet 2 kgbut due to amachine setting
changing to 2.1 kg unknowingly, due to power surge, the expected weight changes to
2.1 for 2.0. There are only twoparameter valueshere 2.0 and 2.1. In the simpleH0 versus
simple H1, there is a small result which will give a procedure of constructing a test
criterion for the most powerful test (MPT). This is called Neyman–Pearson lemma.

Result 13.1 (Neyman–Pearson lemma). Let x = (x1,… ,xn) be a sample point and let
L = L(x1,… ,xn,θ) = joint density or probability function of the sample point. Let L0
be L under H0 and L1 be L under H1 . Let H0 and H1 be simple (H0 will be of the form
θ = θ0 (given), and H1 is of the form θ = θ1 (given)). Let the population support be
free of the parameter(s) θ. Then the most powerful test (MPT) or the most powerful
critical region C is given by the rule

L0
L1

≤ k inside C for some constant k > 0

L0
L1

> k outside C

then C is the most powerful critical region.

Proof. Let the size of the critical region C be α. Let D be any other critical region of
the same size α. Then

α = Pr{x ϵ C|H0} = Pr{x ϵ D|H0}.

We will give the proof in the continuous case, and for the discrete case the steps are
parallel. In the discrete case, the size of the critical region is to be taken as ≤ α because
when adding up the probabilities at individually distinct points we may not hit the
exact value α. Then take the closest value but ≤α. Then

α = ∫
C
L0dx = ∫

C∩D̄
L0dx + ∫

C∩D
L0dx; α = ∫

D
L0dx = ∫

C∩D
L0dx + ∫

C̄∩D
L0dx, (a)

as shown in Figure 13.3, where x = (x1,… ,xn) and dx = dx1 ∧⋯∧ dxn, and ∫x standing
for the multiple integral.
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Figure 13.3: Illustration of Neyman-Pearson Lemma.

From equation (a), we have

∫
C∩D̄

L0dx = ∫
C̄∩D

L0dx. (b)

Let C be the critical region satisfying the condition L0
L1

≤ k inside C. Consider the power
of C, denoted by p1. Then

p1 = 1 − β = ∫
C
L1dx = ∫

C∩D̄
L1dx + ∫

C∩D
L1dx.

But C ∩ D̄ ⊂ C, and hence, inside C, L0
L1

≤ k or L1 ≥
L0
k . Therefore, we can write

∫
C∩D̄

L1dx ≥ ∫
C∩D̄

L0
k
dx.

Then

p1 ≥ ∫
C∩D̄

L0
k
dx + ∫

C∩D
L1dx

= ∫
C̄∩D

L0
k
dx + ∫

C∩D
L1dx from (b).

But C̄ ∩D is outside C and, therefore, L0
L1

> k. Therefore, substituting this, we have

p1 ≥ ∫
C̄∩D

L1dx + ∫
C∩D

L1dx = ∫
D
L1dx = power of D.

Therefore, C is the most powerful critical region.

Example 13.1. Consider a real scalar exponential population with parameter θ and a
simple random sample x1,… ,xn of size n. Let H0 be θ = 5 or θ = θ0 (given) and H1 be
θ = 10 or θ = θ1 (given). Assume that the parameter spaceΩ consists of θ0 and θ1 only.
Construct the MPT or the most powerful critical region.

Solution 13.1.

L = 1
θn
e−

1
θ (x1+⋯+xn).

Consider the inequality

L0
L1

≤ k ⇒ θn1
θn0

e−(
1
θ0
− 1
θ1
)(x1+⋯+xn) ≤ k.
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Taking the natural logarithms on both sides, we have

n(ln θ1
θ0

) − ( 1
θ0

− 1
θ1

)(x1 + ⋯ + xn) ≤ lnk ⇒

−( 1
θ0

− 1
θ1

)(x1 + ⋯ + xn) ≤ lnk − n(lnθ1 − lnθ0) = k1 ⇒

( 1
θ0

− 1
θ1

)(x1 + ⋯ + xn) ≥ −k1.

Let θ1 > θ0. In this case ( 1
θ0

− 1
θ1
) > 0and thendividingboth sides the inequality remains

the same or we have x1 + ⋯ + xn ≥ k2 for some k2. But we know the distribution of
u = x1 + ⋯ + xn, which is a gamma with the parameters (α = n, β = θ). But we have
θ = θ0 or θ = θ1. In both of the cases, the gamma density is fully known, and hence we
can compute percentage points. Let

α = ∫
C
L0dx = Pr{x1 + ⋯ + xn ≥ k2|θ = θ0}

= ∫
∞

uα

un−1

Γ(n)θn0
e−u/θ0du.

For a prefixed α, compute uα froma gammadensity (known) and then the test criterion
says: Reject H0 if the observed u = x1 +⋯+ xn ≥ uα as shown in Figure 13.4. This is the
most powerful test. Note that if θ1 < θ0 then the MPT would have been the following:
Reject H0 if u ≤ u1−α. [This is left as an exercise to the student.]

Figure 13.4: Percentage points for gamma density.

Exercises 13.2
13.2.1. The ball-bearing for an ambassador car is manufactured by the car manufac-
turer’s outfit at Kolkata. Identical duplicates are manufactured by some outfit in Pun-
jab. It is found that the true percentage of defective ones produced by the Kolkata firm
is 10% and that of the Punjab firm is 15%. A spare parts dealer has the stock of the orig-
inal and duplicate spare parts. A garage bought 10 ball-bearing and 3 were found to
be defective; test the hypothesis at the 5% level of rejection that the garage’s lot were
duplicates.
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13.2.2. On a particular stretch of a highway, the expected number of monthly traffic
accidents is 5, and if trafficpolicemen control the traffic then the expectednumber is 3.
Assume that the number of traffic accidents there is Poisson distributed. Randomly
selected 4 months gave the data 0,3, 2,3 accidents. Test the hypothesis, at the 5% level
of rejection, that the traffic policemen were present on that stretch of the highway.

13.2.3. In the out-patient section of a small clinic, only one of two doctors Dr X and
Dr Y will be present to attend to the out-patients on any given day. If Dr X is present,
the expected waiting time in the queue is 30 minutes, and if Dr Y is present, then the
expected waiting time is 40 minutes. Randomly selected 5 out-patients’ waiting times
on a particular day gave the data 50,30,40,45, 25 minutes. Test the hypothesis at a
10% level of rejection, that Dr Y was present on that day, assuming an exponential
distribution for the waiting time.

13.2.4. A margin-free shop has packets of a particular brand of potatoes marked as
5 kg packets. These packets are packed by automatic packing machines, for the ex-
pected weight of 5 kg, without cutting and chopping of potatoes. Sometimes the ma-
chine setting slips to 4.7 kg unknowingly. Four different housewives independently
bought these bags of potatoes on a particular day and found to have the exact weights
3.6,4.8,4.8,5.0kg. Test the hypothesis, at a 5% level of rejection, that the machine set-
ting was 4.7 kg when those packets were packed. Assume that the weight is approxi-
mately normally distributed N(μ,σ2) with σ2 = 0.04kg.

13.2.1 The likelihood ratio criterion or the λ-criterion

The Neyman–Pearson lemma leads to a more general procedure called the lambda
criterion or the likelihood ratio test criterion. Consider a simple random sample X =
(x1,… ,xn) from some population f (x,θ). Then the joint density/probability function is
L(X,θ) = ∏n

j=1 f (xj ,θ). We canmaximize this L(X,θ) over all θ ϵΩ, the parameter space.
If there are several maxima, then take the supremum. Let the null hypothesis H0 be
θ ϵ ω ⊂ Ω. Under H0, the parameter space is restricted to ω. Then L(X,θ)|θ ϵ ω will be
denoted by L0. Then the likelihood ratio criterion or λ-criterion is defined, over the
support of f (x,θ), as follows:

λ =
supθ∈ω L|H0
supθ∈Ω L

. (13.6)

Suppose that H0 was in fact true. In this case, ω ≡ Ω and in this case λ ≡ 1. In general,
0 < λ ≤ 1. Suppose that in a testing situation λ is observed to be very small, close to
zero. Then, from a layman’s point of view, something is wrong with the null hypoth-
esis because if the hypothesis is true, then λ = 1 and if it is nearly ok, then we could
expect λ to be close to 1. If λ is observed at the other end, then we must reject our null
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hypothesis. Thus, we reject for small values of λ. Let λα be a point near zero. Then the
criterion is the following:

Reject the null hypothesis if λ ≤ λα such that

Pr{λ ≤ λα|H0} = α. (13.7)

This is known as the λ-criterion or the likelihood ratio criterion for testing the null
hypothesis H0.

Example 13.2. By using the likelihood ratio criterion, develop a test criterion for test-
ing H0 ∶ μ ≤ μ0 (given) for μ in a N(μ,σ2) where σ2 is known.

Solution 13.2. Let X = (x1,… ,xn) be a simple random sample from a N(μ,σ2) where
σ2 is known. Then

L(X,μ) =
n

∏
j=1

1
σ√2π

e−
1

2σ2
(xj−μ)2

= 1
(σ√2π)n

exp{− 1
2σ2

[
n
∑
j=1

(xj − x̄)2 + n(x̄ − μ)2]}. (a)

The maximum likelihood estimator of μ over the whole parameter space Ω is x̄. Here,
σ2 is known. Hence

sup
μ∈Ω

L(X,μ) = L|
μ=x̄

= 1
(σ√2π)n

exp{− 1
2σ2

n
∑
j=1

(xj − x̄)2}.

The joint density of X is given in (a). Now we want to maximize it under the null hy-
pothesis H0 ∶ μ ≤ μ0. From (a)

maxL ⇒ max lnL ⇒ minn(x̄ − μ)2|μ≤μ0 .

If the observed x̄ is less than μ0, then it is an admissible value for μ since μ ≤ μ0,
and hence the maximum likelihood estimate is x̄ itself. Then λ = 1 and we never re-
ject H0. Hence the rejection can come only when the observed x̄ ≥ μ0. In this case,
(x̄ − μ)2 can be made a minimum by assigning the maximum possible value for μ,
which is μ0 because μ ≤ μ0. Hence the maximum likelihood estimate for μ under H0
is μ0 and we reject only for large values of x̄. Substituting these and simplifying, we
have

λ = exp{− 1
2σ2

n(x̄ − μ0)2}

which is a one to one function of n(x̄ − μ0)2 or one to one function of
√n(x̄−μ0)

σ ∼ N(0, 1)
remembering that x̄ > μ0 and we reject for large values of x̄ or for large values of
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z = √n(x̄−μ0)σ . The probability coverage over this rejection region must be α for a pre-
fixed α. Then from N(0, 1) tables, we have

Pr{z ≥ zα} = α. (b)

Hence the test statistic here is √n(x̄−μ0)σ and the test criterion is:
Reject H0 if

√n(x̄−μ0)
σ ≥ zα where zα is given in (b).

Note 13.1. Was it possible to construct a test criterion if the null hypothesis was
H0 ∶ μ < μ0 in the open interval? From the procedure above, it may be noted that
the maximum likelihood estimator (MLE) exists only when the boundary point μ0
is included. If μ0 is not included, thenwe could not have constructed λ. In that case,
we could have tested a hypothesis of the type μ ≥ μ0 against μ < μ0.

Note 13.2. If we had a hypothesis of the form H0 ∶ μ = μ0 (given), H1 ∶ μ > μ0 and if
we had proceeded to evaluate the likelihood ratio criterion λ, then we would have
ended up with the same criterion as for the hypotheses H0 ∶ μ ≤ μ0, H1 ∶ μ > μ0. But
hypotheses of the type H0 ∶ μ = μ0, H1 ∶ μ > μ0 can be created only if we know be-
forehand that μ can only take values μ0 or higher. You may find misinterpretations
in somebooks in the name of “one-sided tests”. Suchprocedures of one-sided state-
ments are logically incorrect if μ can also logically take values less than μ0. Similar
comments hold for the case H0 ∶ μ = μ0, H1 ∶ μ < μ0.

Note 13.3. Hypotheses are to be formulated before the data are collected. Hypothe-
ses have to come from theoretical considerations or claimsmade bymanufacturers,
business firms, etc. or proclamationsmade by public figures, etc. After formulating
the hypotheses, data are to be collected to properly represent the populations as-
sumed under the hypotheses. If hypotheses are formulated by looking at the data
in hand, then it will result in the misuses of statistical procedures. Suppose that on
four random occasions the information about a habitual gambler’s net gain or loss
is collected. All the four occasions resulted in huge gains. If you formulate a hy-
pothesis that this gambler will always win, then such a claim may not be rejected
by using any testing procedure based on the data in hand. Naturally, your conclu-
sions will be logically absurd. Suppose that a sociologist has collected the data on
annual incomes of families in Kerala. She checked five families at random. Her ob-
servations were 1000, 2000, 5000, 5000, 2000 rupees. If she creates a hypothesis
that the expected family income in Kerala can never be greater than 5000 rupees
or another hypothesis that the expected range of annual incomes will be between
1000 and 5000 rupees, both will result in absurd conclusions if the testing is done
by using the data in hand. Hence hypotheses should not be formulated by looking
at the data in hand.
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Example 13.3. The grades obtained by the students in a particular course are as-
sumed to be normally distributed, N(μ,σ2), with σ2 = 16. A randomly selected set of
four students gave the grades as 60, 70, 80, 60. Test the hypothesisH0 ∶ μ ≤ 65 against
H1 ∶ μ > 65, at the 2.5% level of rejection.

Solution 13.3. The observed sample mean x̄ = 1
4 (60 + 70 + 80 + 60) = 67.5. Here,

μ0 = 65, n = 4. From a standard normal table, the 2.5% percentage point z0.025 = 1.96.
Hence

√n(x̄ − μ0)
σ

≥ zα ⇒ μ0 + zα
σ
√n

= 65 + 1.96(4
2
) = 68.92.

But the observed x̄ = 67.5, and hence the hypothesis is not rejected.

Remark 13.1 (“Acceptance of a hypothesis”). If the testing procedure did not reject
the null hypothesis H0, the hypothesis being tested, can we “accept” the null hy-
pothesis? This is a point ofmisuse of statistical techniques of testing of hypotheses.
If you examine the procedures of constructing a test criterion, we see that it is done
by minimizing the probability of type-II error and by prefixing the probability of
type-I error and the whole procedure deals with rejecting H0 and not for anything
else. If the hypothesis H0 is not rejected, then the procedure does not say anything
about the decision to be made. When we do or do not reject our own hypothesis by
using our own testing procedure we are not making a mathematical statement that
such and such a thing is true.

In our example, the construction of the test statistic had at least the logical founda-
tion of the likelihood ratio principle. Very often statisticians take a pivotal quantity on
their own, not coming fromanyprinciple or procedure, and claim that under their own
hypothesis they know the distribution of their pivotal quantity, and their own testing
procedure did not reject their hypothesis, and hence they are accepting the hypothe-
sis. The logical fallacy of such a procedure and argument is very clear. Suppose that
a farmer’s land bordering a forest area has troubles from wild animals. His vegetable
gardens are usually destroyed. His claim is that wild buffaloes are the culprits. All buf-
faloes have four legs. Suppose that he selected the property “animals having four legs”
as the property based on which his hypothesis will be tested. Note that this property
of having four legs is not a characteristic property of buffaloes. Most of the statistical
tests are not based on characterizing properties. (When a test statistic is taken, there
is no unique determination of the whole distribution.) The farmer checked on four
different nights and counted the number of legs of the culprits. If on a majority of the
nights he found two-leggedwild fowls, two-leggeddrunkards (humanbeings) destroy-
ing his vegetable garden. Then he can safely reject the hypothesis that wild buffaloes
are destroying his vegetable garden. But suppose that on all nights he found 4-legged
animals destroying his garden. He cannot accept the hypothesis that wild buffaloes
are destroying his garden because 4-legged animals could be wild pigs (boars), por-
cupines, elephants, etc., including buffaloes.
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13.3 Testing hypotheses on the parameters of a normal
population N(μ,σ2)

13.3.1 Testing hypotheses on μ in N(μ,σ2) when σ2 is known

We have already looked into a problem of testing hypotheses on the mean value μ in a
real scalar normal population N(μ,σ2) when σ2 is known, as an illustrative example.
By using the likelihood ratio principle and λ-criterion we ended up with a criterion:
reject H0 if √n(x̄−μ0)σ ≥ zα for H0 ∶ μ ≤ μ0 (given), H1 ∶ μ > μ0. This is a test at level α
or the size of the critical region is α or test at level of rejection α. If we had the hy-
potheses H0 ∶ μ ≥ μ0, H1 ∶ μ < μ0, where σ2 is known, then we would have ended up
with the criterion: reject H0 if

√n(x̄−μ0)
σ ≤ −zα. Similarly, for the hypotheses H0 ∶ μ = μ0,

H1 ∶ μ ≠ μ0 then the criterion would have been to reject H0 if |
√n(x̄−μ)

σ | ≥ z α
2
. These two

cases are left to the student as exercises. Also, it was pointed out that if the hypothe-
ses were H0 ∶ μ = μ0, H1 ∶ μ > μ0 the criterion would have been the same as in the case
of H0 ∶ μ ≤ μ0, H1 ∶ μ > μ0. Similarly, for the case H0 ∶ μ = μ0, H1 ∶ μ < μ0 the criterion
would have been the same as for the case H0 ∶ μ ≥ μ0, H1 ∶ μ < μ0. But, such one-sided
statements can be made only if one knows beforehand that μ cannot take the values
less than μ0 or greater than μ0, as the case may be. The results of the tests of hypothe-
ses on μ when σ2 is known can be summarized as follows:

Case (1). Population N(μ,σ2), σ2 known. H0 ∶ μ ≤ μ0, H1 ∶ μ > μ0.
Test statistic: z = √n(x̄−μ0)σ ∼ N(0, 1).
Criterion: reject H0 if the observed z ≥ zα or

√n(x̄−μ0)
σ ≥ zα or x̄ ≥ μ0 + zα

σ
√n .

Case (2). Population N(μ,σ2), σ2 known. H0 ∶ μ ≥ μ0, H1 ∶ μ < μ0.
Test statistic: z = √n(x̄−μ0)σ ∼ N(0, 1).
Criterion: reject H0 if

√n(x̄−μ0)
σ ≤ −zα or x̄ ≤ μ0 − zα

σ
√n .

Case (3). Population N(μ,σ2), σ2 known. H0 ∶ μ = μ0, H1 ∶ μ ≠ μ0.
Test statistic: z = √n(x̄−μ0)σ ∼ N(0, 1).
Criterion: reject H0 if |

√n(x̄−μ0)
σ | ≥ zα/2 or x̄ ≥ μ0 + zα/2

σ
√n or x̄ ≤ μ0 − zα/2

σ
√n .

Figure 13.5: Illustration of the criteria for H0 ∶ μ ≤ μ0; H0 ∶ μ ≥ μ0; H0 ∶ μ = μ0.

The rejection region or critical region is zα ≤ z < ∞ for Case (1) or this region can be
described as x̄ ≥ μ0 + zα

σ
√n and α is the size of the critical region or level of the test. The

critical point is zα in terms of z or μ0 + zα
σ
√n in terms of x̄.



396 | 13 Tests of statistical hypotheses

Figure 13.6: Critical point and critical region.

Remark 13.2. From Figure 13.6, note that the probability coverage over x̄ ≥ μ0 +
zα

σ
√n is α for every n. Now, assume that n is becoming larger and larger. Then the

point Q starts moving towards μ0 or the range for x̄ to fall in the rejection region
becomes larger and larger, with the same prefixed α. Finally, when n→ ∞, by the
weak law of large numbers, x̄ goes to the true value μ or to μ0 if the hypothesized
μ0 is the true value. For n becoming larger and larger, we keep on rejecting H0. By
our procedure, x̄ must fall above μ0. Hence critics of testing procedures say that we
can always reject the null hypothesis by taking large enough sample size.

Example 13.4. The temperature at Pala during the month of August seems to hover
around 28 °C. Someonewishes to test the hypothesis that the expected temperature on
any given day in August in Pala area is less than 28 °, assuming that the temperature
distribution is N(μ,σ2), with σ2 = 4. The following is the data on temperature reading
on randomly selected 4 days in August: 30, 31, 28, 25. Test at 2.5% level of rejection.

Solution 13.4. The hypothesis of the type less than 28 °C cannot be tested because it
is in the open interval. We can test H0 ∶ μ ≥ 28 against H1 ∶ μ < 28. Hence we formulate
the hypothesis to be tested in this format. The observed sample mean x̄ = 1

4 (30 + 31 +
28 + 25) = 28.5. zα = z0.025 = 1.96. μ0 − zα

σ
√n = 28 − 1.96( 22 ) = 26.04. But the observed

value of x̄ = 28.5 > 26.04, and hence the hypothesis H0 ∶ μ ≥ 28 is not rejected at the
2.5% level.

13.3.2 Tests of hypotheses on μ in N(μ,σ2) when σ2 is unknown

Here, since σ2 is unknown we need to estimate σ2 also. These estimates in the whole
parameter space are μ̂ = x̄ and σ̂2 = s2 = 1

n ∑n
j=1(xj − x̄)2. Hence, substituting these, we

have the maximum of the likelihood function, given by

max
μ,σ2

L =
1

(s22π)
n
2
e−n/2. (13.8)

Let us try to test the null hypothesis μ ≥ μ0 (given), against H1 ∶ μ < μ0. If the observed
x̄ falls in the interval μ0 ≤ x̄ < ∞, then it in the admissible range of μ, under H0, and
hence the MLE of μ, under the null hypothesis H0, is x̄ and then λ ≡ 1, and hence we
do not reject H0 in this case. Hence the question of rejection comes only when the
observed x̄ falls below μ0. But

𝜕
𝜕μ

lnL = 0 ⇒ μ − x̄ = 0.



13.3 Testing hypotheses on the parameters of a normal population N(μ,σ2) | 397

Hence if μ cannot take the value x̄, then we assign the closest possible value to x̄ for μ,
which is μ0 under H0 ∶ μ ≤ μ0 as well as for H0 ∶ μ ≥ μ0. [Note that this value can be
assigned only because μ0 is an admissible value under H0 or H0 contains that point.
Hence in the open interval μ > μ0 testing is not possible by using this procedure.] Then
the MLE of σ2, under H0, is given by

σ̂2 = 1
n

n
∑
j=1

(xj − μ0)2.

Substituting these MLE’s for μ and σ2, under H0, we have

λ2/n =
∑n
j=1(xj − x̄)

2

∑n
j=1(xj − μ0)2

=
∑n
j=1(xj − x̄)

2

[∑n
j=1(xj − x̄)2 + n(x̄ − μ0)2]

= 1
[1 + n(x̄−μ0)2
∑nj=1(xj−x̄)2

]
, x̄ < μ0.

This is a one to one function of the Student-t statistic

tn−1 =
√n(x̄ − μ0)

s1
, s21 =

∑n
j=1(xj − x̄)2

n − 1
. (13.9)

Since the criterion is constructed for x̄ < μ0, the hypothesis H0 is rejected for small
values of tn−1 or

Pr{tn−1 ≤ −tn−1,α} = α. (13.10)

Thus the criterion can be stated as follows: reject H0 ∶ μ ≥ μ0 when tn−1 ≤ −tn−1,α or
when the observed x̄ ≤ μ0 − tn−1,α

s1
√n , where s

2
1 the unbiased estimator of σ2 is given in

(13.9). Thus when σ2 is unknown the standardized normal test statistic changes into a
Student-t statistic.

Note 13.4. Note from the examples and discussions so far that the rejection region
is always in the direction of the alternate hypothesis. When the alternate is θ > θ0,
we reject at the right tail with probability α; when H1 is θ < θ0 we reject at the left
tail with probability α and when H1 is θ ≠ θ0 we reject at both the tails (right and
left with probabilities α1 and α2, such that α1 + α2 = α, but for convenience we take
α1 = α2 = α

2 each).

Example 13.5. The following is the data on the time taken by a typist to type a page
of mathematics in TEX: 20,30, 25,41. Assuming that the time taken is normally dis-
tributed N(μ,σ2)with unknown σ2, test the hypothesis H0 ∶ μ ≥ μ0 = 30, H1 ∶ μ < μ0, at
the level of rejection 5%.
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Solution 13.5. The sample mean x̄ = 1
4 (20 + 30 + 25 + 41) = 29. Observed value of

s21 =
∑nj=1(xj−x̄)

2

n−1 = 242
3 . tn−1,α = t3,0.05 = 2.353. μ0 = 30. μ0 − tn−1,α

s1
√n = 30 − 2.353(√2422√3 ) =

30 − 10.57 = 19.43. But the observed x̄ = 29, which is not less than 19.43, and hence we
cannot reject H0, at a 5% level of rejection.

In the above example, the observed value of the Student-t variable, tn−1 =
√n(x̄−μ0)

s1
= 2(29−30)

8.98 = − 2
8.98 = −0.22. The observed value of the test statistic is −0.22

and the rejection region is on the left tail. Hence we can compute the probability that
a tn−1 ≤ −0.22. This is called the p-value for this example.

Definition 13.6 (The p-values). Compute the observed value of the test statistic
used for testing a hypothesis H0. Let the test statistic be denoted by u and the
observed value be denoted by u0. If the rejection region is on the right, then the
p-value is Pr{u ≥ u0}; if the rejection region is on the left (in this case usually u0 will
be negative if the statistic can take negative values) then the p-value is Pr{u ≤ u0}
and if the rejection region is at both ends then the p-value is Pr{u ≥ |u0|} + Pr{u ≤
−|u0|} if u has a symmetric distribution, symmetric about u = 0.

The advantage of p-values is that, instead of a pre-fixed α, by looking at the
p-values we can make decisions at various levels of α, and conclude at which level
H0 is rejected and at which level H0 is not rejected. We can summarize the inference
on μ, when σ2 is unknown as follows:

Case (4). H0 ∶ μ ≤ μ0, H1 ∶ μ > μ0, population N(μ,σ2), σ2 unknown.
Test statistic: √n(x̄−μ0)s1

∼ tn−1, s21 =
∑nj=1(xj−x̄)

2

n−1 ;
Criterion: reject H0 if the observed tn−1 ≥ tn−1,α or the observed value of x̄ ≥ μ0 +

tn−1,α
s1
√n .

Case (5). H0 ∶ μ ≥ μ0, H1 ∶ μ < μ0, population N(μ,σ2), σ2 unknown.
Test statistic: same as in Case (4);
Criterion: reject H0 if the observed value of tn−1 ≤ −tn−1,α or the observed value of

x̄ ≤ μ0 − tn−1,α
s1
√n .

Case (6). H0 ∶ μ = μ0, H1 ∶ μ ≠ μ0, population N(μ,σ2), σ2 unknown.
Test statistic: same as in cases (4) and (5);
Criterion: reject H0 if the observed value of |√n(x̄−μ0)s1

| ≥ tn−1,α/2 or the observed
value of x̄ ≥ μ0 + tn−1, α2

s1
√n or x̄ ≤ μ0 − tn−1, α2

s1
√n as illustrated in Figure 13.7.

Figure 13.7: Illustration of H0 on μ in N(μ,σ2) when σ2 is unknown.
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13.3.3 Testing hypotheses on σ2 in a N(μ,σ2)

Here, there are two cases to be considered. (a) when μ is known and (b) when μ is not
known. The maximum of the likelihood function in the whole of the parameter space
will be the following:

max
(μ,σ2)∈Ω

L = 1
(2πs2)

n
2
e−n/2, s2 =

∑n
j=1(xj − μ)

2

n
.

Replace μ by x̄ if μ is unknown. Let us take the case H0 ∶ σ2 ≤ σ20, H1 ∶ σ2 > σ20 where
μ is known. Then what is the maximum of the likelihood function under this H0? Let
θ = σ2. The likelihood equation is the following:

𝜕
𝜕θ

lnL = 0 ⇒ θ − s2 = 0, s2 =
∑n
j=1(xj − μ)

2

n
.

Then if s2 is an admissible value for θ then θ̂ = s2, otherwise assign the closest possible
value to s2 for θ. The closest possible value to s2 for θ is σ20 for H0 ∶ σ2 ≤ σ20 (given), as
well as for H0 ∶ σ2 ≥ σ20. But

u =
∑n
j=1(xj − μ)

2

σ20
∼ χ2n

a chi-square with n degrees of freedom. If μ is unknown, then μ will be replaced by
x̄ when doing the maximization and in this case u ∼ χ2n−1. This is the only difference.
Hence the λ-criterion becomes

λ = un/2

nn/2
e−

1
2 u, u ∼ χ2n. (13.11)

The shape of this λ, as a function of u, is given in Figure 13.8.

Figure 13.8: Shape of λ-criterion as a function
of u = χ2n .

We always reject for small values of λ, that is, Pr{λ ≤ λ0|H0} = α. As shown in Fig-
ure 13.8, this statement is equivalent to the general probability statement for u ≤ u0
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and u ≥ u1 as shown in Figure 13.8. But in the above case we reject only for large val-
ues of s2 compared to σ20. Hence for the above case we reject only at the right tail. That
is, we reject H0 if χ2n ≥ χ2n,α . Similar procedures will yield the test criteria for the other
cases. We can summarize the results as follows and illustration is given in Figure 13.9:

Case (7). H0 ∶ σ2 ≤ σ20 (given), H1 ∶ σ2 > σ20, population N(μ,σ2), μ known.
Test statistic: ∑

n
j=1(xj−μ)

2

σ20
∼ χ2n. (Replace the degrees of freedom n by n − 1 and μ by

x̄ when μ is unknown. Hence this situation is not listed separately. Make the changes
for each case accordingly. When μ is known, we have the choice of making use of μ or
ignoring this information.)

Criterion: reject H0 if the observed value of
∑nj=1(xj−μ)

2

σ20
≥ χ2n,α.

Case (8). H0 ∶ σ2 ≥ σ20, H1 ∶ σ2 < σ20, population N(μ,σ2),μ known.
Test statistic: same as above.
Criterion: reject H0 if the observed

∑nj=1(xj−μ)
2

σ20
≤ χ2n,1−α.

Case (9). H0 ∶ σ2 = σ20, H1 ∶ σ2 ≠ σ20, population N(μ,σ2), μ known.
Test statistic: same as above.
Criterion: reject H0 if the observed χ2n ≤ χ2n,1− α2 or χ

2
n ≥ χ2n, α2 . (Note from Figure 13.8

that the cut off areas are not equal to α
2 at both ends but for convenience we will take

them as equal.)

Figure 13.9: Testing hypotheses on σ2 in N(μ,σ2), μ known.

When μ is unknown, all steps and criteria are parallel. Replace μ by x̄ and the degrees
of freedom n by n − 1 for the chi-square. If μ is known but if we choose to ignore this
information, then also replace μ by x̄.

Exercises 13.3
13.3.1. By using the likelihood ratio principle, derive the test criteria for testing the
followinghypotheses on μ in aN(μ,σ2)where σ2 is known, andassuming that a simple
random sample of size n is available from this population and here μ0 refers to a given
number.
(1) H0 ∶ μ = μ0, H1 ∶ μ > μ0 (It is known beforehand that μ can never be less than μ0.)
(2) H0 ∶ μ ≥ μ0, H1 ∶ μ < μ0
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(3) H0 ∶ μ = μ0, H1 ∶ μ < μ0 (It is known beforehand that μ can never be greater
than μ0.)

(4) H0 ∶ μ = μ0, H1 ∶ μ ≠ μ0

13.3.2. Repeat Exercise 13.2.1 for the following situations when σ2 is unknown:
(1) H0 ∶ μ = μ0, H1 ∶ μ < μ0 (It is known beforehand that μ can never be greater

than μ0.)

13.3.3. By using the likelihood ratio principle, derive the test criteria for testing the
following hypotheses on σ2 in a N(μ,σ2), assuming that a simple random sample of
size n is available. Construct the criteria for the cases (a) μ is known, (b) μ is unknown
for the following situations, where σ20 denotes a given quantity:
(1) H0 ∶ σ2 = σ20, H1 ∶ σ2 > σ20 (It is known beforehand that σ2 can never be less

than σ20.)
(2) H0 ∶ σ2 ≥ σ20, H1 ∶ σ2 < σ20
(3) H0 ∶ σ2 = σ20, H1 ∶ σ2 < σ20 (It is known beforehand that σ2 can never be greater

than σ20.)
(4) H0 ∶ σ2 = σ20, H1 ∶ σ2 ≠ σ20

13.3.4. Illustrate all cases in Exercise 13.3.1 if μ = 1kg and the observed data are the
yields of tapioca on experimental test plots given by 5, 10,3,7kg.

13.3.5. Illustrate all cases in Exercises 13.3.2 for the same data in Exercise 13.3.4.

13.3.6. Illustrate all cases in Exercise 13.3.3 by using the data in Exercise 13.3.4 for
the cases (a) μ = 1, (b) μ is unknown. Cut off equal areas at both tails, for conve-
nience.

13.4 Testing hypotheses in bivariate normal population

In a bivariate normal distribution, there are five parameters. If (x1,x2) represents a bi-
variate random variable, then the parameters are μ1 = E(x1), μ2 = E(x2), Var(x1) = σ21 ,
Var(x2) = σ22 , ρ = correlation between x1 and x2. If we have n data points, then the
sample will be of the form Xi = (x1i ,x2i), i = 1,… ,n, where capital Xi represents a vec-
tor. If we have a simple random sample from (x1,x2), then Xi, i = 1,… ,n are iid vari-
ables. In a practical situation, it may be possible to take observations but we may
not have information about the five parameters. The situation may be that x1 is the
weight of an experimental animal before giving a special animal feed and x2 may be
the weight of the same animal after administering the special feed. Evidently, x1 and
x2 are not independently distributed. Another example is the situation of adminis-
tering a drug. x1 may be the blood pressure before giving the drug and x2 the same
blood pressure after giving the drug. Our aim may be to test hypotheses of the type
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μ2 ≤ μ1 or μ2 − μ1 ≤ 0. Such hypotheses can be tested without knowing the five param-
eters.

Let us consider a more general situation of testing a hypothesis on aμ1 + bμ2 + c
where a,b, c are known constants such as 2μ1 − 3μ2 + 2 ≤ 0. This can be tested be-
cause we know that when (x1,x2) has a bivariate normal distribution, then all linear
functions of x1 and x2 are also normally distributed. Hence if u = ax1 + bx2 + c, then
u ∼ N(μ,σ2), where μ = E(u) = aμ1 + bμ2 + c and σ2 = Var(u). Here, σ2 is usually un-
known. Hence the procedure is the following. Convert the observations (x1i ,x2i) to ob-
servations on u, namely

ui = ax1i + bx2i + c, i = 1,… ,n, u ∼ N(μ,σ2)

where a,b, c are known. Let

ū =
∑n
j=1 uj
n

, s21 =
∑n
j=1(uj − ū)2

n − 1
.

Then from Section 13.3.2, the test statistic will be a Student-t with n − 1 degrees of
freedom, given by

√n(ū − μ0)
s1

∼ tn−1 (13.12)

where μ0 is the hypothesized value of E(u). The test criteria, at the level of rejection α,
are the following, where μ = aμ1 + bμ2 + c, a,b, c known:

Case (10). H0 ∶ μ ≤ μ0, H1 ∶ μ > μ0; reject H0 if the observed value of
√n(ū−μ0)

s1
≥ tn−1,α or

ū ≥ μ0 + tn−1,α
s1
√n .

Case (11). H0 ∶ μ ≥ μ0, H1 ∶ μ < μ0; reject H0 if the observed value of
√n(ū−μ0)

s1
≤ −tn−1,α

or ū ≤ μ0 − tn−1,α
s1
√n .

Case (12). H0 ∶ μ = μ0, H1 ∶ μ ≠ μ0; reject H0 if the observed value of |
√n(ū−μ0)

s1
| ≥ tn−1, α2

or ū ≥ μ0 + tn−1, α2
s1
√n or ≤ μ0 − tn−1, α2

s1
√n .

The illustration is the same as the one in Section 13.3.2, Figure 13.7. Let σ2 = Var(u).
Then we can test hypotheses on σ2 also by using the same data.

Case (13).H0 ∶ σ2 ≤ σ20,H1 ∶ σ2 > σ20; rejectH0 if the observed value of χ2n−1 =
∑nj=1(uj−ū)

2

σ20
≥

χ2n−1,α.

Case (14). H0 ∶ σ2 ≥ σ20, H1 ∶ σ2 < σ20; reject H0 if the observed value of the same χ2n−1 ≤
χ2n−1,1−α.

Case (15). H0 ∶ σ2 = σ20, H1 ∶ σ2 ≠ σ20; reject H0 if the observed value of the same χ2n−1 ≤
χ2n−1,1− α2 or ≥χ

2
n−1, α2

.
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Note 13.5. If (x1,… ,xp) ∼ Np(μ̃, Σ), a p-variate multinormal then the same proce-
dure can be used for testing hypotheses on the expected value and variance of any
given linear function a1x1 + ⋯ + apxp + b, where a1,… ,ap,b are known, without
knowing the individual mean values or the covariance matrix Σ.

Example 13.6. The claim of a particular exercise routine is that the weight will be
reduced at least by 5 kilograms (kg). A set of 4 people are selected at random from the
set of individuals who went through the exercise routine. The weight before starting
is x1 and the weight at the finish is x2. The following are the observations on (x1,x2):
(50,50), (60,55), (70,60), (70,75). Assuming a bivariate normal distribution for (x1,x2)
test the claim at a 2.5% level of rejection.

Solution 13.6. Let μ1 = E(x1), μ2 = E(x2). Then the claim is μ1 − μ2 ≥ 5. Let u = x1 − x2.
Then the observations on u are 50 − 50 = 0, 60 − 55 = 5, 70 − 60 = 10, 70 − 75 = −5
and the observed ū = 1

4 (0 + 5 + 10 − 5) = 2.5. An observed value of s21 = 1
n−1 ∑

n
j=1(uj −

ū)2 = 1
3 [(0 − 2.5)2 + (5 − 2.5)2 + (10 − 2.5)2 + (−5 − 2.5)2] = 125

3 , s1 ≈ 6.45, μ0 = 5. Hence
μ0 − tn−1,α

s1
√n = 5 − t3,0.025

6.45
2 = 5 − 3.182(3.225) ≈ −5.26. The observed value of ū = 2.25

which is not less than −5.26, and hence the null hypothesis is not rejected.

Remark 13.3. Our conclusion should not be interpreted as the claim being correct
and it cannot be interpreted that we can “accept” the claim. The above result only
indicates that the data at hand does not enable us to reject the claim. Perhaps other
data points might have rejected the hypothesis or perhaps the normality assump-
tionmay not be correct thereby the procedure becomes invalid or perhaps the claim
itself may be correct.

Exercises 13.4
13.4.1. Let x1 be the grade of a student in a topic before subjecting to a special method
of coaching and let x2 be the corresponding grade after the coaching. Let E(x1) = μ1,
E(x2) = μ2. The following are the paired observations on the grades of five indepen-
dently selected students from the same set. (80,85), (90,92), (85,80), (60,70), (65,68).
Assuming (x1,x2) to have a bivariate normal distribution test the following claims at
5% level of rejection: (1) μ2 ≥ μ1; (2) 2μ2 − 3μ1 < 2; (3) 5μ2 − 2μ1 ≤ 3.

13.4.2. Let t1 be the body temperature of a patient having some sort of fever before
giving particular medicine and let t2 be the temperature after giving the medicine.
Let μ1 = E(t1), μ2 = E(t2), σ21 = Var(t1 − t2), σ22 = Var(2t1 − 3t2). Assume that (t1, t2) has a
bivariate normal distribution. The following are the observations on (t1, t2) from 4 ran-
domly selected patients having the same sort of fever. (101,98), (100,97), (100, 100),
(98,97). Test the following hypotheses at 5% level of rejection. (1) H0 ∶ μ2 < μ1; (2) H0 ∶
μ2 ≤ μ1 + 1; (3) H0 ∶ μ1 + 1 ≥ μ2; (4) H0 ∶ σ21 ≤ 0.04; (5) H0 ∶ σ21 = 0.2; (6) H0 ∶ σ22 ≥ 0.3.
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13.5 Testing hypotheses on the parameters of independent
normal populations

Let x1 ∼ N(μ1,σ21 ) and x2 ∼ N(μ2,σ22 ) and let x1 and x2 be independently distributed.
This situation is a special case of the situation in Section 13.4. We can test hypotheses
on the mean values and variances of general linear functions of x1 and x2 by using
similar procedure as adopted in Section 13.4, that is, hypotheses on E(u) and Var(u),
where u = a1x1 +a2x2 +b, a1,a2,b are known constants.Wewill list here some standard
situations such asH0 ∶ μ1 −μ2 = δ, for given δ. Let x11,… ,x1n1 and x21,… ,x2n2 be simple
random samples of sizes n1 and n2 from x1 and x2, respectively. Let

x̄1 =
n1
∑
j=1

x1j
n1

, x̄2 =
n2
∑
j=1

x2j
n2

, s21 =
n1
∑
j=1

(x1j − x̄1)2

n1
,

s22 =
n2
∑
j=1

(x2j − x̄2)2

n2
, s21(1) =

n1
∑
j=1

(x1j − x̄1)2

n1 − 1
, s22(1) =

n2
∑
j=1

(x2j − x̄2)2

n2 − 1
,

s2 =
[∑n1

j=1(x1j − x̄1)2 + ∑n2
j=1(x2j − x̄2)2]

n1 + n2 − 2
. (13.13)

The likelihood ratio principle will lead to the following test criteria at α level of rejec-
tion:

Case (16). σ21 , σ22 known, δ given. H0 ∶ μ1 − μ2 ≤ δ, H1 ∶ μ1 − μ2 > δ; Test statistic: z =
x̄1−x̄2−δ

√ σ21
n1
+ σ

2
2
n2

∼ N(0, 1); Criterion: reject H0 if the observed value of z ≥ zα.

Case (17). σ21 , σ22 , δ known. H0 ∶ μ1 − μ2 ≥ δ, H1 ∶ μ1 − μ2 < δ. Test statistic is the same z
as above. Test criterion: reject H0 if the observed value of z ≤ −zα.

Case (18). σ21 , σ22 , δ known. H0 ∶ μ1 − μ2 = δ, H1 ∶ μ1 − μ2 ≠ δ. Test statistic is the same
as above. Test criterion: reject H0 if the observed value of |z| ≥ z α

2
.

Illustration is the same as the ones in Section 13.3.1, Figure 13.5.

Case (19). σ21 = σ22 = σ2 (unknown), δ given.H0 ∶ μ1 −μ2 ≤ δ,H1 ∶ μ1 −μ2 > δ. Test statis-
tic

[x̄1 − x̄2 − δ]
s√ 1

n1
+ 1

n2

∼ tn1+n2−2

or a Student-t with n1 + n2 − 2 degrees of freedom, where s2 is given in (13.13). Test
criterion: reject H0 if the observed value of tn1+n2−2 ≥ tn1+n2−2,α.

Case (20). σ21 = σ22 = σ2 (unknown), δ given.H0 ∶ μ1 −μ2 ≥ δ,H1 ∶ μ1 −μ2 < δ. Test statis-
tic is the same Student-t as above. Test criterion: reject H0 if the observed value of
tn1+n2−2 ≤ −tn1+n2−2,α.
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Case (21). σ21 = σ22 = σ2 (unknown), δ given. H0 ∶ μ1 −μ2 = δ, H1 ∶ μ1 −μ2 ≠ δ. Test statis-
tic is the same as above. Test criterion: reject H0 if the observed value of |tn1+n2−2| ≥
tn1+n2−2, α2 .

The illustration is the same as in Section 13.3.2, Figure 13.7. We can also test a
hypothesis on a constant multiple of the ratio of the variances in this case. Consider a
typical hypothesis of the type H0 ∶ σ21

σ22
≤ η > 0 for a given η. Without loss of generality,

we can take η = 1 andwrite the hypothesis as σ21
σ22

≤ 1. Let us examine the likelihood ratio
principle here. Let θ represent all the parameters θ = (μ1,μ2,σ21 ,σ22 ). The parameter
space is

θ ∈ Ω ⇒ Ω = {θ ∣ −∞ < μi < ∞,0 < σ2i < ∞, i = 1, 2}.

The joint density function is given by

L = [ 1
(2πσ21 )

n1
2
e
− 1
2σ21
∑n1j=1(x1j−μ1)2]

× [ 1
(2πσ22 )

n2
2
e
− 1
2σ22
∑n2j=1(x2j−μ2)2]

In the parameter space Ω, the MLEs are x̄1, x̄2, s21 , s22 which are given in (13.13). Hence
the maximum of the likelihood function is the following:

max
θ∈Ω

L = e−
1
2 (n1+n2)

[(2πs21)
n1
2 (2πs22)

n2
2 ]

. (13.14)

Now, let us impose the hypothesisH0 ∶ σ21 ≤ σ22 . TheMLEs of μ1 and μ2 remain the same
as μ̂1 = x̄1 and μ̂2 = x̄2. We can also write this H0 as σ21 = δσ22 , 0 < δ ≤ 1. Then the joint
density, at μ̂1 = x̄1, μ̂2 = x̄2, denoted by L1, becomes

L1 = [(2π)
n1+n2

2 δ
n1
2 (σ22)

n1+n2
2 ]−1

× exp{− 1
2σ22

[
n1s21
δ

+ n2s22]}

where s21 and s22 are as defined in (13.13). Maximizing L1 by using calculus we have the
estimator for σ22 as

σ̂22 =
[n1s21δ] + n2s22

n1 + n2
.

Therefore, substituting all these values we have the λ-criterion as the following. [In
this representation of λ, we have used the property that

n1(n2 − 1)s21
n2(n1 − 1)s22

=
[∑n1

j=1(x1j − x̄1)2/(n1 − 1)]
[∑n2

j=1(x2j − x̄2)2/(n2 − 1)]
∼ Fn1−1,n2−1 (13.15)
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when σ21 = σ22 , where Fn1−1,n2−1 is an F-random variable with n1 − 1 and n2 − 1 degrees
of freedom. Then λ is written in terms of F-variable, for convenience.]

λ = (s21)
n1
2 (s22)

n2
2

δ
n1
2 (σ̂22)

1
2 (n1+n2)

= c1
[Fn1−1,n2−1]

n1
2

[1 + c2Fn1−,n2−1]
1
2 (n1+n2)

where c1 and c2 are positive constants. The nature of λ, as a function of Fn1−1,n2−1 is
given in Figure 13.10.

Figure 13.10: λ as a function of Fn1−1,n2−1.

Note that in the above H0 and alternate we will not be rejecting for small values of
σ21
σ22

and we will reject only for large values or we will reject only for large values of
Fn1−1,n2−1. Hence the criteria can be stated as the following and illustration is given in
Figure 13.11.

Figure 13.11: Illustration of the critical regions.

Case (22). Independent N(μ1,σ21 ) and N(μ2,σ22 ) populations. H0 ∶ σ21
σ22

≤ 1, H1 ∶ σ21
σ22

> 1.
Test statistic: Fn1−1,n2−1 given in (13.15). Test criterion: reject H0 if the observed value of
Fn1−1,n2−1 ≥ Fn1−1,n2−1,α.

Case (23). Same independent normal populations as above. H0 ∶ σ21
σ22

≥ 1, H1 ∶ σ21
σ22

< 1.
Test statistic is the same as above. Test criterion: reject H0 if the observed value of
Fn1−1,n2−1 ≤ Fn1−1,n2−1,1−α.

Case (24). Same independent normal populations as above. H0 ∶ σ21 = σ22 , H1 ∶ σ21 ≠
σ22 . Test statistic is the same as above. Criterion: reject H0 if the observed Fn1−1,n2−1 ≤
Fn1−1,n2−1,1− α2 or Fn1−1,n2−1 ≥ Fn1−1,n2−1, α2 .
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Note 13.6. The student will not find the lower percentage point for a F-density tab-
ulated. This is because you can get lower percentage points from the upper percent-
age points of another F-density. The connection is the following:

Fm,n ≤ Fm,n,1−α ⇒ Fm,n ≥ 1
Fn,m,α

and hence the lower percentage points in Fm,n are available from the reciprocal of
the upper percentage points of Fn,m.

Note 13.7. If μ1 and μ2 are known, then we can use μ1 and μ2 instead of their es-
timators. In this case, replace Fn1−1,n2−1 by Fn1,n2 . In this situation, if we replace μ1
and μ2 by their estimators and proceeded as above, then also the procedure is valid.
Hence in this situation we can use both Fn1,n2 as well as Fn1−1,n2−1 as test statistics.

Example 13.7. Steel rods made through two different processes are tested for break-
ing strengths. Let the breaking strengths under the two processes be denoted by x
and y, respectively. The following are the observations on x: 5, 10, 12,3, and on y:
8, 15, 10, respectively. Assuming that x ∼ N(μ1,σ21 ) and y ∼ N(μ2,σ22 ) and independently
distributed, test the hypothesis at a 5% level of rejection that σ21 ≤ σ22 .

Solution 13.7. Here, according to our notations, n1 = 4, n2 = 3, the observed values of
x̄ = 1

4 (5 + 10 + 12 + 3) = 7.5 = x̄1, ȳ = 1
3 (8 + 15 + 10) = 11 = x̄2, ∑

n1
j=1(x1j − x̄1)2 = (5 − 7.5)2 +

(10−7.5)2+(12−7.5)2+(3−7.5)2 = 53,∑n2
j=1(x2j− x̄2)2 = (8−11)2+(15−11)2+(10−11)2 = 26.

Therefore, the observed value of

Fn1−1,n2−1 = F3,2 = (53/3)
(26/2)

≈ 1.34.

From a F-table, we have F3,2,0.05 = 19.2. But 1.34 is not bigger than 19.2, and hence we
cannot reject H0.

Exercises 13.5
13.5.1. The yields of ginger from test plots, under two different planting schemes, are
the following: 20, 25, 22, 27 (scheme 1), 23, 18, 28,30,32 (scheme 2). If the yields under
the two schemes are independently normally distributed as N(μ1,σ21 ) and N(μ2,σ22 ),
respectively, test the following hypotheses at a 5% level of rejection, where the alter-
nates are the natural alternates or negation of the null hypotheses: (1) H0 ∶ μ1 − μ2 ≤ 1,
given that σ21 = 2, σ22 = 3; (2) H0 ∶ 2μ1 − 3μ2 ≥ 3 given that σ21 = σ22 ; (3) H0 ∶ μ1 = μ2, given
that σ21 = σ22 ; (4) H0 ∶ σ21 ≤ σ22 given that μ1 = 0, μ2 = −2; (5) H0 ∶ σ21 = σ22 .

13.5.2. Derive the λ-criterion for the following cases and show that they agree with
what is given in the text above, the alternates are the negation of the null hypotheses:
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(1)H0 ∶ μ1 ≥ μ2, given σ21 = 5, σ22 = 2; (2)H0 ∶ 2μ1 −μ2 ≤ 2, given that σ21 = σ22 ; (3)H0 ∶ σ21 ≥
σ22 , given that μ1 = 0, μ2 = −5.

13.6 Approximations when the populations are normal

In Section 13.3.2, we dealt with the problem of testing hypotheses on the mean value
μ of a normal population when the population variance σ2 is unknown. We ended up
with a Student-t as the test statistic and the decisions were based on a tn−1, Student-t
with n − 1 degrees of freedom.

13.6.1 Student-t approximation to normal

Inmany books, the studentmay find a statement that if the degrees of freedomare big-
ger than 30, then read off the percentage points from a standard normal table, instead
of the Student-t table, and Student-t tables are not usually available also for large val-
ues of the degrees of freedom, beyond 30. But the student can use a computer and
program it and compute to see the agreement of the tail areas with the tail areas of a
standard normal density. You will see that even for degrees of freedom as large as 120
the agreement is not that good. The theoretical basis is given in Exercise 13.6.1 at the
end of this section. Hence when replacing Student-t values with standard normal val-
ues this point should be kept inmind. Hence the approximation used is the following:

u =
√n(x̄ − μ0)

s
≈ N(0, 1), for large n (13.16)

where s2 could be the unbiased estimator for σ2 or we may use the MLE itself. When n
is large, dividing by n or n−1 will notmakemuch of a difference. Hence the test criteria
can be stated as follows:

Case (25). Population N(μ,σ2), σ2 unknown, n is very large. H0 ∶ μ ≤ μ0 (given), H1 ∶
μ > μ0. Test statistic as given in (13.16). Criterion: rejectH0 if the observed u ≥ zα where
zα is the upper 100α% point from a standard normal.

Case (26). Population and situation as in Case (25).H0 ∶ μ ≥ μ0,H1 ∶ μ < μ0. Test statis-
tic: same u as in (13.16). Criterion: reject H0 if the observed u ≤ −zα.

Case (27). Population details are as in Case (25). H0 ∶ μ = μ0, H1 ∶ μ ≠ μ0. Test statistic:
same u in (13.16). Criterion: reject H0 when the observed value of |u| ≥ z α

2
. Illustration

is as in Section 13.3.1, Figure 13.5.

In the case of two independent normal populations x1 ∼ N(μ1,σ21 ), and x2 ∼
N(μ2,σ22 ), and samples of sizes n1 and n2 and the notations as used in (13.12), we
may have a situation where σ21 and σ22 are unknown. Then replace the variances by
the MLEs s21 and s22 and consider the following statistic:
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v = x̄1 − x̄2 − δ

√ s21
n1

+ s22
n2

≈ N(0, 1) (13.17)

when n1 is large and n2 is also large. Again, the approximation is poor and as a crude
rule, we may use the approximation in (13.14) when n1 ≥ 30, n2 ≥ 30. In the following
cases, we list only the types of hypotheses on μ1 − μ2 for convenience, but remember
that similar hypotheses on linear functions of μ1 and μ2 can be formulated and tested.

Case (28). Independent normal populations N(μ1,σ21 ), N(μ2,σ22 ), samples of sizes n1 ≥
30 and n2 ≥ 30, σ21 , σ22 unknown. H0 ∶ μ1 − μ2 ≤ δ (given), H1 ∶ μ1 − μ2 > δ. Test statistic:
v in (13.14). Criterion: reject H0 if the observed value of v ≥ zα.

Case (29). Same situation as in Case (28). H0 ∶ μ1 − μ2 ≥ δ (given), H1 ∶ μ1 − μ2 < δ. Test
statistic: v as in (13.17). Criterion: reject H0 if the observed value of v ≤ −zα.

Case (30). Same situation as in Case (28). H0 ∶ μ1 − μ2 = δ (given), H1 ∶ μ1 − μ2 ≠ δ.
Test statistic: same v as in (13.17). Criterion: reject H0 if the observed value of |v| ≥ z α

2
.

Illustrations as in Section 13.3.1, Figure 13.5.

In the case of independent normal populations, wemay have a situation σ21 = σ22 =
σ2 where the common σ2 may be unknown. Then we have seen that we can replace
this σ2 by a combined unbiased estimator as given in (13.13) and we will end up with
a Student-t with n1 + n2 − 2 degrees of freedom. If this n1 + n2 − 2 is really large, then
we can have a standard normal approximation as follows:

w =
x̄1 − x̄2 − δ
σ̂√( 1

n1
+ 1

n2
)
≈ N(0, 1) (13.18)

where for the approximation to hold n1 + n2 − 2 has to be really large, as explained
above. Then we can have the following test criteria:

Case (31). Independent normal populations N(μ1,σ21 ),N(μ2,σ22 ), σ21 = σ22 = σ2 (un-
known), n1 + n2 − 2 is very large. H0 ∶ μ1 − μ2 ≤ δ (given), H1 ∶ μ1 − μ2 > δ. Test statistic:
w in (13.18). Criterion: reject H0 if the observed value of w ≥ zα.

Case (32). Situation as in Case (31). H0 ∶ μ1 − μ2 ≥ δ (given), H1 ∶ μ1 − μ2 < δ. Test statis-
tic: w of (13.18). Criterion: reject H0 if the observed value of w ≤ −zα.

Case (33). Situation as in Case (31). H0 ∶ μ1 − μ2 = δ (given), H1 ∶ μ1 − μ2 ≠ δ. Test statis-
tic: w as in (13.18). Criterion: reject H0 if the observed value of |w| ≥ z α

2
; see the illus-

trations as in Section 13.3.1, Figure 13.5.

13.6.2 Approximations based on the central limit theorem

The central limit theorem says thatwhatever be the population, designated by the ran-
dom variable x, as long as the variance σ2 of x, is finite, then for a simple random sam-
ple x1,… ,xn, the standardized sample mean goes to standard normal when n→ ∞.
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u =
√n(x̄ − μ0)

σ
→ N(0, 1), as n→ ∞ (13.19)

where μ0 is a given value of the mean value of x. Hence when σ2 is known, we can test
hypotheses on μ if we have very large n. The approximate tests are the following:

Case (34). Any population with known σ2 < ∞, n very large. H0 ∶ μ ≤ μ0 (given), H1 ∶
μ > μ0. Test statistic: u in (13.19). Criterion: reject H0 if the observed value of u ≥ zα.

Case (35).Anypopulationwith knownfinite variance, n very large.H0 ∶ μ ≥ μ0 (given),
H1 ∶ μ < μ0. Test statistic: u in (13.19). Criterion: reject H0 if the observed value of
u ≤ −zα.

Case (36). Any population with known finite variance, n very large. Test statistic: u in
(13.19). Criterion: reject H0 if the observed value of |u| ≥ z α

2
; see the illustrations as in

Section 13.3.1, Figure 13.5.

In the approximation, σ must be known. If σ is not known and if σ2 is replaced by
an unbiased estimator for σ2, then we do not have a Student-t approximation even for
large n. Hence the students are advised not to try to test hypotheses on μ by estimating
σ2 when the population is unknown.

Exercises 13.6
13.6.1. Take a Student-t densitywith ν degrees of freedom. Take the limit when ν → ∞
and show that the Student-t density goes to a standard normal density when ν → ∞.
[Hint: Use Stirling’s formula on Γ( ν2 ) and Γ( ν+12 ). Stirling’s formula says that when
|z| → ∞ and α a bounded quantity, then

Γ(z + α) ≈ √2πzz+α−
1
2 e−z .

Take z = ν
2 whenusing Stirling’s formula on Student-t density. The process (1+ 1

n )
n → e

is very slow, and hence no good approximation can come for small values of ν. Even
for ν = 120, the approximation is not that close. Hence there should be caution when
replacing a Student-t variable with a standard normal variable.]

13.6.2. For a Student-t with ν degrees of freedom, show that the h-th integer moment
can exist only when ν > h, and when ν > h then all odd moments for h < ν will be
zeroes.

13.6.3. Two different varieties of sunflower plants are planted on 50 test plots under
variety 1 and 60 test plots under variety 2. The summary data, in our notations in the
text above, (see equation (13.13)), are the following: x̄1 = 20, x̄2 = 25, s21 = 4, s22 = 9. Test
the following hypotheses, against the natural alternates, at a 5% level of rejection,
assuming that x and y, typical yields under variety 1 and variety 2, respectively, are
independently normally distributed: (1) H0 ∶ μ1 − μ2 ≥ 3, (2) H0 ∶ μ2 − μ1 = 2 but it is
known that σ21 = σ22 (unknown).
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13.7 Testing hypotheses in binomial, Poisson and exponential
populations

In our binomial population, there are two parameters (n,p), 0 < p < 1 and in our Pois-
son population there is one parameter λ. We will consider the problems of testing hy-
potheses on p when n is known, which is also the same as testing hypotheses on p of
a point-Bernoulli population, and testing hypotheses on the Poisson parameter λ.

13.7.1 Hypotheses on p, the Bernoulli parameter

Consider n iid variables from a Bernoulli population. Then the joint probability func-
tion, denoted by L is the following:

L = p(∑
n
j=1 xj)(1 − p)∑

n
j=1(1−xj) = px(1 − p)n−x ,

where x is a binomial random variable. The MLE of p in the whole parameter space
is p̂ = x

n . Under H0 ∶ 0 < p ≤ p0 (given), λ ≡ 1 if x
n ≤ p0. Hence we reject H0 only when

x
n > p0 or when x is large. The likelihood equation is

𝜕
𝜕p

lnL = 0 ⇒ p − x
n

= 0.

If x
n is an admissible value for p, then p̂ = x

n . Otherwise assign the closest value to x
n

for p, that is, the MLE under H0 is p0 for both H0 ∶ p ≤ p0 (given) and H0 ∶ p ≥ p0. But
x has a binomial distribution. How large should x be for rejecting H0 ∶ p ≤ p0? Here,
x ≥ x0 such that

Pr{x ≥ x0|p = p0} ≤ α or
n
∑
x=x0

(
n
x
)px0(1 − p0)n−x ≤ α. (13.20)

Look into binomial tables for p = p0 and compute x0 of (13.20). If the sum of the bino-
mial probabilities does not hit α exactly, then take the nearest x0 such that the proba-
bility is ≤α. For example, from the binomial tables, for n = 10, p0 = 0.40, Pr{x ≥ 8|p =
0.4} = 0.0123, Pr{x ≥ 7|p = 0.4} = 0.0548. Hence if α = 0.05 then we take x0 = 8. Hence
the criteria can be stated as follows:

Case (37). Bernoulli parameter p. H0 ∶ p ≤ p0 (given), H1 ∶ p > p0. Test statistic: bino-
mial variable x. Criterion: reject H0 if the observed number of successes is ≥x0 where
∑n
x=x0

( nx )px0(1 − p0)n−x ≤ α.

Case (38). Bernoulli parameter p. H0 ∶ p ≥ p0 (given), H1 ∶ p < p0. Test statistic: bino-
mial variable x. Criterion: rejectH0 if the observed number of successes ≤x1, such that
∑x1
x=0( nx )px0(1 − p0)n−x ≤ α.
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Case (39). Bernoulli parameter p. Ho ∶ p = p0 (given), H1 ∶ p ≠ p0. Test statistic: bino-
mial variable x. Criterion: reject H0 if the observed value of x ≤ x2 or x ≥ x3 where

x2
∑
x=0

(
n
x
)px0(1 − p0)n−x ≤ α

2
,

n
∑
x=x3

(
n
x
)px0(1 − p0)n−x ≤ α

2
,

as illustrated in Figure 13.12.

Figure 13.12: Hypotheses H0 ∶ p ≤ p0, H0 ∶ p ≥ p0, H0 ∶ p = p0.

Example 13.8. Someone is shooting at a target. Let p be the true probability of a hit.
Assume that p remains the same from trial to trial and that the trials are independent.
Out of 10 trials, she has 4 hits. Test the hypothesis H0 ∶ p ≤ 0.45, H1 ∶ p > 0.45 at the
level of rejection α = 0.05.

Solution 13.8. The number of hits x is a binomial variablewith parameters (p,n = 10).
We reject H0 if the observed number of hits is ≥x0, such that

Pr{x ≥ x0|p = 0.45} ≤ 0.05 or
10
∑
x=x0

(
10
x
)(0.45)x(0.65)10−x ≤ 0.05.

From a binomial table for n = 10 and p = 0.45, we have Pr{x ≥ 8|p = 0.45} = 0.0274 and
Pr{x ≥ 7|p = 0.45} = 0.102. Hence x0 = 8 at α = 0.05. But our observed x is 4, which is
not ≥8, and hence H0 is not rejected.

Note 13.8. Note that the procedure in testing hypotheses on the binomial param-
eter p is different from the procedure of establishing confidence intervals for p. In
some of the tests on the parameters of the normal populations, it may be noted that
the non-rejection intervals in hypotheses testing agree with some confidence inter-
vals. Because of this, some authors mix up the process of constructing confidence
intervals and tests of hypotheses and give credence to the statement “acceptance
ofH0”. It is alreadypointed out the logical fallacy of suchmisinterpretations of tests
of hypotheses. Besides, tests are constructed by using some principles, such as the
likelihood ratio principle, but confidence intervals can be constructed by picking
any suitable pivotal quantity. Comments, similar to the ones here, also hold for the
situations of tests of hypotheses and construction of confidence intervals in the
Poisson case also, which will be discussed next.
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13.7.2 Hypotheses on a Poisson parameter

The Poisson probability function is f (x) = θx
x! e
−θ , θ > 0 with the support x = 0, 1, 2,….

Let x1,… ,xn be iid variables from this Poissonpopulation. [Usually thePoissonparam-
eter is denoted by λ, but in order to avoid confusion with the λ of the λ-criterion, we
will use θ here for the Poisson parameter.] The joint probability function of x1,… ,xn is

L =
θx1+⋯+xne−nθ

x1!⋯xn!

and the MLE of θ in the whole parameter space is θ̂ = 1
n (x1 + ⋯ + xn) = x̄. Consider the

hypothesis: H0 ∶ θ ≤ θ0 (given), H1 ∶ θ > θ0. If x̄ falls in the interval 0 < x̄ ≤ θ0, then the
MLE in the parameter space Ω = {θ ∣ 0 < θ < ∞} as well as under H0 coincide and the
likelihood ratio criterion λ ≡ 1, and we do not reject H0. Hence we reject H0 only when
x̄ > θ0. The likelihood equation

𝜕
𝜕θ

lnL = 0 ⇒ θ − x̄ = 0.

Hence if x̄ is an admissible value for θ, then take θ̂ = x̄, otherwise assign the closest
possible value to x̄ as the estimate for θ. Hence the MLE, under H0 ∶ θ ≤ θ0 (given) as
well as for H0 ∶ θ ≥ θ0, is θ0. Hence the test criterion will be the following: Reject H0
if the observed value of x̄ is large or the observed value of u = x1 + ⋯ + xn is large. But
u is Poisson distributed with parameter nθ. Therefore, we reject H0 ∶ θ ≤ θ0 if u ≥ u0
such that Pr{u ≥ u0|θ = θ0} ≤ α or

∞

∑
u=u0

(nθ0)u

u!
e−nθ0 ≤ α or

u0−1
∑
u=0

(nθ0)u

u!
e−nθ0 ≥ 1 − α

where

u = (x1 + ⋯ + xn) ∼ Poisson(nθ0). (13.21)

We can summarize the results as follows:

Case (40). Parameter θ in a Poisson distribution. H0 ∶ θ ≤ θ0 (given), H1 ∶ θ > θ0. Test
statistic: u in (13.21). Criterion: rejectH0 if the observed value of u ≥ u0 such that Pr{u ≥
u0|θ = θ0} ≤ α.

Case (41). Poisson parameter θ. H0 ∶ θ ≥ θ0 (given), H1 ∶ θ < θ0. Test statistic: u
in (13.21). Criterion: reject H0 if the observed value of u ≤ u1 such that Pr{u ≤ u1|θ =
θ0} ≤ α.

Case (42). Poisson parameter θ. H0 ∶ θ = θ0 (given), H1 ∶ θ ≠ θ0. Test statistic: u in
(13.21). Criterion: reject H0 if the observed value of u ≤ u2 or ≥u3, such that Pr{u ≤
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Figure 13.13: Hypotheses in a Poisson population.

u2|θ = θ0} ≤ α
2 and Pr{u ≥ u3|θ = θ0} ≤ α

2 . (Equal cut off areas at both ends are taken
for convenience only.) For illustration see Figure 13.13.

Example 13.9. The number of snake bites per year in a certain village is found to be
Poisson distributedwith expected number of bites θ. A randomly selected 3 years gave
the number of bites as 0,8,4. Test the hypothesis, at 5% level of rejection, that θ ≤ 2.

Solution 13.9. According to our notation, the observed value of u = (0 + 8 + 4) = 12,
θ0 = 2, n = 3, nθ0 = 6, α = 0.05. We need to compute u0 such that

∞

∑
u=u0

6u

u!
e−6 ≤ 0.05 ⇒

u0−1
∑
u=0

6u

u!
e−6 ≥ 0.95.

From the Poisson table, we have u0 − 1 = 10 or u0 = 11. Our observed u is 12 > 11, and
hence we reject H0.

13.7.3 Hypotheses in an exponential population

The exponential population is given by the density

f (x) = 1
θ
e−

x
θ , x ≥ 0, θ > 0

and zero elsewhere. Consider x1,… ,xn iid variables from this population. Then the
joint density function of x1,… ,xn is

L =
1
θn
e−

1
θ (x1+⋯+xn).

The likelihood equation is given by

𝜕
𝜕θ

lnL = 0 ⇒ θ − x̄ = 0.

Hence if x̄ is an admissible value for θ then θ̂ = x̄, otherwise assign for θ the admissible
closest value to x̄. Therefore, the MLE in the whole parameter space is θ̂ = x̄. But for
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H0 ∶ θ ≤ θ0 (given) as well as for H0 ∶ θ ≥ θ0 the MLE, under H0, is θ0. In H0 ∶ θ ≤ θ0
we reject only for x̄ > θ0 (otherwise λ ≡ 1) and in the case H0 ∶ θ ≥ θ0 we reject only
when x̄ < θ0. Hence for H0 ∶ θ ≤ θ0 we reject for large values of x̄ or for large values of
u = (x1 + ⋯ + xn). When xj has exponential distribution, u has a gamma distribution
with parameters (α = n, β = θ0), underH0, or v = u

θ0
is gammawith parameters (n, 1) or

w = 2u
θ0

∼ χ22n, a chi-squarewith 2n degrees of freedom.Hence for testing thehypothesis,
we can use either u or v or w. Hence the criteria are the following, given in terms of a
chi-square variable.

Case (43). Exponential population with parameter θ. H0 ∶ θ ≤ θ0 (given), H1 ∶ θ > θ0.
Test statistic:w = 2(x1+⋯+xn)

θ0
∼ χ22n. Criterion: rejectH0 if the observed value ofw ≥ χ22n,α.

Case (44). Same population as in Case (43). H0 ∶ θ ≥ θ0 (given), H1 ∶ θ < θ0. Test statis-
tic is the samew as in Case (43). Criterion: rejectH0 if the observed value ofw ≤ χ22n,1−α.

Case (45). Same population as in Cases (43).H0 ∶ θ = θ0 (given),H1 ∶ θ ≠ θ0. Test statis-
tic is the same w as above. Criterion: reject H0 if the observed value of w ≤ χ22n,1− α2 or
w ≥ χ22n, α2 . [Equal tail areas are taken only for convenience.] The illustrations for Cases
(43), (44), (45) are given in Figure 13.9, with degrees of freedom 2n.

Exercises 13.7

13.7.1. In a drug-testing experiment onmice, somemice die out before the experiment
is completed.Allmice are of identical genotype andage.Assuming that theprobability
of a mouse dying is p and it is the same for all mice, test the hypotheses (1) p ≤ 0.4,
H1 ∶ p > 0.4; (2) H0 ∶ p = 0.4, H1 ∶ p ≠ 0.4, at a 5% level of rejection, and based on the
data in one experiment of 10 mice where (a) 5 died, (b) 4 died.

13.7.2. The number of floods in Meenachil River in the month of September is seen
to be Poisson distributed with expected number θ. Test the hypotheses, at 5% level of
rejection, that (1) H0 ∶ θ = 2, H1 ∶ θ ≠ 2, (2): H0 ∶ θ ≥ 2, H1 ∶ θ < 2. Two years are selected
at random. The numbers of floods in September are 8, 1.

13.7.3. A typist makes mistakes on every page she types. Let p be the probability of
finding at least 5 mistakes in any page she types. Test the hypotheses (1) H0 ∶ p = 0.8,
H1 ∶ p ≠ 0.8, (2)H0 ∶ p ≥ 0.8,H1 ∶ p < 0.8, at a 5% level of rejection, and based on the fol-
lowing observations: Out of 8 randomly selected pages that she typed, 6 hadmistakes
of more than 5 each.

13.7.4. Lightning strikes in the Pala area in the month of May is seen to be Poisson
distributed with expected number θ. Test the hypotheses (1) H0 ∶ θ ≤ 3, H1 ∶ θ > 3;
(2) H0 ∶ θ = 3, H1 ∶ θ ≠ 3, at a 5% level of rejection, and based on the following observa-
tions. Three years are selected at randomand therewere 2, 2,3 lightning strikes inMay.
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13.7.5. The waiting time in a queue at a check-out counter in a grocery store is as-
sumed to be exponential with expected waiting time θminutes, time being measured
in minutes. The following are observations on 3 randomly selected occasions at this
check-out counter: 10,8, 2. Check the following hypotheses at a 5% level of rejection:
(1) H0 ∶ θ ≤ 2, H1 ∶ θ > 2; (2) H0 ∶ θ = 8, H1 ∶ θ ≠ 8.

Remark 13.4. After having examined various hypotheses and testing procedures,
the students can now evaluate the whole procedure of testing hypotheses. All the
test criteria or test statistics were constructed by prefixing the probability of rejec-
tion of H0 under H0, namely α, and the probability of rejection of H0 under the
alternate, namely 1 − β. Thus the whole thing is backing up only the situation of
rejecting H0. If H0 is not rejected, then the theory has nothing to say. In a practical
situation, the person calling for a statistical test may have the opposite in mind, to
accept H0 but the theory does not justify such a process of “accepting H0”.

There are two standard technical terms, which are used in this area of testing of
statistical hypotheses. These are null and non-null distributions of test statistics.

Definition 13.7 (Null and non-null distributions). The distribution of a test statis-
tic λ under the null hypothesis H0 is called the null distribution of λ and the distri-
bution of λ under negation of H0 is called the non-null distribution of λ.

Observe that we need the null distribution of a test statistic for carrying out the
test and non-null distribution for studying the power of the test so that the test can be
compared with others tests of the same size α.

13.8 Some hypotheses on multivariate normal

In the following discussion, capital Latin letters will stand for vector or matrix vari-
ables and small Latin letter for scalar variables, and Greek letters (small and capital)
will be used to denote parameters, a primewill denote the transpose.Weonly consider
real scalar, vector, matrix variables here. Let X be p × 1, X′ = (x1,… ,xp). The standard
notation Np(μ, Σ), Σ > 0 means that the p × 1 vector X has a p-variate non-singular
normal distribution with mean value vector μ′ = (μ1,… ,μp) and non-singular positive
definite p × p covariance matrix Σ, and with the density function

f (X) = 1
(2π)

p
2 |Σ|

1
2
exp{− 1

2
(X − μ)′Σ−1(X − μ)} (13.22)

where −∞ < μi < ∞, −∞ < xi < ∞, i = 1,… ,p, Σ = (σij) = Σ′ > 0. If we have a simple
random sample of size N from this Np(μ, Σ), then the sample values and the sample
matrix can be represented as follows:
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Xi =
[[

[

x1i
⋮
xpi

]]

]

, i = 1,… ,N ; sample matrix X =
[[[[

[

x11 … x1N
x21 … x2N
⋮ … ⋮
xp1 … xpN

]]]]

]

.

The sample average or sample mean vector, a matrix of sample means and the devia-
tion matrix are the following:

X̄ = [[

[

x̄1
⋮
x̄p

]]

]

, x̄i =
∑N
k=1 xik
N

,

X̃ =
[[[[

[

x̄1 … x̄1
x̄2 … x̄2
⋮ … ⋮
x̄p … x̄p

]]]]

]

X − X̃ =
[[[[

[

x11 − x̄1 … x1N − x̄1
x21 − x̄2 … x2N − x̄2

⋮ … ⋮
xp1 − x̄p … xpN − x̄p

]]]]

]

. (13.23)

Then the sample sum of products matrix, denoted by S, is given by the following:

S = [X − X̃][X − X̃]′ = (sij)

where

sij =
N
∑
k=1

(xik − x̄i)(xjk − x̄j), sii =
N
∑
k=1

(xik − x̄i)2. (13.24)

Then the joint density of the sample values, for simple random sample of size N (iid
variables), denoted by L(X,μ, Σ) is the following:

L(X,μ, Σ) =
N
∏
j=1

f (Xj)

= 1
(2π)

Np
2 |Σ|

N
2

× exp{−
1
2

N
∑
j=1

(Xj − μ)′Σ−1(Xj − μ)}. (13.25)

The exponent can be simplified and written in the following form by using the fact
that the trace of a 1 × 1 matrix or trace of a scalar quantity is itself. Also we have a
general result on trace, namely, tr(AB) = tr(BA) as long as the products AB and BA are
defined, AB need not be equal to BA.
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N
∑
j=1

(Xj − μ)′Σ−1(Xj − μ) = tr{
N
∑
j=1

(Xj − μ)′Σ−1(Xj − μ)}

=
N
∑
j=1

tr(Xj − μ)′Σ−1(Xj − μ)

=
N
∑
j=1

tr{Σ−1(Xj − μ)(Xj − μ)′}

= tr{Σ−1[
N
∑
j=1

(Xj − μ)(Xj − μ)′]}

= tr{Σ−1S}
+N(X̄ − μ)′Σ−1(X̄ − μ). (13.26)

Then the maximum likelihood estimators (MLE) of μ and Σ are

μ̂ = X̄, Σ̂ = S
N

. (13.27)

Those who are familiar with vector and matrix derivatives may do the following. Take
lnL(X,μ, Σ), operate with 𝜕𝜕μ and

𝜕
𝜕Σ , equate to null vector and null matrix respectively

and solve. Use the form as in (13.26), which will provide the solutions easily. For the
sake of illustration, we will derive one likelihood ratio criterion or λ-criterion.

13.8.1 Testing the hypothesis of independence

Let the hypothesis be that the individual components x1,… ,xp are independently dis-
tributed. In the normal case, this will imply that the covariance matrix Σ is diago-
nal, Σ = diag(σ11,… ,σpp), where σii = σ2i = Var(xi), i = 1,… ,p. In the whole parame-
ter spaceΩ, theMLE are μ̂ = X̄ and Σ̂ = S

N and the supremumof the likelihood function
is

sup
Ω

L = e−
Np
2

(2π)
Np
2 | SN |

N
2
.

Under the null hypothesis of independence of components, the likelihood function
splits into product. Let L0 denote L under H0. Then

L0 =
p

∏
j=1

e
− 1
2σ2j
∑Nk=1(xjk−μj)

2

[σ2j (2π)]
N
2

which leads to the MLE as μ̂j = x̄j, σ̂2j = sii
N . Hence

sup
H0

L = e−
Np
2

(2π)
Np
2 ∏p

j=1(σ̂
2
j )

N
2
.
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Hence

λ =
| SN |

N
2

∏p
j=1(

sii
N )

N
2

⇒ u = cλ
2
N = |S|

s11 ⋯ spp

where c is a constant. The null distribution of u = cλ
2
N is the distribution of u when

the population is Np(μ, Σ) = ∏p
j=1 N(μj ,σ2j ) and the non-null distribution of u is the dis-

tribution of u when the population is Np(μ, Σ), Σ > 0. These can be evaluated by using
the real matrix-variate gamma distribution of S. This material is beyond the scope of
this book.

Exercises 13.8
13.8.1. If the p× 1 vector X has a non-singular p-variate normal distribution, Np(μ, Σ),
Σ > 0, write down the densities when (1) Σ = a diagonal matrix, (2) Σ = σ2I where σ2

is a scalar quantity and I is the identity matrix, (3) Σ is a block diagonal matrix Σ =
diag(Σ11,… ,Σqq), q ≤ p.

13.8.2. If a simple random sample of size N is available from a Np(μ, Σ), Σ > 0, then
derive the MLE of μ and Σ.

13.8.3. For the problem in Exercise 13.8.1, derive the MLE of the parameters under the
special cases (1), (2) and (3) there.

13.8.4. Fill in the steps in the derivation of the result in (13.26).

13.8.5. Construct the λ-criterion for testing the hypotheses that Σ is of the form of (2)
and (3) of Exercise 13.8.1.

13.9 Some non-parametric tests

In previous sections, we have been dealing with hypotheses on the parameters of a
pre-selected distribution. In other words, we have already selected a model (density
or probability function) andweare concerned about one ormore parameters in this se-
lected model. Now, we will consider situations, which are not basically of this nature.
Some parameters or models may enter into the picture at a secondary stage. Suppose
that we want to test whether there is any association between two qualitative char-
acteristics or two quantitative characteristics or one qualitative and one quantitative
characteristic, such as the habit of wearing a tall hat (qualitative) and longevity of life
(quantitative), intelligence (qualitative/quantitative) and weight (quantitative), color
of eyes (qualitative) and behavior (qualitative), preference of certain types of clothes
(qualitative) and beauty (qualitative), etc., then this is not of a parametric type that
we have considered so far. Suppose that we have some data at hand, such as data on
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heights of students in a class and we would like to see whether height is normally dis-
tributed. Such problems usually fall in the category of tests known as “lack-of-fit” or
“goodness-of-fit” tests. Here, we are concerned about the selection of a model for the
data at hand. In a production process where there is a serial production of a machine
part, some of the parts may be defective in the sense of not satisfying quality speci-
fications. We would like to see whether the defective item is occurring at random. In
a cloth weaving process, sometime threads get tangled and uniformity of the cloth is
lost and we would like to see whether such an event is occurring at random or not.
This is the type of situation where we want to test for randomness of an event. We will
start with lack-of-fit tests first.

13.9.1 Lack-of-fit or goodness-of-fit tests

Two popular test statistics, which are used for testing goodness-of-fit or lack-of-fit
of the selected model to given data, are Pearson’s X2 statistic and the Kolmogorov–
Smirnov statistic. We will examine both of these procedures. The essential difference
is that for applying Pearson’s X2 statistic we need data in a categorized form. We do
not need the actual data points. We need only the information about the numbers of
observations falling into various categories or classes. If the actual data points are
available and if we wish to use Pearson’s X2, then the data are to be categorized. This
brings in arbitrariness. If different people categorize the data they may use different
class intervals and these may result in contradictory conclusions in the applications
of Pearson’s X2 statistic. The Kolmogorov–Smirnov statistic makes use of the actual
data points, and not applicable to the data which are already categorized in the form
of a frequency table. [In a discrete situation, actual data will be of the form of actual
points the random variable can take, and the corresponding frequencies, which is not
considered to be a categorized data.] This is the essential difference. Both of the pro-
cedures make use of some sort of distance between the observed points and expected
points, expected under the hypothesis or under the assumedmodel. Pearson’s X2 and
the Kolmogorov–Smirnov statisticsmake use of distancemeasures. Pearson’s statistic
is of the following form:

X2 =
k
∑
i=1

(oi − ei)2

ei
, (13.28)

where oi = observed frequency in the i-th class, ei = the expected frequency in the i-th
class under the assumed model, for i = 1,… ,k. It can be shown that (13.28) is a gen-
eralized distance between the vectors (o1,… ,ok) and (e1,… ,ek). It can also be shown
that X2 is approximately distributed as a chi-square with k − 1 − s degrees of freedom
when s is the number of parameters estimated while computing the ei ’s. If no param-
eter is estimated, then the degrees of freedom is k − 1. This approximation is good only
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when k ≥ 5, ei ≥ 5 for each i = 1,… ,k. Hence (13.28) should be used under these condi-
tions, otherwise the chi-square approximation is not good. The Kolmogorov–Smirnov
statistics are the following:

Dn = sup
x

|Sn(x) − F(x)| (13.29)

and

W2 = E|Sn(x) − F(x)|
2 (13.30)

where Sn(x) is the sample distribution function (discussed in Section 11.5.2) and F(x)
is the population distribution function or the distribution function under the as-
sumed model or assumed distribution. In W2, the expected value is taken under the
hypothesis or under F(x). Both Dn and (W2)

1
2 are mathematical distances between

Sn(x) and F(x), and hence Kolmogorov–Smirnov tests are based on actual distance
between the observed values represented by Sn(x) and expected values represented
by F(x). For example, suppose that we have data on waiting times in a queue. Our
hypothesis may be that the waiting time t is exponentially distributed with expected
waiting time 10 minutes, time being measured in minutes. Then the hypothesis H0
says that the underlying distribution is

H0 ∶ f (x) = 1
10

e−
t
10 , t ≥ 0 and zero elsewhere. (13.31)

Then, under H0, the population distribution function is

F(x) = ∫
x

−∞
f (t)dt = ∫

x

0

e−
t
10

10
dt = 1 − e−

x
10 .

Suppose that the number of observations in the class 0 ≤ t ≤ 2 is 15 or it is observed that
the waiting time of 15 people in the queue is between 0 and 2 minutes. Then we may
say that the observed frequency in the first interval o1 = 15. What is the corresponding
expected value e1? Suppose that the total number of observations is 100 or waiting
times of 100 people are taken. Then the expected value e1 = 100p1, where p1 is the
probability of finding a person whose waiting time t is such that 0 ≤ t ≤ 2. Under our
assumed model, we have

e1 = 100 × ∫
2

0

e−
t
(10)

10
dt = 100[1 − e−

2
(10) ] = 100[1 − e−

1
5 ].

In general, we have the following situation:

Classes 1 2 … k
Observed frequencies n1 n2 … nk
Expected frequencies e1 = np1 e2 = np2 … ek = npk
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where n = n1 + ⋯ + nk = total frequency and pi is the probability of finding an obser-
vation in the i-th class, under the hypothesis, i = 1,… ,k, p1 + ⋯ + pk = 1. Then

X2 =
k
∑
i=1

(ni − npi)2

npi
≈ χ2k−1. (13.32)

For k ≥ 5, npi ≥ 5, i = 1,… ,k we have a good approximation in (13.26).

Figure 13.14: Critical region in Pearson’s X2 test.

When using a distance measure for testing the goodness-of-fit of a model, we will al-
ways reject if the distance is large or we reject when the observed X2 is large. Hence,
when using X2 statistic the criterion is to reject H0 if the observed X2 ≥ χ2k−1,α, for a test
at the level of rejection α as shown in Figure 13.14, where

Pr{X2 ≥ χ2k−1,α} = α.

Example 13.10. A tourist resort is visited by tourists frommany countries. The resort
operator has the following data in the month of January:

Country USA UK Canada Italy Germany France Asia
Frequency 22 12 18 10 20 18 30

The resort operator has a hypothesis that the proportions of tourists visiting in the
month of January of any year is 2 ∶ 1 ∶ 2 ∶ 1 ∶ 2 ∶ 2 ∶ 3. Test this hypothesis, at a 5% level
of rejection.

Solution 13.10. The total frequency n = 22 + 12 + 18 + 10 + 20 + 18 + 30 = 130. Under
the hypothesis, the expected frequencies are the following: For the USA, it is 2 out of
13 = 2 + 1 + 2 + 1 + 2 + 2 + 3 of 130 or 130 × 2

13 = 20. Calculating the expected frequencies
like this, we have the following table:

Observed frequency 22 12 18 10 20 18 30
Expected frequency 20 10 20 10 20 20 30

The degrees of freedom for Pearson’s X2 is k − 1 = 7 − 1 = 6. From a chi-square table,
χ26,0.05 = 12.59. Also our conditions k ≥ 5, ei ≥ 5, i = 1,… ,7 are satisfied, and hence a
good chi-square approximation can be expected. The observed value of X2 is given by
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X2 = (20 − 20)2

20
+ (12 − 10)2

10
+ (18 − 20)2

20

+ (10 − 10)2

10
+ (20 − 20)2

20
+ (18 − 20)2

20
+ (30 − 30)2

30

= 4
20

+ 4
10

+ 4
20

+ 4
20

+ 0 + 0 + 0 = 20
20

= 1.

The observed value of X2 is not greater than the tabulated value 12.59, and hence we
cannot reject H0. Does it mean that our model is a good fit or our hypothesis can be
“accepted”? Remember that within that distance of less than 12.59 units there could
be several distributions, and hence “accepting the claim” is not a proper procedure.
For example, try the proportions 3 ∶ 1 ∶ 1 ∶ 1 ∶ 2 ∶ 2 ∶ 3 and see that the hypothesis is not
rejected. At the most what we can say is only that the data seem to be consistent with
the hypothesis of resort owner’s claim of the proportions.

Note 13.9. In statistical terminology, our hypothesis in Example 13.10 was on the
multinomial probabilities, saying that the multinomial probabilities are p1 = 2

13 ,
p2 = 1

13 , …, p7 = 3
13 , in a 6-variate multinomial probability law.

Example 13.11. Test the goodness-of-fit of a normal model, x ∼ N(μ = 80,σ2 = 100),
x = grade obtained by students in a particular course, to the following data, at 5%
level of rejection.

Classes x < 50 50 ≤ x < 60 60 ≤ x < 70
Frequency 225 220 235
Classes 70 ≤ x < 80 80 ≤ x < 90 90 ≤ x ≤ 100

Frequency 240 230 220

Solution 13.11. Total frequency n = 1370. Let

f (x) = 1
10(√2π)

e−
1

2×100 (x−80)
2
, y = x − 80

10
, g(y) = 1

√2π
e−y2/2.

The probability p1 of finding an observation in the interval −∞ < x < 50 is given by

p1 = ∫
50

−∞
f (x)dx = ∫

−3

−∞
g(y)dy = 0.0014

from N(0, 1) tables, where y = 50−80
10 = −3. We have the following results from the com-

putations:

p1 = 0.0014
e1 = np1 = 1370 × 0.0014 = 3.84

p2 = ∫
60

50
f (x)dx = ∫

−2

−3
g(y)dy = 0.4998 − 0.4773 = 0.0213

e2 = np2 = 1370 × 0.0213 = 29.18
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p3 = ∫
70

60
f (x)dx = ∫

−1

−2
g(y)dy = 0.4773 − 0.3414 = 0.1359

e3 = np3 = 1370 × 0.1359 = 186.18

p4 = ∫
80

70
f (x)dx = ∫

0

−1
g(y)dy = 0.3414 − 0 = 0.3414

e4 = np4 = 1370 × 0.3414 = 467.72

p5 = ∫
90

80
f (x)dx = ∫

1

0
g(y)dy = 0.3414 = 0.3414

e5 = np5 = 1370 × 0.3414 = 467.72

p6 = ∫
100

90
f (x)dx = ∫

2

1
g(y)dy = 0.1359

e6 = np6 = 1370 × 0.1359 = 186.18.

Since e1 < 5, we may combine the first and second classes to make the expected fre-
quency greater than 5 to have a good approximation. Then add up the observed fre-
quencies in the first two classes o1 + o2 = 225 + 220 = 445, call it o′2 and expected fre-
quencies e1 +e2 = 3.84+29.18 = 33.02 = e′2. Thus, the effective number of classes is now
6 − 1 = 5 still the condition k ≥ 5 is satisfied. The degrees of freedom is reduced by one
and the new degrees of freedom is k′ − 1 = 6 − 1 = 5, k′ = k − 1. The tabulated value of
χ2k′−1,α = χ24,0.05 = 9.49. The observed value of X2 is given by

X2 = (446.33 − 33.02)2

33.02
+ (235 − 186.18)2

186.18
+ (240 − 467.72)2

467.72

+ (230 − 467.72)2

467.72
+ (220 − 186.18)2

186.18
.

We have to see only whether the observed X2 is greater than 9.49 or not. For doing
this, we do not have to compute every term in X2. Start with the term involving the
largest deviation first, then the second largest deviation, etc. The termwith the largest
deviation is the first term. Hence let us compute this first:

(445 − 33.02)2

33.02
> 9.49

and hence the hypothesis is rejected. We do not have to compute any other term.

Note 13.10. When this particular normal distributionwithμ = 80 andσ2 = 100 is re-
jected that does not mean that other normal distributions are also rejected. We can
try other normal populationswith specified μ and σ2. We can also try the goodness-
of-fit of any normal population. In this case, we do not know μ and σ2. Then we
estimate μ = μ̂ and σ2 = σ̂2 and try to fit N(μ̂, σ̂2). MLE or moment estimates can be
used. In this case, two degrees of freedom for the chi-square are lost. In our exam-
ple, the effective degrees of freedom will be then k′ − 1 − 2 = 5 − 2 = 3, k′ = k − 1 due
to combining two classes, and then our approximation is not good also.
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Note 13.11. The testing procedure based on Pearson’s X2 statistic and other so
called “goodness-of-fit” tests are only good for rejecting the hypothesis, which
defeats the purpose of the test. Usually, one goes for such tests to claim that the
selected model is a good model. Testing procedure defeats this purpose. If the
test did not reject the hypothesis, then the maximum claim one can make is only
that the data seem to be consistent with the hypothesis or simply claim that the
discrepancy, measured by X2, is small, and hence we may take the model as a
goodmodel, remembering that several other models would have given the same or
smaller values of X2.

Note 13.12. In our problem, the variable x is a Gaussian random variable, which
ranges from −∞ to ∞. But our data are only for x ≤ 100. Logically, we should have
taken the last cell or last interval as 90 ≤ x < ∞ or x ≥ 90, instead of taking 90 ≤
x ≤ 100.

13.9.2 Test for no association in a contingency table

A two-way contingency table is a table of frequencies where individuals or items are
classified according to two qualitative or two quantitative or one qualitative and one
quantitative characteristics. For example, if a random sample of 1, 120 people are clas-
sified according to their ability to learn statistics and their weights and suppose that
we have the following two-way contingency table:

Example 13.12. Test for no association between the characteristics of classification in
the following two-way contingency table, where 1, 120 people are classified according
to their ability to learn statistics and weights. Test at a 5% level of rejection, where
I = excellent, II = very good, III = good, IV = poor,W1 = <50kg,W2 = 50 − 60kg,W3 =
>60kg.

Weight→ W1 W2 W3

Ability ↓

I 50 = n11(p11) 100 = n12(p12) 120 = n13(p13)
II 100 = n21(p21) 120 = n22(p22) 80 = n23(p23)
III 80 = n31(p31) 90 = n32(p32) 100 = n33(p33)
IV 90 = n41(p41) 100 = n42(p42) 90 = n43(p43)

Sum n.1 = 320(p.1) n.2 = 410(p.2) n.3 = 390(p.3)

Due to overflow in the page, the last column is given below:
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Row sum

n1. = 270(p1.)
n2. = 270(p2.)
n3. = 270(p3.)
n4. = 280(p4.)

n.. = 1120(p.. = 1)

Here, thenumber of people or frequency in the i-th ability groupand j-thweight group,
or in the (i, j)-th cell, is denoted by nij . The probability of finding an observation in the
(i, j)-th cell is denoted by pij . These are given in the brackets in each cell. The follow-
ing standard notations are used. These notations will be used in model building also.
A summation with respect to a subscript is denoted by a dot. Suppose that i goes from
1 tom and j goes from 1 to n. Then

ni. =
n
∑
j=1

nij ; n.j =
m
∑
i=1

nij ;
m
∑
i=1

n
∑
j=1

nij = n.. = grand total. (13.33)

Similar notations are used on pij ’s so that the total probability p.. = 1. In the above
table of observations, the row sums of frequencies are denoted by n1.,n2.,n3.,n4. and
the column sums of frequencies are denoted by n.1,n.2, n.3.

Solution 13.12. If the two characteristics of classification are independent or in the
sense that there is no association between the two characteristics of classification,
then the probability in the (i, j)-th cell is the product of the probabilities of finding an
observation in the i-th row and in the j-th column or pij = pi.p.j . Note that in a multi-
nomial probability law the probabilities are estimated by the corresponding relative
frequencies. For example, pi. and p.j are estimated by

p̂i. =
ni.
n..

, p̂.j =
n.j
n..

(13.34)

and, under the hypothesis of independence of the characteristics of classification, the
expected frequency in the (i, j)-th cell is estimated by

êij = n..p̂i.p̂.j = n.. ×
ni.
n..

×
n.j
n..

=
ni.n.j
n..

. (13.35)

Hence,multiply by themarginal totals and then divide by the grand total to obtain the
expected frequency in each cell, under the hypothesis of independence of the charac-
teristics of classification. For example, in the first row, first column or (1, 1)-th cell the
expected frequency is 270×320

1120 ≈ 77.14. The following table gives the observed frequen-
cies and the expected frequencies. The expected frequencies are given in the brackets.

50(77.14) 100(98.84) 120(94.02)
100(85.71) 120(109.82) 80(104.46)
80(77.14) 90(98.84) 100(94.02)
90(80) 100(102.5) 90(97.5)
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Then an observed value of Pearson’s X2 statistic is the following:

X2 = (50 − 77.14)2

77.14
+ (100 − 98.84)2

98.84
+ (120 − 94.02)2

94.02

+ (100 − 85.71)2

85.71
+ (120 − 109.02)2

109.02
+ (80 − 104.46)2

104.46

+ 80 − 77.14)2

77.14
+ (90 − 98.84)2

98.84
+ (100 − 94.02)2

94.02

+ (90 − 80)2

80
+ (100 − 102.5)2

102.5
+ (90 − 97.5)2

97.5

In general, what is the degrees of freedom of Pearson’s X2 statistic in testing hy-
pothesis of independence in a two-way contingency table? If there are m rows and n
columns, then the total number of cells is mn but we have estimated pi., i = 1,… ,m
which gives m − 1 parameters estimated. Similarly, p.j, j = 1,… ,n gives n − 1 param-
eters estimated because in each case the total probability p.. = 1. Thus the degrees
of freedom is mn − (m − 1) − (n − 1) − 1 = (m − 1)(n − 1). In our case above, m = 4 and
n = 3, and hence the degrees of freedom is (m − 1)(n − 1) = (3)(2) = 6. The chi-square
approximation is good when the expected frequency in each cell eij ≥ 5 for all i and j
and mn ≥ 5. In our example above, the conditions are satisfied and we can expect a
good chi-square approximation for Pearson’s X2 statistic or

X2 ≈ χ2(m−1)(n−1), formn ≥ 5, eij ≥ 5 for all i and j. (13.36)

In our example, if we wish to test at a 5% level of rejection, then the tabulated value
of χ26,0.05 = 12.59. Hence it is not necessary to compute each and every term in X2. Com-
pute the termswith the largest deviations first. The (1, 1)-th term gives (50−77.14)

2

77.14 = 9.55.
The (1,3)-th term gives (120−94.02)

2

94.02 = 7.18. Hence the sum of these two terms alone ex-
ceeded the critical point 12.59 and hence we reject the hypothesis of independence of
the characteristics of classification here, at a 5% level of rejection.

Note 13.13. Rejection of our hypothesis of independence of the characteristics of
classification does not mean that there is association between the characteristics.
In the beginning stages of the development of statistics as a discipline, people
were making all sorts of contingency tables and claiming that there were associa-
tion between characteristics of classification such as the habit of wearing tall hats
and longevity of life, etc. Misuses went to the extent that people were claiming that
“anything and everything could be proved by statistical techniques”. Remember
that nothing is established or proved by statistical techniques, and as remarked
earlier, that non-rejection of H0 cannot be given any meaningful interpretations
because the statistical procedures do not support or justify to make any claim if H0
is not rejected.
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13.9.3 Kolmogorov–Smirnov statistic Dn

Dn is already stated in (13.29), which is,

Dn = sup
x

|Sn(x) − F(x)|

where Sn(x) is the sample distribution function and F(x) is the population distribu-
tion, under the population assumed by the hypothesis. Let the hypothesis H0 be that
the underlying distribution is continuous, has density f (x) and distribution func-
tion F(x), such as f (x) is an exponential density. Then F(x)will produce a continuous
curve and Sn(x) will produce a step function as shown in Figure 13.15.

Figure 13.15: Sample and population distribution functions
Sn(x) and F (x).

We will illustrate the computations with a specific example.

Example 13.13. Check to see whether the following data could be considered to have
come from a normal population N(μ = 13,σ2 = 1). Data: 16, 15, 15,9, 10, 10, 12, 12, 11, 13,
13, 13, 14, 14.

Solution 13.13. Here, H0: is that the population density is

f (x) = 1
√2π

e−
1
2 (x−13)

2

and, therefore,

F(x) = ∫
x

−∞
f (t)dt

At x = 9,

F(9) = ∫
9

−∞
f (t)dt = ∫

−4

−∞

1
√2π

e−
1
2 y

2dy = 0.0000

from N(0, 1) tables. For x = 10, F(10) = 0.0013 from N(0, 1) tables. But at x = 9 the sam-
ple distribution function is Sn(x) = s14(9) =

1
14 = 0.0714 and this remains the same from

9 ≤ x < 10. Hence, theoretically we have |Sn(x) − F(x)| = 0.0714 − 0.0000 = 0.0714 at
x = 9. But limx→10− Sn(x) = 1

14 , and hence we should take the difference at the point
x = 10 also, which is |S14(9) −F(10)| = |0.0714−0.0013| = 0.0701. Hence, for each inter-
val we should record these two values and take the largest of all such values to obtain
an observed value of Dn. The computed values are given in the following table:
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x Frequency F(x) S14(x)

9 1 0.0000 1/14 = 0.0714, 9 ≤ x < 10
10 2 0.0013 3/14 = 0.2142, 10 ≤ x < 11
11 1 0.0228 4/14 = 0.2856, 11 ≤ x < 12
12 2 0.1587 6/14 = 0.4284, 112 ≤ x < 13
13 3 0.5000 9/14 = 0.6426, 13 ≤ x < 14
14 2 0.8413 11/14 = 0.7854, 14 ≤ x < 15
15 2 0.9772 13/14 = 0.9282, 15 ≤ x < 16
16 1 0.9987 14/14 = 1.0000, 16 ≤ x < ∞

In the following table, we have two points for each interval. These are given against
the x-values

x |S14(x) − F(x)|

9 0.0714, 0.0701
10 0.2129, 0.1914
11 0.2628, 0.1269
12 0.2697, 0.0716
13 0.1426, 0.1987
14 0.1987, 0.1918
15 0.1918, 0.0705
16 0.0705, 0.0000

The largest of the entries in the last two columns is 0.2697, and hence the observed
value of D14 = 0.2697. Tables of Dn are available. The tabled value of D14 = 0.35. We
reject the hypothesis onlywhen the distance is large or when the observedDn is bigger
than the tabulated Dn. In the above example, the hypothesis is not rejected since the
observed value 0.2697 is not greater than the tabulated value 0.35.

Note 13.14. When considering goodness-of-fit tests, we have assumed the un-
derlying populations to be continuous. How do we test the goodness-of-fit of a
discrete distribution to the given data? Suppose that the data is the following:
3,3,5,5,5,5,6,6 or x = 3 with frequency n1 = 2, x = 5 with frequency n2 = 4, x3 = 6
with frequency n3 = 2. Whatever is seen here is the best fitting discrete distribution,
namely,

f (x) =

{{{{{
{{{{{
{

2/8, x = 3
4/8, x = 5
2/8, x = 6
0, elsewhere.

There is no better fitting discrete distribution to this data. Hence, testing goodness-
of-fit of a discrete distribution to the data at hand does not have much meaning.
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There are a few other non-parametric tests called sign test, rank test, run test, etc.
We will give a brief introduction to these. For more details, the students must consult
books on non-parametric statistics.

13.9.4 The sign test

The sign test is applicable when the population is continuous andwhenwe know that
the underlying population is symmetric about a parameter θ or the population den-
sity f (x) is symmetric about x = θ, such as a normal population, which is symmetric
about x = μ where μ = E(x). We wish to test a hypothesis on θ. Let H0 ∶ θ = θ0 (given).
Then under H0 the underlying population is symmetric about x = θ0. In this case, the
probability of getting an observation from this population less than θ0 is

1
2 = the prob-

ability of getting an observation greater than θ0, and due to continuity, the probability
of getting an observation equal to θ0 is zero. Hence finding an observation above θ0
can be taken as a Bernoulli success and finding an observation below θ0 as a failure,
or vice versa. Therefore, the procedure is the following: Delete all observations equal
to θ0. Let the resulting number of observations be n. Put a plus sign for an observation
above θ0 and put aminus sign for observations below θ0. Count the number of + signs.
This number of + signs can be taken as the number of successes in n Bernoulli trials.
Hence we can translate the hypothesisH0 ∶ θ = θ0,H1 ∶ θ ≠ θ0 intoH0 ∶ p = 1

2 ,H1 ∶ p ≠ 1
2

where p is the probability of success in aBernoulli trial. Then the test criterion for a test
at the level of rejection α can be stated as follows: Reject H0 if the observed number
of plus signs is small or large. For convenience, we may cut off equal tail probabili-
ties α

2 at both ends. Let y be the number of plus signs then compute y0 and y1 such
that

y0
∑
y=0

(
n
y
)(0.5)y(1 − 0.5)n−y ≤

α
2

(a)

and

n
∑
y=y1

(n
y
)(0.5)y(1 − 0.5)n−y ≤ α

2
. (b)

If the observed number of plus signs is less than y0 or greater than y1, then reject H0.
Since the test is based on signs, it is called a sign test.

Example 13.14. The following is the data on the yield of wheat from 12 test plots:
5, 1,8,9, 11,4,7, 12.5,6,8,9. Assume that the population is symmetric about μ = E(x)
where x is the yield in a test plot. Test the hypothesis that μ = 9 at the level of rejection
of 5%.
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Solution 13.14. In our notation, θ0 = 9. There are two observations equal to 9, and
hence delete these and there are 10 remaining observations. Mark the observations
bigger than 9 by a plus sign: 11(+), 12(+). There are two observations bigger than 9 and
then the observed number of successes in 10 Bernoulli trials is 2. Here, α = 0.05 or
α
2 = 0.025. From a binomial table for p = 1

2 , we have y0 = 1 and y1 = 9, which are the
closest points where the probability inequalities in (a) and (b) above are satisfied. Our
observed value is 2 which is not in the critical region, and hence the hypothesis is not
rejected at the 5% level of rejection.

Note 13.15. Does it mean that there is a line of symmetry at x = 9 for the distribution?
For the same data if H0 is θ0 = 8, then again n = 10 and the observed number of suc-
cesses is 4 and H0 is not rejected. We can have many such values for θ0 and still the
hypotheses will not be rejected. That does not mean that the underlying distribution
has symmetry at all these points. Besides, p = 1

2 is not uniquely determining a line of
symmetry. Hence trying to give an interpretation for non-rejection ismeaningless. Due
to this obvious fallacy some people modify the hypothesis saying that at x = θ0 there
is the median of the underlying population. Again, p = 1

2 does not uniquely determine
x = θ0 as the median point. There could be several points qualifying to be the median.
Hence non-rejection of H0 cannot be given a justifiable interpretation.

13.9.5 The rank test

This is mainly used for testing the hypothesis that two independent populations are
identical, against the alternative that they are not identical. If x is the typical yield of
ginger froma test plot under organic fertilizer and y is the yield under a chemical fertil-
izer, then wemay want to claim that x and y have identical distributions, whatever be
the distributions. Our observations may be of the following forms: n1 observations on
x and n2 observations on y are available. Then for applying a rank test the procedure
is the following: Pool the observations on x and y and order them according to their
magnitudes. Give to the smallest observation rank 1, the second smallest rank 2 and
the last one rank n1 + n2. If two or more observations have the same magnitude, then
give the average rank to each. For example, if there are two smallest numbers then
each of these numbers gets the ranks (1+2)2 = 1.5 and the next number gets the rank 3,
and so on. Keep track of the ranks occupied by each sample. A popular test statistic
based on ranks is the Mann–Whitney u-test where

u = n1n2 +
n1(n1 + 1)

2
− R1 (13.37)

where n1 and n2 are the sample sizes and R1 is the sum of ranks occupied by the sam-
ple with size n1. Under the hypothesis of identical distributions for x and y, it can
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be shown that the mean value and the variance are E(u) = n1n2
2 and Var(u) = σ2u =

n1n2
(n1+n2+1)

12 and that

v = u − E(u)
σu

≈ N(0, 1) (13.38)

or v is approximately a standard normal, and a good approximation is available for
n1 ≥ 8, n2 ≥ 8. Hence we reject the hypothesis if the observed value of |v| ≥ z α

2
[see

Figure 13.5].

Example 13.15. The following are the observations on waiting times, x, at one check-
out counter in adepartmental store on 10 randomly selectedoccasions: 10,5, 18, 12,3,8,
5,8,9, 12. The following are the waiting times, y, on randomly selected 8 occasions at
another checkout counter of the same store: 2,5,3,4,6,5,6,9. Test the hypotheses, at
a 5% level of rejection, that x and y are identically distributed.

Solution 13.15. Since the size of the second sample is smaller, we will take that as
the one for computing the sum of the ranks. Then in our notation, n1 = 8, n2 = 10.
Let us pool and order the numbers. A subscript a is put for numbers coming from the
sample with size n1 for identification. The following table gives the numbers and the
corresponding ranks:

Numbers 2a, 3a, 3, 4a, 5a, 5a, 5, 5, 6a
Ranks 1a 2.5a 2.5a 4a 6.5a 6.5a 6.5 6.5 9.5a

Numbers 6a, 8, 8, 9a, 9, 10, 12, 12, 18.
Ranks 9.5a 11.5 11.5 13.5a 13.5 15 16.5 16.5 18

Total number of ranks occupied by the sample of size n1, and the observed values of
other quantities are the following:

R1 = 1.0 + 2.5 + +2.5 + 4.0 + 6.5 + 6.5 + 9.5 + 9.5 + 13.5 = 55.5;

E(u) = (8)(10)
2

= 40;

σ2u = (8)(10)(8 + 10 + 1)
12

≈ 126.67, σu ≈ 11.25;

u = (8)(10) + (8)(9)
2

− 55.5 = 61.0; u − E(u)
σu

= 61 − 40
11.25

≈ 1.87.

At the 5% level of rejection in a standard normal case, the critical point is 1.96, and
hence we do not reject the hypothesis here.
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Note 13.16. Again, non-rejection of the hypothesis of identical distribution cannot
be given meaningful interpretation. The same observations could have been ob-
tained if the populations were not identically distributed. Observed values of u and
R1 or the formula in (13.38) do not characterize the property of identical distribu-
tions for the underlying distributions. Hence, in this test as well as in the other tests
to follow, non-rejection of the hypothesis should not be given all sorts of interpre-
tations.

Another test based on the rank sums, which can be used in testing the hypotheses
that k given populations are identical, is the Kruskal–Wallis H-test. Suppose that the
samples are of sizes ni, i = 1,… ,k. Again, pool the samples and order the observations
from the smallest to the largest. Assign ranks from 1 to n = n1 + ⋯ + nk , distributing
the averages of the ranks when some observations are repeated. Let Ri be the sum of
the ranks occupied by the i-th sample. Then

H = 12
n(n + 1)

k
∑
i=1

R2i
ni

− 3(n + 1) ≈ χ2k−1 (13.39)

where n = n1 + ⋯ + nk , and H is approximately a chi-square with k − 1 degrees of free-
dom under the null hypothesis that all the k populations are identical. The approxi-
mation is good for ni ≥ 5, i = 1,… ,k. Here, we reject the hypothesis for large values of
H only.

13.9.6 The run test

This test is usually used for testing randomness of an event. Suppose that in a produc-
tion queue, an item is produced in succession. If the item satisfies the quality specifi-
cations, then we call it a good item, denoted by G and if the item does not satisfy the
quality specifications then we call it defective, denoted by D. Hence the production
queue can be described by a chain of the letters G and D, such as GGGDGGGDDGG,
etc. A succession of identical symbol is called a run. In our example, there is one run
of size 3 of G, then one run of size 1 of D then one run of size 3 of G, then one run
of size 2 of D, then one run of size 2 of G. Thus there are 5 runs here. The number of
times the symbol G appears is n1 = 8 and the number of times the symbol D appears
is n2 = 3 here. Consider a sequence of two symbols, such as G and D, where the first
symbol appears n1 times and the second symbol appears n2 times. [Any one of the two
symbols can be called the first symbol and the other the second symbol.] Let the total
number of runs in the sequence be R. Then under the hypothesis that the first symbol
(or the second symbol) is appearing in the sequence at random or it is random occur-
rence and does not follow any particular pattern, we can compute the expected value
and variance of R. Then it can be shown that the standardized R is approximately a
standard normal for large n1 and n2. The various quantities, under the hypothesis of
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randomness, are the following:

E(R) = 2n1n2
n1 + n2

+ 1; σ2R = 2n1n2(2n1n2 − n1 − n2)
(n1 + n2)2(n1 + n2 − 1)

,

T = R − E(R)
σr

≈ N(0, 1) for n1 ≥ 10, n2 ≥ 10. (13.40)

The ideas will be clear from the following example. Note that we reject the null hy-
pothesis of randomness if |T| ≥ z α

2
for a test at the level of rejection α.

Example 13.16. Test the hypothesis that in a production process, where an item can
be D = defective and G = good, the defective items or D’s are appearing at random,
based on the following observed sequence of D’s and G’s, at the 5% level of rejection:
Observed sequence

GGGDDGGDGGGGGDDDGGGGDDGDDD

Solution 13.16. Let n1 be the number of D’s and n2 the number of G’s in the given
sequence. Here, n1 = 11, n2 = 15. The number of runs R = 10. Under the hypothesis of
randomness of D, the observed values are the following:

E(R) = 2(11)(15)
11 + 15

+ 1 ≈ 13.69; σ2R = 2(11)(15)(2(11)(15) − 11 − 15)
(11 + 15)2(11 + 15 − 1)

≈ 5.94; |T| = |R − E(R)
σr

| = | 10 − 13.69
√5.94

| ≈ 1.51.

Here, α = 0.05 or α
2 = 0.025 and then z0.025 = 1.96 from standard normal tables. The

observed value of |T| is 1.51, which is not greater than 1.96, and hence the hypothesis
is not rejected.

Exercises 13.9
13.9.1. A bird watcher reported that she has spotted birds belonging to 6 categories in
a particular bird sanctuary and her claim is that these categories of birds are frequent-
ing this sanctuary in the proportions 1 ∶ 1 ∶ 2 ∶ 3 ∶ 1 ∶ 2 in these 6 categories of birds.
Test this claim, at 5% level of rejection, if the following data are available:

Category 1 2 3 4 5 6
Frequency 6 7 13 17 6 10

13.9.2. The telephone calls received by a switchboard in successive 5-minute intervals
is given in the following table:

Number of calls = x 0 1 2 3 4 5 6
Number of intervals (frequency) 25 30 20 15 10 8 10

Test the hypothesis that the data is compatiblewith the assumption that the telephone
calls are Poisson distributed. Test at a 5% level of rejection.
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13.9.3. The following table gives the increase in sales in a particular shop after placing
advertisements. Test the “goodness-of-fit” of an exponential distribution to this data,
at a 5% level of rejection.

Increase 5 − 10 11 − 15 16 − 22 23 − 27 28 − 32 > 33
Frequency 200 100 170 140 100 25

[Note:Make the intervals continuous and take themid-points as representative values,
when estimating the mean value.]

13.9.4. The following contingency table gives the frequencies of people classified ac-
cording to their mood and intelligence. Test, at a 1% level of rejection, to see whether
there is any association between these two characteristics of classification, where
I = intelligent, II = average, III = below average.

Intelligence→ I II III
Mood ↓
Good 15 10 10

Tolerable 8 10 10
Intolerable 8 10 15

13.9.5. The following table gives the telephone calls received by a switchboard on 265
days. Test whether or not a Poisson distribution with parameter λ = 2 is a good fit,
by using the Kolmogorov–Smirnov test Dn. [The tabulated value of D256 = 0.085 at 5%
level of rejection.]

x 0 1 2 3 4 5 6 7 8
Frequency 52 68 60 40 22 10 3 1 0

13.9.6. The following table gives the waist measurements of 35 girls. Test the good-
ness-of-fit of a N(μ = 15,σ2 = 4) to the data by using Dn statistic. [The observed value
of D35 = 0.27 at 0.01 level of rejection.]

x 10 12 13 14 15 17 18
Frequency 2 4 6 10 7 4 2

13.9.7. The following are the observations on the grades obtained by 14 students in
a particular course. Assume that the typical grade x has a symmetric distribution
around E(x) = μ. Test the hypothesis at a 5% level of rejection that μ = 80, against
μ ≠ 80. Data: 90, 100,60, 40,80,60,50, 40,55,62,80,80,30,80.

13.9.8. The following are the grades of a randomly selected 10 students undermethod
1 of teaching: 90,95,80,80,85,70,73,82,83,80 and the following are the grades of 8
randomly selected students under method 2 of teaching: 40,50,55,60,65,45,70, 100.
If the students have the same background test, the hypothesis that both the methods
are equally effective, by using a u-test at a 5% level of rejection.
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13.9.9. Use a Kruskal–Wallis’ H-test to test at a 5% level of rejection that the following
three populations, designated by the random variables x1, x2 and x3, are identical,
based on the following data: Data on

x1 ∶ 5, 2,5,6,8, 10, 12, 11, 10;
x2 ∶ 15, 16, 2,8, 10, 14, 15, 15, 18
x3 ∶ 20, 18,30, 15, 10, 11,8, 15, 18, 12.

13.9.10. Test the hypothesis of randomness of the occurrence of the symbol D in a
production process, based on the following observed sequence [test at a 1% level of
rejection]:

GGDDDGDGGGDDGGGGDGGDDGGGGGDGGGGD.



14 Model building and regression

14.1 Introduction

There are various types of models that one can construct for a given set of data. The
types of model that is chosen depends upon the type of data for which the model is to
be constructed. If the data are coming from a deterministic situation, then there may
be already an underlying mathematical formula such as a physical law. Perhaps the
law may not be known yet. When the physical law is known, then there is no need
to fit a model, but for verification purposes, one may substitute data points into the
speculated physical law. For example, a simple physical law for gases says that the
pressure P multiplied by volume V is a constant under a constant temperature. Then
the physical law that is available is

PV = c

where c is a constant. When it is a mathematical relationship, then all pairs of obser-
vations on P and V must satisfy the equation PV = c. If V1 is one observation on V
and if the corresponding observation is P1 for P, then P1V1 = c for the same constant
c. Similarly, other pairs of observations (P2,V2),… will satisfy the equation PV = c. If
there are observational errors in observing P and V , then the equation may not be
satisfied exactly by a given observational pair. If the model proposed PV = c is not
true exactly, then of course the observational pairs (Pi ,Vi) for some specific imay not
satisfy the equation PV = c. There are many methods of handling deterministic sit-
uations. The usual tools are differential equations, difference equations, functional
equations, integral equations, etc. For more details on deterministic situations and
the corresponding model, see the CMS publication of 2010 SERC Notes.

14.2 Non-deterministic models

Deterministic situation is governed by definitemathematical rules. There is no chance
variation involved. But most of the practical situations, mostly in social sciences, eco-
nomics, commerce, management, etc. as well as many physical phenomena, are non-
deterministic in nature. An earthquake at a place cannot be predetermined but with
sophisticated prediction tools we may be able to predict the occurrence to some ex-
tent. We know that Meenachil River will be flooded during the monsoon season but
we cannot tell in advancewhat theflood levelwill be on July 1, 2020, in front of Pastoral
Institute. Even thoughmany factors about weight gain are known, we cannot state for
sure how much the weight gain will be on a cow under a certain feed. A student who
is going to write an examination cannot tell beforehand what exact grade she is go-
ing to get. She may be able to predict that it will be above 80% from her knowledge
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under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562545-014



438 | 14 Model building and regression

about the subject matter. But after writing the examination shemight be able to give a
better prediction that she would get at least 95% if not 100%. She could improve her
prediction by knowing additional information of having written the examination.

Situations described above and many other situations of the same type are not
deterministic in nature.When chance variation is involved, prediction can bemade by
using properties of random variables or chance variables or measurement of chance
or probabilities.

Since a lot of practical situations are randomor non-deterministic in nature,when
we talk about model building, people naturally think that we are trying to describe
a random or non-deterministic situation by mathematical modeling. Attempts to de-
scribe random situations have given birth to different branches of science. Stochastic
process is one such area where we study a collection of random variables. Time series
analysis is an area where we study a collection of random variables over time. Regres-
sion is an area where we try to describe random situations by analyzing conditional
expectations. As can be seen, even to give a basic description of all the areas and dis-
ciplines where we buildmodels, it will take hundreds of pages. Hence what wewill do
here is to pick a few selected topics and give a basic introduction to these topics.

14.2.1 Random walk model

Consider a simple practical situation of a drunkard coming out of the liquor bar, de-
noted by S in Figure 14.1.

Figure 14.1: Random walk on a line.

He tries to walk home. Since he is fully drunk, assume that he walks in the following
manner. At everyminute, hewill either take a step forward or backward. Let us assume
a straight line path. Suppose that he covers 1 foot (about a third of a meter) at each
step. He came out from the bar as indicated by the arrow. Then if his first step is to the
right, then he is one foot closer to home, whereas if his first step is to the left, then he
is farther way from home by one foot. At the next minute, he takes the next step either
forward or backward. If he had taken the second step also to backward, then now he
is farther away from home by two feet. One can associate a chance or probability for
taking a step to the left (backward) or right (forward) at each stage. If the probabilities
are 1

2 each, then at each step there is 50% chance that the step will be forward and
50% chance that the step will be backward. If the probabilities of going forward and
backward are 0.6 and 0.4, respectively, then there is a 60% chance that his first step
will be forward.
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Some interesting questions to ask in this case are the following: What is the
chance that eventually he will reach home? What is the chance that eventually he
will get lost and walk away from home to infinity? Where is his position after n steps?
There can be several types of modifications to the simple random walk on a line. In
Figure 14.1, a point is marked as B. This B may be a barrier. This barrier may be such
that once he hits the barrier he falls down dead or the walk is finished, or the barrier
may be such that if he hits the barrier there is a certain positive chance of bouncing
back to the previous position so that the randomwalk can continue and there may be
a certain chance that the walk is finished, and so on.

An example of a 2-dimensional random walk is the case of Mexican jumping
beans. There is a certain variety of Mexican beans (lentils). If you place a dried bean
on the tabletop, then after a few seconds it jumps by itself in a random direction to
another point on the table. This is due to an insect making the dry bean as its home
and the insect moves around by jumping. This is an example of a two-dimensional
random walk. We can also consider random walk in space such as a dust particle
moving around in the atmosphere and random walk in higher dimensions.

14.2.2 Branching process model

In nature, there are many species which behave in the following manner. There is a
mother and the mother gives birth to k offsprings once in her lifetime. After giving
birth, the mother dies. The number of offsprings could be 0, 1, 2,… ,k where k is a fi-
nite number, not infinitely large. A typical example is the banana plant. One banana
plant gives only one bunch of bananas. You cut the bunch and the mother plant is de-
stroyed. The next generation offsprings are the new shoots coming from the bottom.
The number of shoots could be 0, 1, 2,3,4,5, usually a maximum of 5 shoots. These
shoots are the next generation plants. Each shoot, when mature, can produce one
bunch of bananas each. Usually, after cutting the mother banana plant, the farmer
will separate the shoots and plant all shoots, except one, elsewhere so that all have
good chances of growing up into healthy banana plants.

Another example is the pineapple. Again one pineapple plant gives only one
pineapple. The pineapple itself will have one shoot of plant at the top of the fruit and
other shoots will be coming from the bottom. Again the mother plant is destroyed
when the pineapple is plucked. Another example is certain species of spiders. The
mother carries the sack of eggs around and dies after the new offsprings are born.
Another example is salmon fish. From the wide ocean, the mother salmon enters into
a freshwater river, goes to the birthplace of the river, overcoming all types of obstacles
on the way, and lays one bunch of eggs and then promptly dies. Young salmon come
out of these eggs and they find their way down river to the ocean. The life cycle is
continued.
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Assume that the last name of a person, for example, “Rumfeld” is carried only by
the sons andnot by the daughters. It is assumed that the daughters take the last names
of their husbands. Then there is a chance that the father’s last name will be extinct
after some generations.What is the chance that the nameRumfeldwill disappear from
the Earth?

These examples are examples for branching processes. Interesting questions to
ask are the following: What is the chance that the species will be extinct eventually?
This canhappen if there is a positive probability of having no offspring in a given birth.
What is the expected population size after n generations? The branching process is a
subject matter by itself and it is a special case of a general process known as birth and
death processes.

14.2.3 Birth and death process model

This can be explained with a simple example. Suppose that there is a good pool area
in a river, a good fishing spot for fishermen. Fish move in and move out of the pool
area. If N(t) is the number of fish in the pool area at time t and if one fishmoved out at
the next unit of time, then N(t + 1) = N(t) − 1. On the other hand, if one fishmoved into
the pool area at the next time unit then N(t + 1) = N(t) + 1. When one addition is there,
then one can say that there is one birth andwhen one deletion is there we can say that
there is one death. Thus if we are modeling such a process where there is possibility
of birth and death, then we call it a birth and death model.

14.2.4 Time series models

Suppose that we are monitoring the flood level at the Meenachil River at the Pastoral
Institute. If x(t)denotes theflood level on the t-th day, time= t beingmeasured indays,
then at the zeroth day or starting of the observation period the flood level is x(0), the
next day the flood level is x(1) and so on. We are observing a phenomenon namely
flood level over time. In this example, time is measured in discrete time units. Details
of various types of processes and details of the various techniques available for time
series modeling of data are available in SERC School Notes of 2005–2010. Since these
are available to the students, the material will not be elaborated here. But some more
details will be given in the coming chapters.

14.3 Regression type models

The first prediction problem that we are going to handle is associated with a concept
called regression and our models will be regression-type models. When Sreelakshmy
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was born, her doctor predicted by looking at the heights of parents and grandparents
that shewould be 5′5″ at the age of 11.When she grew up, when she hit 11 years of age
and her height was only 5′2″. Thus the true or observed height was 5′2″ against the
predicted height of 5′5″. Thus the prediction was not correct and the error in the pre-
diction= observedminus predicted= 5′2″−5′5″ = −3″. Thus the predictionwas offby
3″ in magnitude. [We could have also described error as predicted minus observed.]
Of course, the guiding principle is that smaller the distance between the observed and
predicted, better the prediction. Thus we will need to consider some measures of dis-
tancebetween theobservedandpredicted.When randomvariables are involved, some
measures of distances between the real scalar random variable x and a fixed point a
are the following:

E|x − a| =mean deviation or expected difference between x and a (i)

[E|x − a|2]
1
2 =mean square deviation between x and a (ii)

[E|x − a|r]
1
r , r = 1, 2,3,… (iii)

where E denotes the expected value. Many such measures can be proposed. Since we
are going to deal with only mean deviation and mean square deviations mainly, we
will not look into other measures of distance between x and a here. For the sake of
curiosity, let us see what should be a, if a is an arbitrary constant, such that E|x − a|
is a minimum or what should be an arbitrary constant b such that [E|x − b|2]

1
2 is a

minimum?

14.3.1 Minimization of distance measures

Definition 14.1 (A measure of scatter). A measure of scatter in real scalar random
variable x from an arbitrary point α is given by √E(x − α)2.

What should be α such that this dispersion is the least? Note that minimization of
√E(x − α)2 is equivalent to minimizing E(x − α)2. But

E(x − α)2 = E(x − E(x) + E(x) − α)2 by adding and subtracting E(x)

= E(x − E(x))2 + E(E(x) − α)2 + 2E(x − E(x))(E(x) − α)

= E(x − E(x))2 + (E(x) − α)2 (14.1)

because the cross product term is zero due to the fact that (E(x) − α) is a constant and,
therefore, the expected value applies on (x − E(x)), that is,

E(x − E(x)) = E(x) − E(E(x)) = E(x) − E(x) = 0
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since E(x) is a constant. In the above computations, we assumed that E(x) is finite or it
exists. In (14.1), the only quantity containing α is [E(x) − α]2 where both the quantities
E(x) and α are constants, and hence (14.1) attains its minimumwhen the non-negative
quantity [E(x) − α]2 attains its minimum which is zero. Therefore,

[E(x) − α]2 = 0 ⇒ E(x) − α = 0 ⇒ E(x) = α.

Hence theminimum is attainedwhen α = E(x). [Themaximumvalue that E(x−α)2 can
attain is +∞ because α is arbitrary.] We will state this as a result.

Result 14.1. For real scalar random variable x, for which E(x) exists or a fixed finite
quantity, and for an arbitrary real number α

min
α

[E(x − α)2]
1
2 ⇒ min

α
E(x − α)2 ⇒ α = E(x). (14.2)

In a similar fashion, we can show that the mean deviation is least when the devi-
ation is taken from the median. This can be stated as a result.

Result 14.2. For a real scalar random variable x, having a finite median, and for an
arbitrary real number b,

min
b

E|x − b| ⇒ b =M

where M is the median of x.

The medianM is the middle value for x in the sense that

Pr{x ≤M} ≥ 1
2

and Pr{x ≥M} ≥ 1
2

where Pr{⋅} denotes the probability of the event {⋅}. The median M can be unique or
there may be many points qualifying to be the median for a given x depending upon
the distribution of x.

14.3.2 Minimum mean square prediction

First, we will consider the problem of predicting one real scalar random variable by
using one real scalar random variable. Such situations are plenty in nature. Let y be
the variable to be predicted and let x be the variable by using which the variable y is
predicted. Some times we call the variable y to be predicted as dependent variable and
the variable x, which is independently preassigned to predict y, is called the indepen-
dent variable. This terminology should not be confused with statistical independence
of random variables. Let y be the marks obtained by a student in a class test and x be
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the amount of study time spent on that subject. The type of question that we would
like to ask is the following: Is y a function of x? If so, what is the functional relation-
ship so that we can use it to evaluate y at a given value of x. If there is no obvious
functional relationship, can we use a preassigned value of x to predict y? Can we an-
swer a question such as if 20 hours of study time is used what will be the grade in the
class test? In this case, irrespective of whether there exists a relationship between x
and y or not, we would like to use x to predict y.

As another example, let y be the growth of a plant seedling, (measured in terms of
height), in one week, against the amount of water x supplied. As another example, let
y be the amount of evaporation of certain liquid in one hour and x be the total exposed
surface area.

If x is a variable that we can preassign or observe, what is a prediction function
of x in order to predict y? Let ϕ(x) be an arbitrary function of x that we want to use
as a predictor of y. We may want to answer questions like: what is the predicted value
of y if the function ϕ(x) is used to predict y at x = x0 where x0 is a given point. Note
that infinitelymany functions can be used as a predictor for y. Naturally, the predicted
value of y at x = x0 will be far off from the true value if ϕ(x) is not a good predictor for
y. What is the “best” predictor, “best” in some sense? If y is predicted by using ϕ(x)
then the ideal situation is that ϕ(x), at every given value of x, coincides with the cor-
responding observed value of y. This is the situation of a mathematical relationship,
whichmay not be available in a problem in social sciences, physical sciences and nat-
ural sciences. For the example of the student studying for the examination if a specific
function ϕ(x) is there, where x is the number of hours of study, then when x = 3 hours
ϕ(x)|x=3 = ϕ(3) should produce the actual grade obtained by the student by spending
3 hours of study. Then ϕ(x) should give the correct observation for every given value
of x. Naturally this does not happen. Then the error in using ϕ(x) to predict the value
of y at a given x is

y −ϕ(x) or we may take as ϕ(x) − y.

The aim is to minimize a “distance” between y and ϕ(x) and thus construct ϕ. Then
thisϕwill be a “good”ϕ. This is the answer from common sense.We havemanymath-
ematical measures of “distance” between y and ϕ(x) or measures of scatter in e = y −
ϕ(x). One suchmeasure is√E[y −ϕ(x)]2 and anothermeasure is E|y−ϕ(x)|, where y is
a real scalar random variable and x is a preassigned value of another random variable
or more precisely, for the first measure of scatter the distance is √E[y −ϕ(x = x0)]2,
that is, at x = x0. Now, if we take this measure then the problem is to minimize over all
possible functions ϕ.

min
ϕ

√E[y −ϕ(x = x0)]
2 ⇒ min

ϕ
E[y −ϕ(x = x0)]

2.

But from (14.2) it is clear that the “best” functionϕ, best in theminimummean square
sense, that is, minimizing the expected value or mean value of the squared error, is
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ϕ = E(y|x = x0) or simply ϕ = E(y|x) = conditional expectation of y given x. Hence this
“best predictor”, best in theminimummean square sense, is defined as the regression
of y on x. Note that if we had taken any other measure of scatter in the error e we
would have ended up with some other function for the best ϕ. Hereafter, when we say
“regression”,wewillmean the best predictor, best in theminimummean square sense
or the conditional expectation of y given x. Naturally, for computing E(y|x)we should
either have the joint distribution of x and y or at least the conditional distribution of y,
given x.

Definition 14.2 (Regression of y on x). It is defined as E(y|x) = conditional expec-
tation of y given x whenever it exists.

Note 14.1. There is quite a lot of misuse in this area of “regression”. In some ap-
plied statistics books, the concept of regression is mixed up with the least square
estimates. Hence the students must pay special attention to the basic concepts and
logics of derivations here so that the topic is not mixed upwith least square estima-
tion problem. Regression has practically very little to do with least square estima-
tion.

Example 14.1. If x and y have a joint distribution given by the following density func-
tion, where both x and y are normalized to the interval [0, 1],

f (x,y) =
{
{
{

x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0, elsewhere,

what is the “best” predictor of y based on x, best in the minimummean square sense?
Also predict y at (i) x = 1

3 , (ii) x = 1.5.

Solution 14.1. As per the criterion of “best”, we are asked to compute the regression
of y on x or E(y|x). From elementary calculus, the marginal density of x, denoted by
f1(x), is given by

f1(x) = ∫
y
f (x,y)dy = ∫

1

0
(x + y)dy =

{
{
{

x + 1
2 , 0 ≤ x ≤ 1

0, elsewhere.

Then the conditional density of y given x is

g(y|x) = f (x,y)
f1(x)

= x + y
x + 1

2
, 0 ≤ y ≤ 1

and zero elsewhere. Hence the conditional expectation of y given x is then

E(y|x) = ∫
y|x

yg(y|x)dy = ∫
1

y=0
y[ x + y

x + 1
2
]dy
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= 1
x + 1

2
∫
1

y=0
(xy + y2)dy =

x
2 + 1

3
x + 1

2
.

Hence the best predictor of y based on x in Example 14.1 is

E(y|x) =
x
2 + 1

3
x + 1

2

for all given admissible values of x. This answers the first question. Now, to predict
y at a given x we need to only substitute the value of x. Hence the predicted value at
x = 1

3 is

E(y|x = 1
3
) =

1
6 + 1

3
1
3 + 1

2
= 3
5
.

The predicted value of y at x = 1.5 is not available from the above formula because 1.5 is
not an admissible value of x or it is outside the support 0 ≤ x ≤ 1 of the density g(y|x).
The question contradicts with what is given as the density in Example 14.1.

Example 14.2. Suppose that it is found that x and y have a joint distribution given
by the following: [Again we will use the same notation to avoid introducing too many
symbols, even though f in Example 14.1 is different from f in Example 14.2.]

f (x,y) =
{
{
{

e−x−y , 0 ≤ x < ∞, 0 ≤ y < ∞

0, elsewhere.

Evaluate the “best” predictor of y based on x, best in theminimummean square sense,
and predict y at x = x0.

Solution 14.2. We need the conditional expectation of y given x, for which we need
the conditional density of y given x. From the above joint density, it is clear that the
marginal density of x is

f1(x) =
{
{
{

e−x , 0 ≤ x < ∞

0, elsewhere

and hence the conditional density of y given x is given by

g(y|x) = f (x,y)
f1(x)

g(y|x) =
{
{
{

e−y , 0 ≤ y < ∞

0, elsewhere
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and the conditional expectation of y given x is

E(y|x) = ∫
∞

0
ye−ydy = 1

[evaluated by using a gamma function as Γ(2) = 1! or by integration by parts]. Here,
E(y|x) is not a function of x, which means that whatever be the preassigned value of x
the predicted value of y is simply 1. In other words, there is no meaning in using x to
predict the value of y because the conditional distribution is free of the conditioned
variable x. This happens because in this example, x and y are statistically indepen-
dently distributed. Hence x cannot be used to predict y and vice versa.

But note that, in Examples 14.1 and 14.2 we have more information about the vari-
ables x and y than what is necessary to construct the “best” predictor. The best pre-
dictor is E(y|x), and hence we need only the conditional distribution of y given x to
predict y and we do not need the joint distribution. Knowing the joint distribution
means knowing the whole surface in a 3-dimensional space. Knowing the conditional
distributionmeans knowing only the shape of the curvewhen this surface f (x,y) is cut
by the plane x = x0 for some preassigned x0. [The reader is asked to look at the geome-
try of the whole problem in order to understand the meaning of the above statement.]
Thus we can restrict our attention to conditional distributions only for constructing a
regression function.

Example 14.3. The strength y of an iron rod is deteriorating depending upon the
amount of rust x on the rod. Themore rustmeans less strength and finally rust will de-
stroy the iron rod. The conditional distribution of y given x is seen to be of exponential
decay model with the density

g(y|x) =
{
{
{

1
1+x e
− y
1+x , 0 ≤ y < ∞, 1 + x > 0

0, elsewhere.

Construct the best predictor function for predicting the strength y at the preassigned
amount x of rust and predict the strength when x = 2 units.

Solution 14.3. From the density given above, it is clear that at every x the conditional
density of y given x is exponentialwith expected value 1+x (comparingwith anegative
exponential density). Hence

E(y|x) = 1 + x

is the best predictor. The predicted value of y at x = 2 is 1 + 2 = 3 units.

Example 14.4. The marks y obtained by the students in an examination is found to
be normally distributed with polynomially increasing expected value with respect to
the amount x of time spent. The conditional distribution of y, given x, is found to be
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normal with the density

g(y|x) = 1
√2π

e−
1
2 (y−70−2x−x

2)2 , −∞ < y < ∞, 0 ≤ x ≤ 4.

Construct the best predictor of y based on x and predict y at x = 3 hours.

Solution 14.4. From thedensity itself, it is clear that the conditional density of y given
x is N(μ,σ2) with σ2 = 1 and μ = 70 + 2x + x2 and, therefore,

E(y|x) = 70 + 2x + x2

is the best predictor of y, and the predicted marks at x = 3 is

70 + 2(3) + 32 = 85.

In Examples 14.1 and 14.4, the regression function, that is, E(y|x), is a non-linear func-
tion of x.

E(y|x) =
x
2 + 1

3
x + 1

2
in Example 14.1

E(y|x) = 70 + 2x + x2 in Example 14.4

whereas

E(y|x) = 1 + x in Example 14.3

which is a linear function in x. Thus the regression of y on x may or may not be lin-
ear function in x. In Example 14.3, if x and y had a joint bivariate normal distribution,
then we know for sure that E(y|x) is a linear function in x. Thus one should not con-
clude that regression being a linear function in x means that the variables are jointly
normally distributed because it is already seen that in Example 14.3 the regression is
linear in x but it is not a case of joint normal distribution.

Note 14.2. The word “regression” means to go back, to regress means to go back.
But in a regression-type prediction problem we are not going back to something.
We are only computing the conditional expectation. The word “regression” is used
for historical reasons. The original problem, when regression was introduced, was
to infer something about ancestors by observing offsprings, and thus going back.

14.3.3 Regression on several variables

Again, let us examine the problem of predicting a real scalar random variable y at
preassigned values of many real scalar variables x1,x2,… ,xk . As examples, we can
cite many situations.
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Example 14.5.
y = the marks obtained by a student in an examination
x1 = the amount of time spent on it
x2 = instructor’s ability measured in the scale 0 ≤ x2 ≤ 10.
x3 = instructor’s knowledge in the subject matter
x4 = student’s own background preparation in the area

Example 14.6.
y = cost of living
x1 = unit price for staple food
x2 = unit price for vegetables
x3 = cost of transportation

and so on. There can be many factors contributing to y in Example 14.5 as well as in
Example 14.6. We are not sure in which form these variables x1,… ,xk will enter into
the picture. If ψ(x1,… ,xk) is the prediction function for y, then predicting exactly as
in the case of one variable situation the best prediction function, best in the sense of
minimummean square error, is again the conditional expectation of y given x1,… ,xk .
That is, E(y|x1,… ,xk). Hence the regression of y on x1,… ,xk is again defined as the
conditional expectation.

Definition 14.3. The regression of y on x1,… ,xk is defined as the conditional ex-
pectation of y given x1,… ,xk , that is, E(y|x1,… ,xk).

As before, depending upon the conditional distribution of y given x1,… ,xk the re-
gression functionmay be a linear function of x1,… ,xk or may not be a linear function.

Example 14.7. If y,x1,x2 have a joint density,

f (y,x1,x2,x3) =
{
{
{

2
3 (y + x1 + x2), 0 ≤ y,x1,x2 ≤ 1
0, elsewhere

evaluate the regression of y on x1 and x2.

Solution 14.7. The joint marginal density of x1 and x2 is given by integrating out y.
Denoting it by f1(x1,x2), we have

f1(x1,x2) = ∫
1

y=0

2
3
(y + x1 + x2)dy

=
{
{
{

2
3 (

1
2 + x1 + x2), 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

0, elsewhere.
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Hence the conditional density of y given x1 and x2 is

g(y|x1,x2) =
{
{
{

2
3 (y+x1+x2)
2
3 (

1
2+x2+x3)

= y+x1+x2
1
2+x1+x2

, 0 ≤ y ≤ 1

0, elsewhere.

Therefore, the regression of y on x1, x2 is given by

E(y|x1,x2) = ∫
1

y=0
y[ y + x1 + x2

1
2 + x1 + x2

]dy =
1
3 + x1

2 + x2
2

1
2 + x1 + x2

.

This is the best predictor of y. For example, the predicted value of y at x1 = 0, x2 = 1
2 is

given by

1
3 + 0 + 1

4
1
2 + 0 + 1

2
= 7
12

.

In this example, how can we predict y based on x2 alone, that is, E(y|x2)? First, inte-
grate out x1 and obtain the joint marginal density of y and x2. Then proceed as in the
one variable case. Note that E(y|x2) is not the same as E(y|x2,x1 = 0). These two are
two different statements and two different items.

Again, note that for constructing the regression function of y on x1,… ,xk , that is,
E(y|x1,… ,xk), we need only the conditional distribution of y given x1,… ,xk andwe do
not require the joint distribution of y,x1,… ,xk .

Example 14.8. If the conditional density of y given x1,… ,xk is given by

g(y|x1,… ,xk) =
{
{
{

1
5+x1+⋯+xk

e−
y

5+x1+⋯+xk , 0 ≤ y < ∞, 5 + x1 + ⋯ + xk > 0
0, elsewhere

evaluate the regression function.

Solution 14.8. The conditional density is the exponential density with the mean
value

E(y|x1,… ,xk) = 5 + x1 + ⋯ + xk

and this is the regression of y on x1,… ,xk , which here is a linear function in x1,… ,xk
also.

When the variables are all jointly normally distributed also, one can obtain the
regression function to be linear in the regressed variables. Example 14.8 illustrates
that joint normality is not needed for the regression function to be linear. When the
regression function is linear, we have some interesting properties.
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Exercises 14.2–14.3
14.3.1. Prove that mina E|y − a| ⇒ a = median of y, where a is an arbitrary constant.
Prove the result for continuous, discrete and mixed cases for y.

14.3.2. Let

f (x,y) = c
(y + x)3

, 1 ≤ y < ∞, 0 ≤ x ≤ 1,

and zero elsewhere. If f (x,y) is a joint density function of x and y, then evaluate (i) the
normalizing constant c; (ii) the marginal density of y; (iii) the marginal density of x;
(iv) the conditional density of y given x.

14.3.3. By using the joint density in Exercise 14.3.2, evaluate the regression of y on x
and then predict y at x = 1

2 .

14.3.4. Consider the function

f (x,y) = cyx2−1, 0 ≤ y ≤ 1, 1 ≤ x ≤ 2,

and zero elsewhere. If this is a joint density function, then evaluate (i) the normalizing
constant c; (ii) the marginal density of x; (iii) the conditional density of y given x; (iv)
the regression of y given x; (v) the predicted value of y at x = 1

3 .

14.3.5. Let

f (x1,x2,x3) = c(1 + x1 + x2 + x3), 0 ≤ xi ≤ 1, i = 1, 2,3

and zero elsewhere be a density function. Then evaluate the following: (i) the nor-
malizing constant c; (ii) the regression of x1 on x2, x3; (iii) the predicted value of x1 at
x2 = 1

2 , x3 = 1
4 ; (iv) the predicted value of x1 at x2 = 1

3 .

14.4 Linear regression

Let y,x1,… ,xk be real scalar random variables and let the regression of y on x1,… ,xk
be a linear function in x1,… ,xk , that is,

E(y|x1,… ,xk) = β0 + β1x1 + ⋯ + βkxk (14.3)

where β0,β1,… ,βk are constants. If joint moments up to the second order exist, then
we can evaluate the constants β0,β1,… ,βk in terms of product moments. In order to
achieve this, we will need two results from elementary statistics. These will be listed
here as lemmas. These were given earlier but for ready reference these will be listed
here again.
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Lemma 14.1.
E(u) = Ev[E(u|v)]

whenever the expected values exist. Here, E(u|v) is in the conditional space of u given
v or computed from the conditional distribution of u given v, as a function of v. Then
the resulting quantity is treated as a function of the random variable v in the next step
of taking the expected value Ev(⋅).

Lemma 14.2.
Var(u) = Var[E(u|v)] + E[Var(u|v)]

That is, the sum of the variance of the conditional expectation and the expected value
of the conditional variance is the unconditional variance of any random variable u,
as long as the variances exist.

All the expected values and variances defined there must exist for the results to
hold. The proofs follow from the definitions themselves and are left to the students.
Let us look into the implications of these two lemmas with the help of some exam-
ples.

Example 14.9. Consider the joint density of x and y, given by

f (x,y) =
{
{
{

1
x2

1
√2π e
− 12 (y−2−x)

2
, −∞ < y < ∞, 1 ≤ x < ∞

0, elsewhere.

Evaluate the regression of y on x, and also verify Lemma 14.1.

Solution 14.9. Integrating out y, one has the marginal density of x. Integration with
respect to y can be effected by looking at a normal density in y with expected value
2 + x. Then the marginal density of x is given by

f (x) =
{
{
{

1
x2 , 1 ≤ x < ∞

0, elsewhere,

because the joint density is the product of conditional and marginal densities. There-
fore, the conditional density of y given x is normalwith expected value 2+x and hence
the regression of y on x is given by

E(y|x) = 2 + x (14.4)

which is a linear function in x and well behaved smooth function of x. Expected value
of the right side of (14.2) is then

E(2 + x) = 2 + E(x)
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= 2 + ∫
∞

1

x
x2
dx

= 2 + [lnx]∞1 = ∞.

Thus the expected value does not exist and Lemma 14.1 is not applicable here.

Note that in Lemma 14.1 the variable v could be a single real scalar variable or a
collection of real scalar variables. But since Lemma 14.2 is specific about variance of a
single variable, the formula does not work if v contains many variables.

Example 14.10. Verify Lemma 14.1 for the following joint density:

f (x,y) =
{
{
{

2, 0 ≤ x ≤ y ≤ 1
0, elsewhere.

Solution 14.10. Here, the surface z = f (x,y) is a prism sitting on the (x,y)-plane
the non-zero part of the density is in the triangle 0 ≤ x ≤ y ≤ 1. Thus the region can be
defined as either 0 ≤ x ≤ y and 0 ≤ y ≤ 1 or x ≤ y ≤ 1 and 0 ≤ x ≤ 1. Marginally, 0 ≤ x ≤ 1
as well as 0 ≤ y ≤ 1. The marginal densities of x and y are respectively

f1(x) = ∫
1

y=x
2dy =

{
{
{

2(1 − x), 0 ≤ x ≤ 1
0, elsewhere;

f2(y) = ∫
y

x=0
2dx =

{
{
{

2y, 0 ≤ y ≤ 1
0, elsewhere.

Hence

E(y) = ∫
1

0
y(2y)dy = 2

3
and E(x) = ∫

1

0
x[2(1 − x)]dx = 1

3
.

The conditional density of y given x is given by

g(y|x) = f (x,y)
f1(x)

=
2

2(1 − x)
=

1
1 − x

, x ≤ y ≤ 1

and zero elsewhere. Note that when x is fixed at some point then y can only vary from
that point to 1. Therefore, the conditional expectation of y, given x,

E(y|x) = ∫
1

y=x

y
1 − x

dy = 1 − x2

2(1 − x)
= 1 + x

2
.

From this, by taking expected value we have

Ex[E(y|x)] = 1
2
[E(1 + x)] =

1
2
[1 + E(x)] =

1
2
[1 + 1

3
] =

2
3

= E(y).
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Thus the result is verified. [Note that when we take Ex(⋅) we replace the preassigned x
by the random variable x or we consider all values taken by x and the corresponding
density or we switch back to the density of x and we are no longer in the conditional
density.]

Coming back to the linear regression in (14.3), we have

E(y|x1,… ,xk) = β0 + β1x1 + ⋯ + βkxk . (14.5)

Taking expected value on both sides, which means expected value in the joint
marginal density of x1,… ,xk and by Lemma 14.1,

E[E(y|x1,… ,xk)] = E(y)
E[β0 + β1x1 + ⋯ + βkxk] = β0 + β1E(x1) + ⋯ + βkE(xk). (14.6)

Note that taking expected value of xj in the joint distribution of x1,… ,xk is equiva-
lent to taking the expected value of xj in the marginal distribution of xj alone because
the other variables can be integrated out (or summed up, if discrete) first to obtain
the marginal density of xj alone. [The student may work out an example to grasp this
point.] From (14.5) and (14.6), one has

E(y|x1,… ,xk) − E(y) = β1[x1 − E(x1)] + ⋯ + βk[xk − E(xk)]. (14.7)

Multiply both sides of (14.7) by xj − E(xj) for a specific j and then take expected value
with respect to x1,… ,xk . The right side gives the following:

β1 Cov(x1,xj) + β2 Cov(x2,xj) + ⋯

+ βj Var(xj) + ⋯ + βk Cov(xk ,xj) (14.8)

because

E{[xj − E(xj)][xr − E(xr)]} =
{
{
{

Cov(xj ,xr), if j ≠ r
Var(xj), if j = r.

The left side of (14.7) leads to the following:

E{[xj − E(xj)]E(y)} = E(y){E[xj − E(xj)]} = 0

since for any variable xj, E[xj − E(xj)] = 0 as long as the expected value exists.

E{[xj − E(xj)]E(y|x1,… ,xk)} = E{E(y(xj − E(xj))|x1,… ,xk}
= E[y(xj − E(xj))]
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since in the conditional expectation x1,… ,xk are fixed and, therefore, one can take
xj −E(xj), being constant, inside the conditional expected value and write y(xj −E(xj))
given x1,… ,xk . But

E[y(xj − E(xj))] = Cov(y,xj)

because for any two real scalar random variables x and y,

Cov(x,y) = E{(x − E(x))(y − E(y))}
= E{x[y − E(y)]} = E{y[x − E(x)]}

because

E{E(x)[y − E(y)]} = E(x)E{y − E(y)} = 0

since E[y − E(y)] = E(y) − E(y) = 0 and similarly E{E(y)[x − E(x)]} = 0. Therefore, we
have

σjy = β1σ1j + β2σ2j + ⋯ + βkσkj (14.9)

where σij = Cov(xi ,xj) and σjy = σyj = Cov(xj ,y). Writing (14.9) explicitly, one has

σ1y = β1σ11 + β2σ12 + ⋯ + βkσ1k
σ2y = β1σ21 + β2σ22 + ⋯ + βkσ2k
⋮ ⋮

σky = β1σk1 + β2σk2 + ⋯ + βkσkk .

Writing in matrix notation, we have

Σy = Σβ, Σ = (σij)

β = [[

[

β1
⋮
βk

]]

]

, Σy = [[

[

σ1y
⋮
σky

]]

]

, Σ = [[

[

σ11 σ12 … σ1k
⋮ ⋮ … ⋮
σk1 σk2 … σkk

]]

]

.

Note that the covariance matrix Σ is symmetric since σij = σji for all i and j. If Σ is non-
singular, then

β = Σ−1Σy (14.10)

where Σ−1 denotes the regular inverse of the covariance matrix or the variance-
covariance matrix Σ. This notation Σ is another awkward symbol in statistics. This
can be easily confused with the summation symbol ∑. But since it is very widely
used, we will also use it here. Is Σ likely to be non-singular? If Σ is singular, then it
means that at least one of the rows (columns) of Σ is a linear function of other rows
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(columns). This can happen if at least one of the variables x1,… ,xk is a linear function
of the other variables. Since these variables are preassigned, and hence nobody will
preassign one vector (x1,… ,xk) and another point as a constant multiple α(x1,… ,xk)
because the second point does not give any more information. Thus when the points
are preassigned as in a regression problem, one can assume, without loss of gener-
ality, that Σ is non-singular. But when Σ is estimated, since observations are taken
on the variables, near singularity may occur. We will look into this aspect later. From
(14.10) and (14.6), one has

β0 = E(y) − β1E(x1) − ⋯ − βkE(xk)
= E(y) − β′E(X) (14.11)

where a prime denotes the transpose

β = [[

[

β1
⋮
βk

]]

]

, E(X) = [[

[

E(x1)
⋮

E(xk)

]]

]

.

From (14.10), we have for example, β1 = Σ(1)Σy where Σ(1) is the first row of Σ−1, βj =
Σ(j)Σy where Σ(j) is the j-th row of Σ−1 for j = 1,… ,k.

Instead of denoting the variables as y and x1,… ,xk we may denote the variables
simply as x1,… ,xk and the problem is to predict x1 by preassigning x2,… ,xk . In this
notation, we canwrite the various quantities in terms of the sub-matrices of Σ. For this
purpose, let us write

Σ =
[[[[

[

σ11 σ12 … σ1k
σ21 σ22 … σ2k
⋮ ⋮ … ⋮
σk1 σk2 … σkk

]]]]

]

= [
σ11 Σ12
Σ21 Σ22

] ,

Σ21 = Σ′12 = [[

[

σ21
⋮
σk1

]]

]

, Σ22 =
[[[[

[

σ22 … σ2k
σ32 … σ3k
⋮ … ⋮
σk2 … σkk

]]]]

]

. (14.12)

Then the best predictor, best in the minimummean square sense, for predicting x1 at
preassigned values of x2,… ,xk is given by E(x1|x2,… ,xk) and if this regression of x1
on x2,… ,xk is linear in x2,… ,xk then it is of the form

E(x1|x2,… ,xk) = α0 + α2x2 + ⋯ + αkxk (14.13)

where α0,α2,… ,αk are constants. Then from (14.10),

α = [[

[

α2
⋮
αk

]]

]

= Σ−122Σ21 (14.14)
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and the regression of x1 on x2,… ,xk or the best predictor of x1 at preassigned values
of x2,… ,xk , when the regression is linear, is given by

E(x1|x2,… ,xk) = α0 + α′X2, α = [[

[

α2
⋮
αk

]]

]

, X2 = [[

[

x2
⋮
xk

]]

]

. (14.15)

For example, when k = 2

E(x1|x2) = E(x1) +
Cov(x1,x2)
Var(x2)

(x2 − E(x2))

= μ1 +
ρσ1σ2
σ22

(x2 − μ2)

= μ1 + ρ
σ1
σ2

(x2 − μ2) (14.16)

where E(x1) = μ1, E(x2) = μ2, Var(x1) = σ21 , Var(x2) = σ22 and ρ is the correlation between
x1 and x2. This is a very useful result when we consider a linear regression of one real
scalar variable on another real scalar variable.

Let us compute the correlation between x1 and its best linear predictor, that is,
between x1 and the predicting function in (14.15).

Example 14.11. If X′ = (x1,x2,x3) has the mean value,

E(X′) = (E(x1),E(x2),E(x3)) = (2, 1, −1)

and the covariance matrix

Cov(X) = [[

[

2 −1 0
−1 2 1
0 1 1

]]

]

,

construct the regression function for predicting x1 at given values of x2 and x3, if it is
known that the regression is linear in x2,x3.

Solution 14.11. As per our notation,

Σ11 = σ11 = 2, Σ12 = (−1,0), Σ21 = [
−1
0

] , Σ22 = [
2 1
1 1

]

and hence

Σ−122 = [
1 −1
−1 2

] , Σ12Σ−122 = (−1,0) [ 1 −1
−1 2

] = (−1, 1).

Hence the best predictor is

E(x1|x2,x3) = E(x1) + Σ12Σ−122 (X2 − E(X2))
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= 2 + (−1, 1) [x2 − 1
x3 + 1

]

= 2 − x2 + 1 + x3 + 1 = 4 − x2 + x3

is the best prediction function for predicting x1 at preassigned values of x2 and x3.

14.4.1 Correlation between x1 and its best linear predictor

In order to compute the correlation between x1 and E(x1|x2,… ,xk), we need the vari-
ances of these two quantities and the covariance between them. As per our notation
in (14.12), we have

Var(x1) = σ11. (14.17)

The variance of α0 + α′X can be computed by using the result on variance of a linear
function of scalar variables. Thesewill be stated as lemmas. These followdirectly from
the definition itself.

Lemma 14.3. Consider a linear function of real scalar random variables y1,… ,yn
with covariances, Cov(yi ,yj)= vij , i, j= 1,… ,n thereby vii = Var(yi) and let the vari-
ance-covariance matrix in (y1,… ,yn) be denoted by V = (vij). Let

u = a0 + a1y1 + a2y2 + ⋯ + anyn = a0 + a′Y
v = b0 + b1y1 + b2y2 + ⋯ + bnyn = b0 + b′Y

where

a = [[

[

a1
⋮
an

]]

]

, b = [[

[

b1
⋮
bn

]]

]

, Y = [[

[

y1
⋮
yn

]]

]

and a prime denotes the transpose. Then

Var(u) = a′Va, Var(v) = b′Vb, Cov(u, v) = a′Vb = b′Va.

Note that V is a symmetric matrix. Then with the help of Lemma 14.3, we have

Var[E(x1|x2,… ,xk)] = Var[α0 + α′X] = Var[α′X]

= α′ Cov(X)α = α′Σ22α (14.18)

where Cov(X)means the covariance matrix in X. But from (14.14) and (14.18), the vari-
ance of the best linear predictor

α′Σ22α = [Σ−122Σ21]
′Σ22[Σ−122Σ21] = Σ12Σ−122Σ21 (14.19)
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because Σ′22 = Σ22, Σ′21 = Σ12. The covariance between x1 and its best linear predictor is
then

Cov[x1,E(x1|x2,… ,xk)] = Cov[x1,α0 + α′X]

= Cov[x1,α′X] = α′ Cov(x1,X) = α′Σ21
= [Σ−122Σ21]

′Σ21 = Σ12Σ−122Σ21.

Strangely enough, the covariance between x1 and its best linear predictor is the same
as the variance of the best linear predictor. Variance being non-negative, it is clear
that the covariance in this case is also non-negative, and hence the correlation is also
non-negative. Denoting the correlation by ρ1.(2…k), we have

ρ21.(2…k) =
(Σ12Σ−122Σ21)2

σ11(Σ12Σ−122Σ21)
= Σ12Σ−122Σ21

σ11
. (14.20)

But note that the best predictor E(x1|x2,… ,xk) for predicting x1 at preassigned values
of x2,… ,xk need not be linear. We have cited several examples where the regression
function is non-linear. But if the regression is linear then the correlation between x1
and its best linear predictor has the nice from given in (14.20).

Exercises 14.4
14.4.1. Write the following linear functions by using vector, matrix notations. For ex-
ample, 4 + x1 − x2 + 5x3 = 4 + a′X = b′Y where the prime denotes the transpose and

a = [[

[

1
−1
5

]]

]

, X = [[

[

x1
x2
x3

]]

]

, b =
[[[[

[

4
1
−1
5

]]]]

]

, Y =
[[[[

[

1
x1
x2
x3

]]]]

]

.

(i) y = 2 + x1 + x2 − x3; (ii) y = 1 + 2x1 − x2; (iii) y = 5 + x1 + x2 − 2x3 + x4.

14.4.2. Write down the following quadratic forms in the form X′AX where A = A′:
(i) x21 + 2x22 − 3x1x2;
(ii) 2x21 + x22 − x23 + 2x1x2 − x2x3;
(iii) x21 + x22 + ⋯ + x2k .

14.4.3. Write the same quantities in Exercise 14.4.2 as X′AX where A ≠ A′.

14.4.4. Can the following matrices represent covariance matrices, if so prove and if
not explain why?

A1 = [
2 0
0 −3

] , A2 = [
1 −3
−3 2

] , A3 = [
3 1
1 2

]
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A4 = [[

[

1 −1 1
−1 2 0
1 0 4

]]

]

, A5 = [[

[

3 1 0
1 2 2
0 2 2

]]

]

, A6 = [[

[

2 1 0
1 −3 1
0 1 4

]]

]

.

14.4.5. Let X′ = (x1,x2,x3) have a joint distributionwith the followingmean value and
covariance matrix:

E(X) = [[

[

1
−1
2

]]

]

, Cov(X) = V = [[

[

1 1 −1
1 3 0
−1 0 2

]]

]

.

Let the regression of x1 on x2 and x3 be a linear function of x2 and x3. (i) Construct
the best linear predictor E(x1|x2,x3) for predicting x1 at preassigned values of x2
and x3; (ii) predict x1 at x2 = 1, x3 = 0; (iii) compute the variance of the best predictor
E(x1|x2,x3); (iv) compute the covariance between x1 and the best linear predictor;
(v) compute the correlation between x1 and its best linear predictor.

14.5 Multiple correlation coefficient ρ1.(2…k)
The multiple correlation coefficient is simply defined as

ρ1.(2…k) = √Σ12Σ−122Σ21
σ11

(14.21)

with the notations as given in (14.12). It does notmean that we are assuming that there
is a linear regression. If the regression is linear, then the multiple correlation coeffi-
cient is also the correlation between x1 and its best linear predictor. The expression in
(14.20) itself has many interesting properties and the multiple correlation coefficient,
as defined in (14.21), has many statistical properties.

Example 14.12. For the same covariance matrix in Example 14.11, compute ρ21.(2.3).

Solution 14.12. Weneed to compute Σ12Σ
−1
22Σ21
σ11

, out of which Σ12Σ−122 is already computed
in Example 14.11 as Σ12Σ−122 = (−1, 1), and Σ21 = ( −10 ). Therefore,

ρ21.(2.3) =
Σ12Σ−122Σ21

σ11
= 1
2
(−1, 1)(−1

0
) = 1

2
.

14.5.1 Some properties of the multiple correlation coefficient

Let b2x2 + ⋯ + bkxk = b′X2 where b′ = (b2,… ,bk) and X′2 = (x2,… ,xk) be an arbitrary
linear predictor of x1. That is, x1 is predicted by using b′X2. Let us compute the cor-
relation between x1 and this arbitrary predictor b′X2. Note that, from Lemma 14.3 we
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have

Var(b′X2) = b′Σ22b and Cov(x1,b′X2) = b′Σ21.

Then the square of the correlation between x1 and an arbitrary linear predictor, de-
noted by η2, is given by the following:

η2 = (b′Σ21)2

(b′Σ22b)σ11
.

But from Cauchy–Schwarz inequality we have

(b′Σ21)
2 = [(b′Σ

1
2
22)(Σ
− 12
22 Σ21)]

2 ≤ [b′Σ22b][Σ12Σ−122Σ21]

where Σ
1
2
22 is the symmetric positive definite square root of Σ22. Hence

η2 = (b′Σ21)2

(b′Σ22b)σ11
≤ [b′Σ22b][Σ12Σ−122Σ21]

[b′Σ22b]σ11
= Σ12Σ−122Σ21

σ11
. (14.22)

In other words, the maximum value of η2 is ρ21.(2…k) the square of the multiple correla-
tion coefficient given in (14.20).

Result 14.3. Multiple correlation coefficient of x1 on (x2,… ,xk), where x1,x2,… ,xk
are all real scalar random variables, is also the maximum correlation between x1 and
an arbitrary linear predictor of x1 based on x2,… ,xk .

Note 14.3 (Cauchy–Schwarz inequality). Let a1,… ,an and b1,… ,bn be two se-
quences of real numbers. Then

n
∑
i=1

aibi ≤ [
n
∑
i=1

a2i ]
1
2

[
n
∑
i=1

b2i ]
1
2

(N14.1)

and the equality holdswhen (a1,… ,an) and (b1,… ,bn) are linearly related. In terms
of real scalar random variables x and y, this inequality is the following:

|Cov(x,y)| ≤ [Var(x)]
1
2 [Var(y)]

1
2 (N14.2)

and the equality holds when x and y are linearly related.

Proof is quite simple. (N14.1) is nothing but the statement |cosθ| ≤ 1 where θ is the an-
gle between the vectors a⃗ = (a1,… ,ak) and b⃗ = (b1,… ,bk) and (N14.2) is the statement
that |ρ| ≤ 1 where ρ is the correlation coefficient between the real scalar variables x and
y. Thus the covariance as well as correlation between the real scalar random variables
x and y can be described as measuring cosθ where θ is measuring angular dispersion
between x and y or scatter in the point (x,y). There are various variations and exten-
sions of Cauchy–Schwarz inequality. But what we need to use in our discussions are
available from (N14.1) and (N14.2).
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Note 14.4 (Determinants and inverses of partitioned matrices). Consider a matrix
A and its regular inverse A−1, when A is non-singular and let A be partitioned as
follows:

A = [
A11 A12
A21 A22

] , A−1 = [
A11 A12

A21 A22
] (N14.3)

where A11, A12, A21, A22 are submatrices in A and A11, A12, A21, A22 are submatrices
in A−1. For example, let

A = [[

[

2 0 1
0 1 1
2 1 −1

]]

]

= [
A11 A12
A21 A22

]

where let

A11 = [2], A12 = [0, 1], A21 = [
0
2
] , A22 = [

1 1
1 −1

] .

Then from elementary theory of matrices and determinants we have the following,
denoting the determinant of A by |A|:

|A| = |A11||A22 − A21A−111 A12| if |A11| ≠ 0 (N14.4)
= |A22||A11 − A12A−122A21| if |A22| ≠ 0. (N14.5)

For our illustrative example, the determinant of A11 is |A11| = 2 and

|A22 − A21A−111 A12| = |[
1 1
1 −1

] − [
0
2
] 1
2
[0, 1]|

= |[
1 1
1 −1

] − [
0 0
0 1

]|

= |
1 1
1 −2

| = −3

and, therefore,

|A11||A22 − A21A−111 A12| = (2)(−3) = −6.

The student may evaluate the determinant of A directly and verify the result and as
well as use (N14.5) and verify that result also. The proof for establishing (N14.4) and
(N14.5) are quite simple. From the axioms defining a determinant, it follows that if
linear functions of one or more rows are added to one or more rows the value of the
determinant remains the same. This operation can be done one at a time or several
steps together. Consider (N14.3). What is a suitable linear function of the rows con-
taining A11 to be added to the remaining rows containing A21 so that a null matrix
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appears at the position of A21. The appropriate linear combination is obtained by a
pre-multiplication by

−A21A−111 [A11 A12] = [−A21 −A21A−111 A12] .

Hence the resulting matrix and the corresponding determinant are the following:

|A| = |
A11 A12
A21 A22

| = |
A11 A12
O A22 − A21A−111 A12

| .

This is a triangular block matrix and hence the determinant is a product of the deter-
minants of the diagonal blocks. That is,

|A| = |A11||A22 − A21A−111 A12|.

If A−1 exists then AA−1 = I = A−1A. In the partitioned format in (N14.3),

AA−1 = I ⇒ [
A11 A12
A21 A22

][
A11 A12

A21 A22
] = [

Ir O
O Is

] .

Thus, by straight multiplication the following equations are determined where r and
s, denote the orders of the identity matrices where we assumed that A11 is r × r and A22
is s × s.

A11A11 + A12A21 = Ir
A11A12 + A12A22 = O
A21A11 + A22A21 = O
A21A12 + A22A22 = Is. (N14.6)

Solving the system in (N14.6), we have the following representations, among other
results:

A11 = [A11 − A12A−122A21]
−1, A−111 = A11 − A12(A22)−1A21

A22 = [A22 − A21A−111 A12]
−1, A−122 = A22 − A21(A11)−1A12. (N14.7)

Note that the submatrices in the inverse are not the inverses of the corresponding sub-
matrices in the originalmatrix. That is,A11 ≠ A−111 ,A22 ≠ A−122 . From (N14.6), one can also
derive formulae for A21 and A12 in terms of the submatrices in A and vice versa, which
are not listed above. [This is left as an exercise to the student.]

For our illustrative example, it is easily verified that

A−1 = 1
3
[[

[

1 − 1
2

1
2

−1 2 1
1 1 −1

]]

]

= [
A11 A12

A21 A22
]
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where

A11 = [ 1
3
], A12 = [− 1

6
, 1
6
],

A21 = [
1
3
1
3
] , A22 = [

2
3

1
3

1
3 − 1

3
] .

From the computations earlier, we have, for example,

A22 − A21A−111 A12 = [
1 1
1 −2

]

and hence

[A22 − A21A−111 A12]
−1 = [

1 1
1 −2

]
−1

= 1
3
[
2 1
1 −1

] = A22.

Thus one result is verified. The remaining verifications are left to the students.

Note 14.5 (Correlation coefficient). This is very often amisused concept in applied
statistics. The phrase “correlation” indicates “relationship”, and hence peoplemis-
interpret it as a measure of relationship between two real scalar random variables
and the corresponding sample value as measuring the relationship between the
pairs of numbers. There is extensive literature trying to evaluate the strength of the
relationship, “negative relationship”, “positive relationship”, “increasing and de-
creasing nature of the relationship” etc by studying the correlation. But it is very
easy to show that correlation does not measure relationship at all. Let ρ denote the
correlation between two real scalar random variables x and y. Then it is easy to
show that −1 ≤ ρ ≤ 1. This follows from Cauchy–Schwarz inequality or by using the
property |cosθ| ≤ 1 or by considering two random variables:

u = x
σ1

+ y
σ2

and v = x
σ1

− v
σ2

where x and y are non-degenerate random variables with Var(x) = σ21 > 0 and
Var(y) = σ22 > 0. Take Var(u) and Var(v) and use the fact that they are non-negative
to show that −1 ≤ ρ ≤ 1. In the Cauchy–Schwarz inequality, equality is attained or
the boundary values ρ = +1 and ρ = −1 are attained if and only if x and y are linearly
related, that is, y = a + bx where a and b ≠ 0 are constants. This relationship must
hold almost surely meaning that there could be non-linear relationships but the
total probability measure on the non-linear part must be zero or there must exist
an equivalent linear function with probability 1. This aspect will be illustrated
with an example later. Coming back to ρ, let us consider a perfect mathematical
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relationship between x and y in the form:

y = a + bx + cx2, c ≠ 0. (N14.8)

Since we are computing correlations, without loss of generality, we can omit a.

Further, for convenience let us assume that x has a symmetrical distribution so that
all odd moments disappear. Then E(x) = 0, E(x3) = 0 and E(y) = a + cE(x2). Also we
rule out degenerate variables when computing correlation, and hence it is assumed
that Var(x) ≠ 0.

Cov(x,y) = E{x[y − E(y)]} = E{x[bx + c(x2 − E(x2))]}
= 0 + bVar(x) + 0 = bVar(x).

Var(y) = E[bx + c(x2 − E(x2))]2

= b2 Var(x) + c2{E(x4) − [E(x2)]2}.

Then

ρ = bVar(x)

√Var(x)√b2 Var(x) + c2{E(x4) − (E(x2))2}

= b

|b|√1 + c2
b2 {

E(x4)−(E(x2))2
Var(x) }

, for b ≠ 0

= 0 if b = 0

= 1
√1 + c2

b2 {
E(x4)−(E(x2))2

Var(x) }
, if b > 0

= − 1
√1 + c2

b2 {
E(x4)−(E(x2))2

Var(x) }
if b < 0. (N14.9)

Let us take x to be a standard normal variable, that is, x ∼ N(0, 1), then we know that
E(x) = 0, E(x2) = 1, E(x4) = 3. In this case,

ρ = ± 1
√1 + 2 c

2

b2

, (N14.10)

positive if b > 0, negative if b < 0 and zero if b = 0. Suppose that we would like to have
ρ = 0.01 and at the same time a perfect mathematical relationship between x and y,
such as the one in (N14.8) existing. Then let b > 0 and let

1
√1 + 2 c

2

b2

= 0.01 ⇒ 1 + 2 c
2

b2
= 1

(0.01)2
= 10000 ⇒

2 c
2

b2
= 9999 ⇒ c2 = 9999b2

2
.
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Take any b > 0 such that c2 = 9999b2
2 . There are infinitely many choices. For example,

b = 1 gives c2 = 9999
2 . Similarly, if we want ρ to be zero, then take b = 0. If we want ρ to

be a very high positive number such as 0.999 or a number close to −1 such as −0.99,
then also there are infinitelymany choices of b and c such that a perfect mathematical
relationship existing between x and y and at the same time ρ can be any small or large
quantity between −1 and +1. Thus ρ is not an indicator of relationship between x and
y. Even when there is a relationship between x and y, other than linear relationship,
ρ can be anything between −1 and +1, and ρ = ±1 when and only when there is a lin-
ear relationship almost surely. From the quadratic function that we started with, note
that increasing values of x can go with increasing as well as decreasing values of y
when ρ is positive or negative. Hence that type of interpretation cannot be given to ρ
either.

Example 14.13. Consider the following probability function for x:

f (x) =
{{{
{{{
{

1
2 , x = α
1
2 , x = −α
0, elsewhere.

Compute ρ and check the quadratic relationship between x and y as given in (N14.8).

Solution 14.13. Here, E(x) = 0, E(x2) = α2, E(x4) = α4. Then ρ in (N14.9) becomes

ρ = b
|b|

= ±1

but c ≠ 0 thereby (N14.8) holds. Is there something wrong with the Cauchy–Schwarz
inequality? This is left to the student to think over.

Then what is the correlation coefficient ρ? What does it really measure? The nu-
merator of ρ, namely Cov(x,y), measures the joint variation of x and y or the scatter of
the point (x,y), or angular dispersion between x and y, corresponding to the scatter
in x, Var(x) = Cov(x,x). Then division by √Var(x)Var(y) has the effect of making the
covariance scale-free. Hence ρ really measures the joint variation of x and y or a type
of scatter in the point (x,y) in the sense that when y = x it becomes Var(x)which is the
square of a measure of scatter in x. Thus ρ is more appropriately called a scale-free
covariance and this author suggested through one of the published papers to call ρ
scovariance or scale-free covariance. It should never be interpreted as measuring re-
lationship or linearity or near linearity or anything like that. Only two points ρ = +1
and ρ = −1 are connected to linearity and no other value of ρ is connected to linearity
or near linearity. For postulates defining covariance or for an axiomatic definition of
covariance the student may consult the book [14].
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Exercises 14.5
14.5.1. Verify equations (N14.4) and (N14.5) for the following partitioned matrices:

A =
[[[[

[

1 −1 0 2
3 4 1 1
2 1 −1 1
1 0 1 1

]]]]

]

= [
A11 A12
A21 A22

] , A11 = [
1 −1
3 4

]

B =
[[[[

[

1 0 1 −1
0 2 −1 0
1 −1 3 1
−1 0 1 4

]]]]

]

= [
B11 B12
B21 B22

] , B11 = [1].

14.5.2. For real scalar random variable x, let E(x) = 0, E(x2) = 4, E(x3) = 6, E(x4) = 24.
Let y = 50+ x + cx2, c ≠ 0. Compute the correlation between x and y and interpret it for
various values of c.

14.5.3. Let x be a standard normal variable, that is, x ∼ N(0, 1). Let y = a+x+2x2 +cx3,
c ≠ 0. Compute the correlation between x and y and interpret it for various values of c.

14.5.4. Let x be a type-1 beta random variable with the parameters (α = 2,β = 1). Let
y = axδ for some parameters a and δ. Compute the correlation between x and y and
interpret it for various values of a and δ.

14.5.5. Repeat the Exercise in 14.5.4 if x is type-2 betawith the parameters (α = 1,β = 2).

14.6 Regression analysis versus correlation analysis

As mentioned earlier, for studying regression one needs only the conditional distri-
bution of x1 given x2,… ,xk because the regression of x1 on x2,… ,xk is the conditional
expectation of x1 given x2,… ,xk , that is, E(x1|x2,… ,xk). But for correlation analysiswe
need the joint distribution of all the variables involved. For example, in order to com-
pute multiple correlation coefficient ρ1.(2…k) we need the joint moments involving all
the variables x1,x2,… ,xk up to second-order moments. Hence the joint distribution,
not just the conditional distribution, is needed. Thus regression analysis and correla-
tion analysis are built up on two different premises and should not be mixed up.

14.6.1 Multiple correlation ratio

In many of our examples, it is seen that the regression function is not linear in many
situations. Let E(x1|x2,… ,xk) = M(x2,… ,xk), may or may not be a linear function of
x2,… ,xk . Consider an arbitrary predictor g(x2,… ,xk) for predicting x1. To start with,
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we are assuming that there is a joint distribution of x1,x2,… ,xk . Let us compute the
correlation between x1 and an arbitrary predictor g(x2,… ,xk) for x1.

Cov(x1,g) = E{[x1 − E(x1)][g − E(g)]} = E{x1[(g − E(g)]} (14.23)

as explained earlier since E{E(x1)[g − E(g)]} = E(x1)E[g − E(g)]} = 0. Let us convert the
expected value in (14.21) into an expectation of the conditional expectation through
Lemma 14.1. Then

Cov(x1,g) = E{E[x1(g − E(g)]|x2,… ,xk]}
= E{(g − E(g))E(x1|x2,… ,xk)}, since g is free of x1
= E{(g − E(g))M(x2,… ,xk)}
= Cov(g,M) ≤ √Var(g)Var(M),

the last inequality follows from the fact that the correlation ρ ≤ 1. Then the correlation
between x1 and an arbitrary predictor, which includes linear predictors also, denoted
by η, is given by the following:

η = Cov(x1,g)
√Var(g)√Var(x1)

≤
√Var(g)√Var(M)
√Var(g)√Var(x1)

=
√Var(M)
√Var(x1)

. (14.24)

Definition 14.4 (Multiple correlation ratio). Themaximum correlation between x1
and an arbitrary predictor of x1 by using x2,… ,xk is given by the following:

max
g

η =
√Var(M)
√Var(x1)

= η1.(2…k). (14.25)

This maximum correlation between x1 and an arbitrary predictor of x1 by using
x2,… ,xk is given by√Var(M)

Var(x1)
and it is defined as themultiple correlation ratio η1.(2…k)

and themaximum is attainedwhen the arbitrary predictor is the regression of x1 on
x2,… ,xk , namely, E(x1|x2,… ,xk) =M(x2,… ,xk).

Note that whenM(x2,… ,xk) is linear in x2,… ,xk we have the multiple correlation
coefficient given in (14.21). Thus when g is confined to linear predictors or in the class
of linear predictors

η21.(2…k) = ρ21.(2…k) =
Σ12Σ−122Σ21

σ11
. (14.26)

Some further properties of ρ21.(2…k) can be seen easily. Note that from (N14.7)

1 − ρ21.(2…k) =
σ11 − Σ12Σ−122Σ21

σ11
=

(σ11)−1

σ11
=

1
σ11σ11

. (14.27)
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Example 14.14. Check whether the following matrix Σ can represent the covariance
matrix ofX′ = (x1,x2,x3)where x1,x2,x3 are real scalar randomvariables. If so, evaluate
ρ1.(2.3) and verify (14.27):

Σ = [[

[

2 0 1
0 2 −1
1 −1 3

]]

]

.

Solution 14.14.

2 > 0, |
2 0
0 2

| = 4 > 0, |Σ| = 8 > 0

and hence Σ = Σ′ > 0 (positive definite) and hence it can represent the covariance ma-
trix of X. For being a covariancematrix one needs only symmetry plus at least positive
semi-definiteness. As per our notation,

σ11 = 2, Σ12 = [0, 1], Σ22 = [
2 −1
−1 3

] , Σ21 = Σ′12

and, therefore,

Σ−122 = 1
5
[
3 1
1 2

] ,

Σ12Σ−122Σ21
σ11

= 1
(5)(2)

[0, 1] [3 1
1 2

][
0
1
]

= 1
5

= ρ21.(2.3)

1 − ρ21.(2.3) = 1 − 1
5

= 4
5
;

σ11 − Σ12Σ−122Σ21
σ11

= 1
2
[2 − 2

5
] = 4

5
;

1
σ11σ11

=
1
2
(
8
5
) =

4
5
.

Thus (14.27) is verified.

14.6.2 Multiple correlation as a function of the number of regressed variables

Let X′ = (x1,… ,xk) and let the variance-covariancematrix in X be denoted by Σ = (σij).
Our general notation for the multiple correlation coefficient is

ρ1.(2…k) = √Σ12Σ−122Σ21
σ11

.



14.6 Regression analysis versus correlation analysis | 469

For k = 2,

ρ1.2 = √
σ12σ12
σ22σ11

= √ σ212
σ11σ22

= ρ12

is the correlation between x1 and x2. For k = 3,

ρ21.(2.3) =
1
σ11

[σ12,σ13] [
σ22 σ23
σ32 σ33

]
−1

[
σ21
σ31

] .

Converting everything on the right in terms of the correlations, that is,

σ21 = σ12 = ρ12σ1σ2, σ11 = σ21 , σ22 = σ22 ,
σ31 = σ13 = ρ13σ1σ3, σ23 = ρ23σ2σ3,

we have the following:

ρ21.(2.3) =
1
σ21

[ρ12σ1σ2,ρ13σ1σ3] [
σ22 ρ23σ2σ3

ρ23σ2σ3 σ23
]
−1

[
ρ12σ1σ2
ρ13σ1σ3

]

= [ρ12σ2,ρ13σ3] [
σ22 ρ23σ2σ3

ρ23σ2σ3 σ23
]
−1

[
ρ12σ2
ρ13σ3

]

= [ρ12,ρ13] [
σ2 0
0 σ3

][
σ2 0
0 σ3

]
−1

× [
1 ρ23
ρ23 1

]
−1

[
σ2 0
0 σ3

]
−1

[
σ2 0
0 σ3

][
ρ12
ρ13

]

= [ρ12,ρ13] [
1 ρ23
ρ23 1

]
−1

[
ρ12
ρ13

]

= 1
1 − ρ223

[ρ12,ρ13] [
1 −ρ23

−ρ23 1
][

ρ12
ρ13

] , 1 − ρ223 > 0,

=
ρ212 + ρ213 − 2ρ12ρ13ρ23

1 − ρ223
.

Then

ρ21.(2.3) − ρ212 =
ρ212 + ρ213 − 2ρ12ρ13ρ23

1 − ρ223
− ρ212

=
ρ213 − 2ρ12ρ13ρ23 + ρ212ρ223

1 − ρ223

=
(ρ13 − ρ12ρ23)2

1 − ρ223
≥ 0
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which is equal to zero only when ρ13 = ρ12ρ23. Thus, in general,

ρ21.(2.3) − ρ212 ≥ 0 ⇒ ρ21.(2.3) ≥ ρ212.

In other words, the multiple correlation coefficient increased when we incorporated
one more variable x3 in the regressed set. It is not difficult to show (left as an exercise
to the student) that

ρ212 ≤ ρ21.(2.3) ≤ ρ21.(2.3.4) ≤ … (14.28)

This indicates that ρ21.(2…k) is an increasing function of k, the number of variables in-
volved in the regressed set. There is a tendency among applied statisticians to use
the sample multiple correlation coefficient as an indicator of how good is a linear re-
gression function by looking at the value of the multiple correlation coefficient, in the
sense, bigger the value better the model. From (14.28), it is evident that this is a falla-
cious approach. Also this approach comes from the tendency to look at the correlation
coefficient as a measure of relationship, which again is a fallacious concept.

Exercises 14.6

14.6.1. Show that ρ21.(2.3) ≤ ρ21.(2.3.4) with the standard notation for the multiple correla-
tion coefficient ρ1.(2…k).

14.6.2. (i) Show that the following matrix V can be a covariance matrix:

V =
[[[[

[

1 1 0 −1
1 3 1 0
0 1 3 1
−1 0 1 2

]]]]

]

.

(ii) Compute ρ21.2, ρ21(2.3), ρ21.(2.3.4).
(iii) Verify that ρ21.2 ≤ ρ21.(2.3) ≤ ρ21.(2.3.4).

14.6.3. Let the conditional density of x1 given x2 beGaussianwithmean value 1+2x2 +
x22 and variance 1 and let the marginal density of x2 be uniform over [0, 1]. Compute
the square of the correlation ratio of x1 to x2, that is,

η21.2 = Var(M)
Var(x1)

, M = E(x1|x2)

and

Var(x1) = Var[E(x1|x2)] + E[Var(x1|x2)].
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14.6.4. Let the conditional density of x1 given x2, x3 be exponential with mean value
1 + x2 + x3 + x2x3 and let the joint density of x2 and x3 be

f (x2,x3) = x2 + x3, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1

and zero elsewhere. Compute the square of the correlation ratio

η21.(2.3) =
Var(M)
Var(x1)

where

M = E(x1|x2,x3)

and

Var(x1) = Var[E(x1|x2,x3)] + E[Var(x1|x2,x3)].

14.6.5. Let the conditional density of x1 given x2, x3 be Gaussian, N(x2 + x3 + x2x3, 1),
where let x2, x3 have a joint density as in Exercise 14.6.4. Evaluate the square of the
correlation ratio η21.(2.3).

There are other concepts of partial correlation coefficient, partial correlation ratio,
etc., which fall in the general category of residual analysis in regression problems.We
will not go into these aspects here. These will be covered in a module on model build-
ing. We will conclude this section with a note on variances and covariances of linear
functions of random variables. These were already discussed in Module 6, which will
be recalled here for ready reference.

Note 14.6 (Variances and covariances of linear functions). Let x1,… ,xp be real
scalar variables with E(xj) = μj, Var(xj) = σjj, Cov(xi ,xj) = σij , i, j = 1,… ,p. Let

X = [[

[

x1
⋮
xp

]]

]

, a = [[

[

a1
⋮
ap

]]

]

, b = [[

[

b1
⋮
bp

]]

]

, Σ = (σij) =
[[[[

[

σ11 … σ1p
σ21 … σ2p
⋮ … ⋮
σp1 … σpp

]]]]

]

where a and b are constant vectors, a prime denotes the transpose, E denotes the
expected value and let μ′ = (μ1,… ,μp), μj = E(xj), j = 1,… ,p. As per the definition,

Var(xj) = E[(xj − E(xj))
2],

Cov(xi ,xj) = E[(xi − E(xi))(xj − E(xj))]; Cov(xj ,xj) = Var(xj).

Then

u = a1x1 + ⋯ + apxp ⇒ u = a′X = X′a
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v = b1x1 + ⋯ + bpxp = b′X = X′b; E(a′X) = a′E(X) = a′μ

E(b′X) = b′E(X) = b′μ; Var(a′X) = E[a′X − a′μ]2 = E[a′(X − μ)]2.

From elementary theory of matrices, it follows that if we have a 1× 1 matrix c then it is
a scalar and its transpose is itself, that is, c′ = c. Being a linear function, a′(X − μ) is
a 1 × 1 matrix and hence it is equal to its transpose, which is, (X − μ)′a. Hence we may
write

E[a′(X − μ)]2 = E[a′(x − μ)(x − μ)′a] = a′E[(X − μ)(X − μ)′]a

since a is a constant the expected value can be taken inside. But

E[(X − μ)(X − μ)′]

= E
[[[[

[

(x1 − μ1)2 (x1 − μ1)(x2 − μ2) … (x1 − μ1)(xp − μp)
(x2 − μ2)(x1 − μ1) (x2 − μ2)2 … (x2 − μ2)(xp − μp)

⋮ ⋮ … ⋮
(xp − μp)(x1 − μ1) (xp − μp)(x2 − μ2) … (xp − μp)2

]]]]

]

.

Taking expectations inside the matrix, we have

E[(X − μ)(X − μ)′] =
[[[[

[

σ11 σ12 … σ1p
σ21 σ22 … σ2p
⋮ ⋮ … ⋮
σp1 σp2 … σpp

]]]]

]

= Σ = covariance matrix in X.

Therefore,

Var(a′X) = a′Σa, Var(b′X) = b′Σb, Cov(a′X,b′X) = a′Σb = b′Σa

since Σ = Σ′.

Details on variances of linear functions and covariance between two linear func-
tions are needed to deal with the area of Canonical Correlation Analysis. This is an
area of predicting one set of variables by using another set of variables. In the regres-
sion problem that we considered in Sections 14.3–14.5, we were predicting one scalar
variable by using one or more or one set of other scalar variables. We can general-
ize this idea and try to predict one set of scalar variables by using another set of scalar
variables. Since individual variables are contained in linear functions, what is usually
done is tomaximize the correlation between one arbitrary linear function of one set of
variables and another arbitrary linear function of the other set of variables. By max-
imizing the correlations, we construct the optimal linear functions, which are called
pairs of canonical variables. This aspect will be dealt with in detail in the module on
model building.
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Another useful area is vector and matrix differential operators and their uses in
multivariate statistical analysis.When estimating or testing hypotheses on the param-
eters in amultivariate statistical density, these operators will come in handy. Since the
detailed discussion is beyond the scope of this book, we will just indicate the main
ideas here for the benefit of curious students.

Note 14.7 (Vector and matrix derivatives). Consider the following vector of partial dif-
ferential operators. Let

Y = [[

[

y1
⋮
yn

]]

]

, 𝜕
𝜕Y

= [[

[

𝜕
𝜕y1
⋮
𝜕
𝜕yn

]]

]

, 𝜕
𝜕Y

[f ] = [[[

[

𝜕f
𝜕y1
⋮
𝜕f
𝜕yn

]]]

]

where f is a real-valued scalar function of Y . For example,

f1(Y) = a1y1 + ⋯ + anyn = a′Y , a′ = (a1,… ,an) (i)

is such a function, where a is a constant vector. Here, f1 is a linear function of Y , some-
thing like

2y1 − y2 + y3; y1 + y2 + ⋯ + yn; y1 + 3y2 − y3 + 2y4

etc.

f2(y1,… ,yn) = y21 + y22 + ⋯ + y2n (ii)

which is the sum of squares or a simple quadratic form or a general quadratic form in
its canonical form.

f3(y1,… ,yn) = Y′AY , A = (aij) = A′ (iii)

is a general quadratic form where A is a known constant matrix, which can be taken
to be symmetric without loss of generality. A few basic properties that we are going to
use will be listed here as lemmas.

Lemma 14.4.
f1 = a′Y ⇒

𝜕f1
𝜕Y

= a.

Note that the partial derivative of the linear function a′Y = a1y1 + ⋯ + anyn, with
respect to yj gives aj for j = 1,… ,n, and hence the column vector

𝜕f1
𝜕Y

= 𝜕(a′Y)
𝜕Y

= [[

[

a1
⋮
an

]]

]

= a.

For example, if a′Y = y1 − y2 + 2y3 then
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𝜕
𝜕Y

(a′Y) = [[

[

1
−1
2

]]

]

.

Lemma 14.5.

f2 = y21 + ⋯ + y2n = Y′Y ⇒ 𝜕f2
𝜕Y

= 2Y = 2[[
[

y1
⋮
yn

]]

]

.

Note that Y′Y is a scalar function of Y whereas YY′ is a n× nmatrix, and hence it
is a matrix function of Y . Note also that when Y′Y is differentiated with respect to Y
the Y′ disappears and a 2 comes in. We get a column vector because our differential
operator is a column vector.

Lemma 14.6.
f3 = Y′AY , A = A′ ⇒

𝜕f3
𝜕Y

= 2AY .

Here, it can be seen that if A is not taken as symmetric then instead of 2AY wewill
end up with (A + A′)Y . As an illustration of f3, we can consider

f3 = 2y21 + y22 + y23 − 2y1y2 + 5y2y3

= [y1,y2,y3]
[[

[

2 −1 0
−1 1 5

2
0 5

2 1

]]

]

[[

[

y1
y2
y3

]]

]

= Y′AY , A = A′

= [y1,y2,y3]
[[

[

2 −2 0
0 1 5
0 0 1

]]

]

[[

[

y1
y2
y3

]]

]

= Y′BY , B ≠ B′.

In the first representation, the matrix A is symmetric whereas in the second represen-
tation of the same quadratic form the matrix B is not symmetric. By straight differen-
tiation,

𝜕f3
𝜕y1

= 4y1 − 2y2,
𝜕f3
𝜕y2

= 2y2 − 2y1 + 5y3,
𝜕f3
𝜕y3

= 2y3 + 5y2

Therefore,

𝜕f3
𝜕Y

=
[[[[

[

𝜕f3
𝜕y1
𝜕f3
𝜕y2
𝜕f3
𝜕y3

]]]]

]

= [[

[

4y1 − 2y2
2y2 − 2y1 + 5y3

2y3 + 5y2

]]

]

= 2[[
[

2 −1 0
−1 1 5

2
0 5

2 1

]]

]

[[

[

y1
y2
y3

]]

]

= 2AY .
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But

B + B′ = [[

[

2 −2 0
0 1 5
0 0 1

]]

]

+ [[

[

2 0 0
−2 1 0
0 5 1

]]

]

= [[

[

4 −2 0
−2 2 5
0 5 2

]]

]

= 2[[
[

2 −1 0
−1 1 5

2
0 5

2 1

]]

]

= 2A.

Note that when applying Lemma 14.5 write the matrix in the quadratic form as a sym-
metric matrix. This can be done without any loss of generality since for any square
matrix B, 12 (B+B′) is a symmetric matrix. Thenwhen operating with the partial differ-
ential operator 𝜕𝜕Y onY′AY ,A = A′ the net result is to deleteY′ (notY ) andpremultiply
by 2 or write 2AY .

With the help of Note 14.7, one can now evaluate the pairs of canonical variables
by using the vector and matrix differential operators. When we consider linear func-
tions u = a1x1 + ⋯ + amxm = a′X, v = b1y1 + ⋯ + bnyn = b′Y , where a′ = (a1,… ,am),
X′ = (x1,… ,xn), b′ = (b1,… ,bn), Y′ = (y1,… ,yn). Then Var(u) = a′Σ1a, Var(v) = b′Σ2b
where Σ1 and Σ2 are the covariance matrices in X and Y , respectively. Since a and b
are arbitrary, Var(u) and Var(v) can be arbitrarily large and hence when maximizing
the covariance between u and v confine to unit hyperspheres or put the conditions
Var(u) = 1 and Var(v) = 1. Construction of canonical variables is left as an exercise to
the student.

14.7 Estimation of the regression function

In the earlier sections, we looked at prediction functions and “best predictors”, best
in the minimummean square sense. We found that in this case the “best” predictor of
a dependent real scalar variable y at preassigned values of the real scalar variables
x1,… ,xk would be the conditional expectation of y given x1,… ,xk . For computing
this conditional expectation, so that we have a good predictor function, we need at
least the conditional distribution of y given x1,… ,xk . If the joint distribution of y and
x1,… ,xk is available that is also fine, but in a joint distribution, there is more informa-
tion than what we need. In most of the practical situations, we may have some idea
about the conditional expectation but we may not know the conditional distribution.
In this case, we cannot explicitly evaluate the regression function analytically. Hence
we will consider various scenarios in this section.

The problem that we will consider in this section is the situation that it is known
that there exists the conditional expectationbutwedonot know the conditional distri-
bution but a general idea is available about the nature of the conditional expectation
or the regression function suchas that the regression function is linear in the regressed
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variables or a polynomial type or some such known functions. Then the procedure is
to collect observations on the variables, estimate the regression function and then use
this estimated regression function to estimate the value of the dependent variable y
at preassigned values of x1,… ,xk , the regressed variables. We will start with k = 1,
namely one real scalar variable to be predicted by preassigning one independent real
scalar variable. Let us start with the linear regression function, here “linear” means
linear in the regressed variable or the so-called “independent variable”.

14.7.1 Estimation of linear regression of y on x

This means that the regression of the real scalar random variable y on the real scalar
random variable x is believed to be of the form:

E(y|x) = β0 + β1x (14.29)

where β0 and β1 areunknownbecause the conditional distribution is not available and
the only information available is that the conditional expectation, or the regression of
y on x, is linear of the type (14.29). In order to estimate β0 and β1, we will start with
the model

y = a + bx (14.30)

and try to take observations on the pair (y,x). Let there be n data points (y1,x1),… ,
(yn,xn). Then as per the model in (14.30) when x = xj the estimated value, as per the
model (14.30), is a + bxj but this estimated value need not be equal to the observed yj
of y. Hence the error in estimating y by using a+bxj is the following, denoting it by ej:

ej = yj − (a + bxj). (14.31)

When themodel is written, the following conventions are used.Wewrite themodel as
y = a+bx or yj = a+bxj + ej, j = 1,… ,n. The error ej can be positive for some j, negative
for some other j and zero for some other j. Then trying to minimize the errors by min-
imizing the sum of the errors is not a proper procedure to be used because the sum of
ej ’s may be zero but this does not mean that there is no error. Here, the negative and
positive valuesmay sumup to zero. Hence a proper quantity to be used is ameasure of
mathematical “distance” between yj and a + bxj or a norm in ej ’s. The sum of squares
of the errors, namely∑n

j=1 e
2
j is a squared norm or the square of the Euclidean distance

between yj ’s and a + bxj ’s. For a real quantity if the square is zero, then the quantity
itself is zero and if the square attains a minimum then we can say that the distance
between the observed y and the estimated y, estimated by the model y = a + bx, is
minimized. For the model in (14.31),

n
∑
j=1

e2j =
n
∑
j=1

(yj − a − bxj)2. (14.32)
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If the model corresponding to (14.31) is a general function g(a1,… ,ar ,x1,… ,xk), for
some g where a1,… ,ar are unknown constants in the model, x1,… ,xk are the re-
gressed variables, then the j-th observation on (x1,… ,xk) is denotedby (x1j ,x2j ,… ,xkj),
j = 1,… ,n and then the error sum of squares can be written as

n
∑
j=1

e2j =
n
∑
j=1

[yj − g(a1,… ,ar ,x1j ,… ,xkj)]
2. (14.33)

The unknown quantities in (14.33) are a1,… ,ar . If the unknown quantities a1,… ,ar ,
which are also called the parameters in the model, are estimated by minimizing the
error sum of squares then the method is known as themethod of least squares, intro-
duced originally by Gauss. For our simple model in (14.32), there are two parameters
a,b and the minimization is to be done with respect to a and b. Observe that in (14.33)
the functional form of g on x1,… ,xk is unimportant because some observations on
these variables only appear in (14.33) but the nature of the parameters in (14.33) is im-
portant or (14.33) is a function of the unknown quantities a1,… ,ar . Thus when we say
that a model is linear it means linear in the unknowns, namely linear in the parame-
ters. If we say that themodel is a quadraticmodel, then it is a quadratic function in the
unknown parameters. Note the subtle difference. When we say that we have a linear
regression, then we are talking about the linearity in the regressed variables where
the coefficients are known quantities, available from the conditional distribution. But
when we set up a model to estimate a regression function then the unknown quanti-
ties in the model are the parameters to be estimated, and hence the degrees go with
the degrees of the parameters.

Let us look at the minimization of the sum of squares of the errors in (14.32). This
can be done either by using purely algebraic procedures or by using calculus. If we
use calculus, then we differentiate partially with respect to the parameters a and b
and equate to zero and solve the resulting equations.

𝜕
𝜕a

[
n
∑
j=1

e2j ] = 0, 𝜕
𝜕b

[
n
∑
j=1

e2j ] = 0 ⇒

−2
n
∑
j=1

(yj − a − bxj) = 0, ⇒
n
∑
j=1

(yj − â − b̂xj) = 0. (14.34)

−2
n
∑
j=1

xj(yj − a − bxj) = 0 ⇒
n
∑
j=1

xj(yj − â − b̂xj) = 0. (14.35)

Equations (14.34) and (14.35) do not hold universally for all values of the parameters
a and b. They hold only at the critical points. The critical points are denoted by â and
b̂, respectively. Taking the sum over all terms and over j, one has the following:

n
∑
j=1

yj − nâ − b̂
n
∑
j=1

xj = 0 and
n
∑
j=1

xjyj − â
n
∑
j=1

xj − b̂
n
∑
j=1

x2j = 0. (14.36)
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In order to simplify the equations in (14.36), we will use the following convenient no-
tations. [These are also standard notations.]

ȳ =
n
∑
j=1

yj
n

, x̄ =
n
∑
j=1

xj
n

, s2x =
n
∑
j=1

(xj − x̄)2

n

s2y =
n
∑
j=1

(yj − ȳ)2

n
, sxy =

n
∑
j=1

(xj − x̄)(yj − ȳ)
n

= syx .

These are the sample means, sample variances and the sample covariance. Under
these notations, the first equation in (14.36) reduces to the following, by dividing by
n.

ȳ − â − b̂x̄ = 0.

Substituting for â in the second equation in (14.36), and dividing by n, we have
n
∑
j=1

xjyj
n

− [ȳ − b̂x̄]x̄ − b̂
n
∑
j=1

x2j
n

= 0.

Therefore,

b̂ =
∑n
j=1

xjyj
n − (x̄)(ȳ)

∑n
j=1

x2j
n − (x̄)2

=
sxy
s2x

=
∑n
j=1(xj − x̄)(yj − ȳ)
∑n
j=1(xj − x̄)2

and â = ȳ − b̂x̄. (14.37)

The simplifications are done by using the following formulae. For any set of real num-
bers (x1,y1),… , (xn,yn),

n
∑
j=1

(xj − x̄) = 0,
n
∑
j=1

(yj − ȳ) = 0,
n
∑
j=1

(xj − x̄)2 =
n
∑
j=1

x2j − n(x̄)2

n
∑
j=1

(yj − ȳ)2 =
n
∑
j=1

y2j − n(ȳ)2,
n
∑
j=1

(xj − x̄)(yj − ȳ) =
n
∑
j=1

(xjyj) − n(x̄ȳ).

When we used calculus to obtain (14.36), we have noted that there is only one critical
point (â, b̂) for our problem under consideration. Does this point (â, b̂) in the param-
eter space Ω = {(a,b) ∣ −∞ < a < ∞,−∞ < b < ∞} correspond to a maximum or mini-
mum? Note that since (14.32) is the sum of squares of real numbers the maximum for
∑n
j=1 e

2
j for all a and b, is at +∞. Hence the only critical point (â, b̂) in fact corresponds

to a minimum. Thus our estimated regression function, under the assumption that
the regression was of the form E(y|x) = β0 + β1x, and then estimating it by using the
method of least squares, is

y = â + b̂x, â = ȳ − b̂x̄, b̂ =
sxy
s2x

. (14.38)

Hence (14.38) is to be used to estimate the values of y at preassigned values of x.
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Example 14.15. The growth of a certain plant y, growth measured in terms of its
height in centimeters, is guessed to have a linear regression on x the time measured
in the units of weeks. Here, x = 0 means the starting of the observations, x = 1 means
at the end of the first week, x = 2 means at the end of the second week and so on. The
following observations are made:

x 0 1 2 3 4
y 2.0 4.5 5.5 7.5 10.5

Estimate the regression function and then estimate y at x = 3.5, x = 7.

Solution 14.15. As per our notation, n = 5,

x̄ = 0 + 1 + 2 + 3 + 4
5

= 2, ȳ = 2.0 + 4.5 + 5.5 + 7.5 + 10.5
5

= 6.

If you are using a computer with a built-in or loaded program for “regression”, then by
feeding the observations (x,y) = (0, 2),(1,4.5), (2,5.5),(3,7.5), (4, 10.5) the estimated lin-
ear function is readily printed. The same thing is achieved if you have a programmable
calculator. If nothing is available to you readily and if you have to do the problem by
hand, then for doing the computations fast, form the following table:

y x y − ȳ x − x̄ (x − x̄)2 (y − ȳ)(x − x̄) ŷ y − ŷ (y − ŷ)2

2 0 −4.0 −2 4 8.0 2 0.0 0.00
4.5 1 −1.5 −1 1 1.5 4 0.5 0.25
5.5 2 −0.5 0 0 0 6 −0.5 0.25
7.5 3 1.5 1 1 1.5 7 0.5 0.25
10.5 4 4.5 2 4 9.0 10 0.5 0.25

10 20.0 1.00

Therefore,

b̂ =
∑n
j=1(xj − x̄)(yj − ȳ)
∑n
j=1(xj − x̄)2

=
20
10

= 2

and

â = ȳ − b̂x̄ = 6 − (2)(2) = 2.

Note 14.8. Do not round up the estimated values. If an estimated value is 2.1, leave
it as 2.1 and do not round it up to 2. Similarly, when averages are taken, then also
do not round up the values of x̄ and ȳ. If you are filling up sacks with coconuts and
if 4020 coconuts are filled in 100 sacks, then the average number in each sack is
4020
100 = 40.2 and it is not 40 because 40 × 100 ≠ 4020.
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Hence the estimated regression function is

y = 2 + 2x.

Then the estimated value ŷ of y at x = 3.5 is given by ŷ = 2 + 2(3.5) = 9.

Note 14.9. The point x = 7 is far outside the range of the data points. In the obser-
vations, the range of x is only 0 ≤ x ≤ 4 whereas we are asked to estimate y at x = 7,
which is far out from 4. The estimated function y = 2 + 2x can be used for this pur-
pose if we are 100% sure that the underlying regression is the same function 2 + 2x
for all values of x thenwecanuse x = 7 andobtain the estimated y as ŷ = 2+2(7) = 16.
If there is any doubt as to the nature of the function at x = 7 then y should not be
estimated at a point for x which is far out of the observational range for x.

Note 14.10. In the above table for carrying out computations, the last 3 columns,
namely, ŷ, y − ŷ, (y − ŷ)2 are constructed for making some other calculations later
on. The least square minimum is given by the last column sum and in this example
it is 1.

Before proceeding further, let us introduce somemore technical terms. If we apply
calculus on the error sum of squares under the general model in (14.33), we obtain the
following equations for evaluating the critical points:

𝜕
𝜕a1

[
n
∑
j=1

e2j ] = 0,… , 𝜕
𝜕ar

[
n
∑
j=1

e2j ] = 0. (14.39)

Theseminimizing equations in (14.39) under the least square analysis, are often called
normal equations. This is another awkward technical term in statistics and it has noth-
ing to do with normality or Gaussian distribution or it does not mean that other equa-
tions have some abnormalities. The nature of the equations in (14.39) will depend
upon the nature of the involvement of the parameters a1,… ,ar with the regressed vari-
ables x1,… ,xk .

Note 14.11. What should be the size of n or how many observations are needed to
carry out the estimation process? If g(a1,… ,ar ,x1,… ,xk) is a linear function of the
form,

a0 + a1x1 + ⋯ + akxk
then there are k + 1 parameters a0,… ,ak and (14.39) leads to k + 1 linear equations
in k + 1 parameters. This means, in order to estimate a0,… ,ak we need at least k + 1
observation points if the system of linear equations is consistent or have at least
one solution. Hence in this case n ≥ k + 1. In a non-linear situation, the number of
observations needed may be plenty more in order to estimate all parameters suc-
cessfully. Hence the minimum condition needed on n is n ≥ k + 1 where k + 1 is the
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total number of parameters in amodel and themodel is linear in these k+1 parame-
ters. Since it is not a mathematical problem of solving a system of linear equations,
the practical advice is to take n as large as feasible under the given situation so that
a wide range of observational points will be involved in the model.

Note 14.12. As a reasonable criterion for estimating y based on g(a1,… ,ar ,x1,
… ,xk), we used the error sum of squares, namely

n
∑
j=1

e2j =
n
∑
j=1

[yj − g(a1,… ,ar ,x1j ,… ,xkj)]
2. (14.40)

This is the square of amathematical distance between yj and g. We could have used
other measures of distance between yj and g, for example,

n
∑
j=1

|yj − g(a1,… ,ar ,x1j ,… ,xkj)|. (14.41)

Then minimization of this distance and estimation of the parameters a1,… ,ar
thereby estimating the function g is a valid and reasonable procedure. Then why
did we choose the squared distance as in (14.40) rather than any other distance
such as the one in (14.41)? This is done only for mathematical convenience. For ex-
ample, if we try to use calculus then differentiation of (14.41) will be rather difficult
compared to (14.40).

14.7.2 Inference on the parameters of a simple linear model

Consider the linear model

yj = a + bxj + ej , j = 1,… ,n

where we wish to test hypotheses on the parameters a and b as well as construct con-
fidence intervals for these. These can be done by making some assumptions on the
error variable ej, j = 1,… ,n. Note that xj ’s are constants or preassigned numbers and
the only variables on the right are the ej ’s, thereby yj ’s are also random variables. Let
us assume that ej ’s are such that E(ej) = 0, Var(ej) = σ2, j = 1,… ,n and mutually non-
correlated. Thenwe can examine the least square estimators for a and b. We have seen
that

yj = a + bxj + ej ⇒ ȳ = a + bx̄ + ē

b̂ =
∑n
j=1(xj − x̄)(yj − ȳ)
∑n
j=1(xj − x̄)2

=
n
∑
j=1

dj(yj − ȳ),

= b +
n
∑
j=1

djej , dj =
(xj − x̄)

∑n
i=1(xi − x̄)2

, ∑
j
dj = 0 (a)
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E(b̂) = b since E(ej) = 0, E(ē) = 0

Var(b̂) = E[b̂ − b]2 = E[
n
∑
j=1

djej]
2

from (a)

=
n
∑
j=1

d2j E(e2j ) + 0 = σ2

∑n
j=1(xj − x̄)2

(b)

â = ȳ − b̂x̄ = [a + bx̄ + ē] − b̂x̄ = a + x̄[b − b̂] + ē
E[â] = a since E(ē) = 0, E(b̂) = b (c)

Var(â) = E[â − a]2 = E[x̄(b̂ − b) + ē]2

= (x̄)2 σ2

∑n
j=1(xj − x̄)2

+ σ2

n
= σ2[ 1

n
+ x̄2

∑n
j=1(xj − x̄)2

] (d)

If we assume further that ej ∼ N(0,σ2), j = 1,… ,n, that is, iid N(0,σ2), then both b̂ and
â will the normally distributed, being linear functions of normal variables, since the
xj ’s are constants. In this case,

u = b̂ − b

σ√ 1
∑nj=1(xj−x̄)2

= √
n
∑
j=1

(xj − x̄)2[
b̂ − b
σ

] ∼ N(0, 1)

and

v = â − a

σ√ 1
n + x̄2
∑nj=1(xj−x̄)2

∼ N(0, 1).

But usually σ2 is unknown. Hence if we replace σ2 by an unbiased estimator of σ2

then we should get a Student-t statistic. We can show that the least square minimum,
denoted by s2, divided by n− 2 is an unbiased estimator for σ2 for n > 2. [We will show
this later for the general linear model in Section 14.7.4]. Hence

u1 = √
n
∑
j=1

(xj − x̄)2[ b̂ − b
σ̂

] ∼ tn−2 (14.42)

and

v1 =
â − a

σ̂√ 1
n + x̄2
∑nj=1(xj−x̄)2

∼ tn−2 (14.43)

where tn−2 is a Student-t with n − 2 degrees of freedom, and

σ̂2 = least square minimum
n − 2

= s2

n − 2
.
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Hence we can construct confidence intervals as well as test hypotheses on a and b by
using (14.42) and (14.43). A 100(1 − α)% confidence interval for a is

â ∓ tn−2, α2 σ̂√
1
n

+ x̄2
∑n
j=1(xj − x̄)2

(14.44)

and that for b is

b̂ ∓ tn−2, α2 σ̂√
1

∑n
j=1(xj − x̄)2

. (14.45)

Details may be seen from Chapter 12, and illustration is as in Figure 12.3.
The usual hypothesis that we would like to test is H0 ∶ b = 0, or in other words,

there is no effect of x in estimating y or x is not relevant as far as the prediction of y
is concerned. We will consider general hypotheses of the types Ho ∶ b = b0 (given) and
H0 ∶ a = a0 (given), against the natural alternates. The test criterion will reduce to the
following:

H0 ∶ b = b0 (given), H1 ∶ b ≠ b0; criterion: reject H0 if the observed value of

|√
n
∑
j=1

(xj − x̄)2[ b̂ − b0
σ̂

]| ≥ tn−2, α2 . (14.46)

For testing H0 ∶ a = a0 (given), H1 ∶ a ≠ a0; criterion: reject H0 if the observed value of

| â − a0
σ̂√ 1

n + x̄2
∑nj=1(xj−x̄)2

| ≥ tn−2, α2 , (14.47)

where in both σ̂2 = s2
n−2 ,n > 2 with s2 being the least square minimum. If hypotheses of

the type H0 ∶ b ≤ b0 or H0 ∶ b ≥ b0 the procedure is described in the section on testing
hypotheses by using Student-t statistic in Section 13.3.2.

Example 14.16. By using the data and linear model in Example 14.15, construct 95%
confidence intervals for a and b and test the hypotheses H0 ∶ b = 0 and H0 ∶ a = 3 at a
5% level of rejection.

Solution 14.16. We have made all the computations in the solution of Example 14.15.
Here, n = 5, which means the degrees of freedom n − 2 = 3. We want 95% confidence
interval, which means our α = 0.05 or α

2 = 0.025. The tabled value of t3,0.025 = 3.182.
Observed value of b̂ = 2 and observed value of â = 2. From our data, ∑n

j=1(xj − x̄)2 = 10
and least square minimum s2 = 1. A 95% confidence interval for b is given by

b̂ ∓ tn−2, α2 √
least square minimum

3∑n
j=1(xj − x̄)2

= 2 ∓ (3.182)√ 1
3 × 10

≈ [−15.43, 19.43].
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A 95% confidence interval for a is given by

â ∓ tn−2, α2 σ̂√
1
n

+ x̄2
∑n
j=1(xj − x̄)2

= 2 ∓ (3.182)√ 1
3
√ 1
5

+ 4
10

≈ [0.58,3.42].

For testing H0 ∶ b = 0, we reject if the observed value of

|√
n
∑
j=1

(xj − x̄)2[
b̂ − 0
σ̂

]| = √10|√3(2 − 0)|

≈ 10.95 ≥ tn−2,α/2 = t3,0.025 = 3.182.

Hence the hypothesis is rejected at the 5% level of rejection. For H0 ∶ a = 3, we reject
the hypothesis, at a 5% level of rejection, if the observed value of

|â − a0|σ̂√
1
n

+ x̄2
∑n
j=1(xj − x̄)2

= |2 − 3|√ 1
3
√ 1
5

+ 4
10

≈ 0.45 ≥ t3,0.025 = 3.182.

Hence this hypothesis is not rejected at the 5% level of rejection.

Exercises 14.7
14.7.1. The weight gain y in grams of an experimental cow under a certain diet x in
kilograms is the following:

x 0 1 2 3 4 5
y 2 6 10 18 30 40

(i) Fit themodel y = a+bx to this data; (ii) compute the least squareminimum; (iii) es-
timate the weight gain at x = 3.5,x = 2.6.

14.7.2. For the same data in Exercise 14.7.1, fit themodel y = a+bx+cx2, c ≠ 0. (i) Com-
pute the least square minimum; (ii) by comparing the least square minima in Exer-
cises 14.7.1 and 14.7.2 check to see which model can be taken as a better fit to the data.

14.7.3. For the data and model in Exercise 14.7.1, construct a 99% confidence interval
for a as well as for b, and test, at 1% level of rejection, the hypotheses H0 ∶ b = 0 and
H0 ∶ a = 5.

14.7.3 Linear regression of y on x1,… ,xk

Suppose that the regression of y on x1,… ,xk is suspected to be linear in x1,… ,xk , that
is, of the form:

E(y|x1,… ,xk) = β0 + β1x1 + ⋯ + βkxk .
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Suppose that n data points (yj ,x1j ,… ,xkj), j = 1,… ,n are available. Since the regression
is suspected to be linear and if we want to estimate the regression function, then we
will start with the model

y = a0 + a1x1 + ⋯ + akxk .

Hence at the j-th data point if the error in estimating y is denoted by ej then

ej = yj − [a0 + a1x1j + ⋯ + akxkj], j = 1,… ,n

and the error sum of squares is then
n
∑
j=1

e2j =
n
∑
j=1

[yj − a0 − a1x1j − ⋯ − akxkj]2. (14.48)

We obtain the normal equations by differentiating partially with respect to a0,
a1,… ,ak and equating to zeros. That is,

𝜕
𝜕a0

[
n
∑
j=1

e2j ] = 0 ⇒ −2[
n
∑
j=1

yj − nâ0 − â1
n
∑
j=1

x1j − ⋯ − âk
n
∑
j=1

akj] = 0.

We can delete −2 and divide by n. Then

ȳ = â0 + â1x̄1 + ⋯ + âk x̄k or
â0 = ȳ − â1x̄1 − ⋯ − âk x̄k (14.49)

where

ȳ =
n
∑
j=1

yj
n

, x̄i =
n
∑
j=1

xij
n

, i = 1,… ,k

and â0, âi, i = 1,… ,k indicate the critical point (â0,… , âk) or the point at which the
equations hold. Differentiating with respect to ai, i = 1,… ,k, we have

𝜕
𝜕ai

[
n
∑
j=1

e2j ] = 0 ⇒ −2
n
∑
j=1

xij[yj − â0 − â1x1j − ⋯ − âkxkj] = 0

⇒
n
∑
j=1

xijyj = â0
n
∑
j=1

xij + â1
n
∑
j=1

xijx1j + ⋯ + âk
n
∑
j=1

xijxkj . (14.50)

Substituting the value of â0 from (14.49) into (14.50) and rearranging and thendividing
by n, we have the following:

siy = â1s1i + â2s2i + ⋯ + âkski , i = 1,… ,k (14.51)

where

sij =
n
∑
k=1

(xik − x̄i)(xjk − x̄j)
n

= sji ,



486 | 14 Model building and regression

siy = syi =
n
∑
k=1

(yk − ȳ)(xik − x̄i)
n

or the corresponding sample variances and covariances. Ifwedonotwish to substitute
for â0 from (14.49) into (14.50), thenwemay solve (14.49) and (14.50) together to obtain
a solution for (â0, â1,… , âk). But from (14.51) we get only (â1,… , âk) and then this has
to be used in (14.49) to obtain â0. From (14.51), we have the followingmatrix equation:

s1y = â1s11 + â2s12 + ⋯ + âks1k
s2y = â1s21 + â2s22 + ⋯ + âks2k
⋮ ⋮

sky = â1sk1 + â2sk2 + ⋯ + âkskk or
Sy = Sâ (14.52)

where

Sy = [[

[

s1y
⋮
sky

]]

]

, â = [[

[

â1
⋮
âk

]]

]

, S = (sij),

sij =
n
∑
k=1

(xik − x̄i)(xjk − x̄j)
n

= sji .

From (14.52),

â = [[

[

â1
⋮
âk

]]

]

= S−1Sy , for |S| ≠ 0. (14.53)

From (14.53),

â0 = ȳ − â′ x̄ = ȳ − S′yS−1 x̄, x̄ = [[

[

x̄1
⋮
x̄k

]]

]

. (14.54)

Note 14.13. When observations on (x1,… ,xk) are involved, even if we take extreme
care sometimes near singularitymay occur in S. In general, one has to solve the sys-
tem of linear equations in (14.52) for which many standard methods are available
whether the coefficientmatrix, in our case S, is non-singular or not. In a regression-
type model, as in our case above, the points (x1j ,x2j ,… ,xkj), j = 1,… ,n are preas-
signed, and hence while preassigning, make sure that data points for (x1,… ,xk),
which are linear functions of other pointswhich are already included, are not taken
as a newdata point. If linear functions are taken, then this will result in S being sin-
gular.
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Example 14.17. In a feeding experiment on cows, it is suspected that the increase in
weight y has a linear regression on the amount of green fodder x1 and the amount of
marketed cattle feed x2 consumed. The following observations are available; all ob-
servations on x1 and x2 are in kilograms and the observations on y are in grams:

x1 1 1.5 2 1 2.5 1
x2 2 1.5 1 1.5 2 4
y 5 5 6 4.5 7.5 8

Construct the estimating function and then estimate y at the points (i) (x1,x2) =
(1,0), (1,3), (5,8).

Solution 14.17. As per our notation n = 6,

x̄1 =
(1.0 + 1.5 + 2.0 + 1.0 + 2.5 + 1.0)

6
= 1.5,

x̄2 = (2.0 + 1.5 + 1.0 + 1.5 + 2.0 + 4.0)
6

= 2,

ȳ = (5.0 + 5.0 + 6.0 + 4.5 + 7.5 + 8.0)
6

= 6.

Again, if we are using a computer or programmable calculator then regression prob-
lems are there in the computer and the results are instantly available by feeding in the
data. For the calculations by hand, the following table will be handy:

y x1 x2 y − ȳ x1 − x̄1 x2 − x̄2 (y − ȳ)(x1 − x̄1)

5.0 1.0 2.0 −1 −0.5 0 0.5
5.0 1.5 1.5 −1 0 −0.5 0
6.0 2.0 1.0 0 0.5 −1 0
4.5 1.0 1.5 −1.5 −0.5 −0.5 0.75
7.5 2.5 2.0 1.5 1.0 0 1.5
8.0 1.0 4.0 2.0 −0.5 2.0 −1.0

1.75

(y − ȳ)(x2 − x̄2) (x1 − x̄1)2 (x2 − x̄2)2 (x1 − x̄1)(x2 − x̄2)

0 0.25 0 0
0.5 0 0.25 0
0 0.25 1.0 −0.5

0.75 0.25 0.25 0.25
0 1.0 0 0
4.0 0.25 4.0 −1

5.25 2.0 5.5 −1.25

The equations corresponding to (14.52), without the dividing factor n = 6, are the fol-
lowing:
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1.75 = 2â1 − 1.25â2
5.25 = −1.25â1 + 5.5â2 ⇒ â1 ≈ 1.72, â2 ≈ 1.34.

Then

â0 = ȳ − â1x̄1 − â2x̄2
≈ 6 − (1.72)(1.5) − (1.34)(2) = 0.74.

Hence the estimated function is given by

y = 0.74 + 1.725x1 + 1.34x2.

The estimated value of y at (x1,x2) = (1,3) is ŷ = 6.48. The point (x1,x2) = (5,8) is too far
out of the observational range, and hence we may estimate y only if we are sure that
the conditional expectation is linear for all possible (x1,x2). If the regression is sure to
hold for all (x1,x2), then the estimated y at (x1,x2) = (5,8) is

ŷ = 0.74 + (1.72)(5) + (1.34)(8) = 20.06.

For example,

at (x1,x2) = (1, 2), ŷ = 5.14; at (x1,x2) = (1.5, 1.5), ŷ = 5.33;
at (x1,x2) = (2, 1), ŷ = 5.52; at (x1,x2) = (1,4), ŷ = 7.82.

Hence we can construct the following table:

y ŷ y − ŷ (y − ȳ)2

5 5.14 −0.14 0.096
5 5.33 −0.33 0.1089
6 5.52 0.48 0.2304
4.5 4.4 −0.03 0.0009
7.5 7.72 −0.22 0.0484
8 7.82 0.18 0.0324

0.4406

An estimate of the error sum of squares as well as the least square minimum is 0.4406
in this model.

Exercises 14.7
14.7.4. If the yield y of corn in a test plot is expected to be a linear function of x1 =
amount of water supplied, in addition to the normal rain and x2 = amount of organic
fertilizer (cow dung), in addition to the fertility of the soil. The following is the data
available:
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x1 0 0 1 2 1.5 2.5 3
x2 0 1 1 1.5 2 2 3
y 2 2 5 8 7 9 10

(i) Fit a linear model y = a0 + a1x1 + a2x2 by the method of least squares.
(ii) Estimate y at the points

(x1,x2) = (90.5, 1.5), (3.5, 2.5).

(iii) Compute the least square minimum.

14.7.4 General linear model

If we use matrix notation, then the material in Section 14.7.3 can be simplified and
can be written in a nice form. Consider a general linear model of the following type:
Suppose that the real scalar variable y is to be estimated by using a linear function of
x1,… ,xn. Then we may write the model as

yj = a0 + a1x1j + a2x2j + ⋯ + apxpj + ej , j = 1,… ,n. (14.55)

This can be written as

Y = Xβ + e,

Y =
[[[[

[

y1
y2
⋮
yn

]]]]

]

, X =
[[[[

[

1 x11 … xp1
1 x12 … xp2
⋮ ⋮ ⋮
1 x1n … xpn

]]]]

]

, β =
[[[[

[

a0
a1
⋮
ap

]]]]

]

. (14.56)

Then the error sum of squares is given by

e′e = (Y − Xβ)′(Y − Xβ). (14.57)

Minimization by using vector derivative (see Note 14.7) gives

𝜕
𝜕β

e′e = O ⇒ −2X′(Y − Xβ) = O (14.58)

⇒ β = (X′X)−1X′Y for |X′X| ≠ 0. (14.59)

Since X is under our control (these are preassigned values), we can assume X′X to be
non-singular in regression-type linearmodels. Suchwill not be the situation in design
models where X is determined by the design used. This aspect will be discussed in the
next chapter. The least square minimum, again denoted by s2, is given by

s2 = (Y − Xβ̂)′(Y − Xβ̂) = Y′(Y − Xβ̂) due to (14.58)

= Y′Y − Y′X(X′X)−1X′Y = Y′[I − X(X′X)−1X′]Y = Y′[I − B]Y
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where

B = X(X′X)−1X′ = B2.

This shows that B is idempotent and of

rank = tr[X(X′X)−1X′] = tr[(X′X)−1X′X]

= tr[Ip+1] = p + 1. (14.60)

Hence the rank of I −X(X′X)−1X′ is n−(p+1). Note further that I −B = (I −B)2, (I −B)B =
O and hence from Section 10.5 of Chapter 10 we have u = s2 = Y′[I − X(X′X)−1X′]Y
and v = Y′X(X′X)−1X′Y are independently distributed when e ∼ Nn(O,σ2In) or Y ∼
Nn(Xβ,σ2In). Further,

1
σ2

Y[I − X(X′X)−1X′]Y = 1
σ2

(Y − Xβ)[I − X(X′X)−1X′](Y − Xβ)

∼ χ2n−(p+1)

where χ2ν denotes a central chi-square with ν degrees of freedom, and

1
σ2

Y′X(X′X)−1X′Y ∼ χ2p+1(λ)

where χ2p+1(λ) is a non-central chi-square with p + 1 degrees of freedom and non-
centrality parameter λ = 1

2β
′(X′X)β. [See the discussion of non-central chi-square

in Example 10.9 of Chapter 10.] Hence we can test the hypothesis that β = O (a null
vector), by using a F-statistic, under the hypothesis:

Fp+1,n−(p+1) =
v/(p + 1)

u/(n − (p + 1))
,

v = Y′X(X′X)−1X′Y ,

u = Y′[I − X(X′X)−1X′]Y (14.61)

and we reject the hypothesis for large values of the observed F-statistic.
Note that the individual parameters are estimated by the equation

β̂ = (X′X)−1X′Y (14.62)

the various column elements of the right side gives the individual estimates. What
is the variance–covariance matrix of this vector of estimators β̂? Let us denote the
covariance matrix by Cov(β̂). Then from the definition of covariance matrix,

Cov(β̂) = (X′X)−1X′ Cov(Y)X(X′X)−1 = (X′X)−1σ2I(X′X)(X′X)−1

= σ2(X′X)−1. (14.63)
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How dowe construct confidence interval for the parameter aj in β and test hypotheses
on aj, j = 0, 1,… ,p? Let âj be the (j + 1)-th element in the right side column in (14.62)
and let bj+1,j+1 be the (j + 1, j + 1)-th diagonal element in (X′X)−1, j = 0, 1,… ,p. Then

âj − aj
σ̂2bj+1,j+1

∼ tn−(p+1)

or a Student-t with n − (p + 1) degrees of freedom, where

σ̂2 = s2

n − (p + 1)
= least square minimum

n − (p + 1)
. (14.64)

Then use this Student-t to construct confidence intervals and test hypotheses. Since it
will take up too much space, we will not do a numerical example here.

Sometimeswemaywant to separate a0 from theparameters a1,… ,ap. In this case,
we modify the model as

yj − ȳ = a1(x1j − x̄1) + a2(x2j − x̄2) + ⋯ + ap(xpj − x̄p) + ej − ē. (14.65)

Now, proceed exactly as before. Let the resulting matrices be denoted by Ỹ , X̃, β̃, ẽ
where

Ỹ = [[

[

y1 − ȳ
⋮

yn − ȳ

]]

]

, β̃ = [[

[

a1
⋮
ap

]]

]

, ẽ = [[

[

e1 − ē
⋮

en − ē

]]

]

,

X̃ = [[

[

x11 − x̄1 … xp1 − x̄p
⋮ ⋮ ⋮

x1n − x̄1 … xpn − x̄p

]]

]

(14.66)

Then the estimator, covariancematrix of the estimator, least squareminimum, etc. are
given by the following, where the estimators are denoted by a star:

β̃∗ = (X̃′X̃)−1X̃′Ỹ

Cov(β̃∗) = σ2(X̃′X̃)−1

s2∗
n − 1 − p

= σ̂2 =
least square minimum

n − 1 − p

=
Ỹ′[I − X̃(X̃′X̃)−1X̃′]Ỹ

n − 1 − p
.

Under normality assumption for e ∼ N(O,σ2In) we have

u = s2∗
σ2

∼ χ2n−1−p,

v = Ỹ′X̃(X̃′X̃)−1X̃′Ỹ
σ2

∼ χ2p(λ1)

where u and v are independently distributed, and the non-centrality parameter λ1 =
1
2 β̃
′(X̃′X̃)β̃. Note that u and v are independently distributed.
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Note 14.14. Models are classified as linear or non-linear depending upon the lin-
earity or non-linearity of the parameters in the model. All linear models can be
handled by the procedure in Section 14.7.4 by renaming the coefficients of the pa-
rameters. For example, (1) y = a0 + a1x + a2x2 + ⋯ + akxk (write x = u1, x2 = u2, …,
xk = uk ) and apply the techniques in Section 14.7.4, (2) y = a0 + a1x1x2 + a2x21 + a3x22
(Write u1 = x1x2, u2 = x21 , u3 = x22 ), (3) y = a0 +a1x1x2 +a2x2x3 +a3x21x2 (write u1 = x1x2,
u2 = x2x3, u3 = x21x2), are all linearmodels, whereas (4) y = abx , (5) y = 3a+bx are non-
linear models. There are non-linear least square techniques available for handling
non-linear models. That area is known as non-linear least square analysis.

Note 14.15. In some books, the student may find a statement of the type, asking
to take logarithms and use linear least square analysis for handling a model of the
type y = abx . This is wrong unless the error e is always positive and enters into the
model as a product or unless the model is of the form yj = abxjej, with ej > 0, which
is a very unlikely scenario. We are dealing with real variables here and then the
logarithm cannot be taken when ej is negative or zero. If abx is taken to predict y,
then the model should be constructed as yj = abxj + ej, j = 1,… ,n. Then the error
sum of squares will become

n
∑
j=1

e2j =
n
∑
j=1

(yj − abxj )
2 (a)

and it will be difficult to handle this situation. The analytic solution will not be
available for the normal equations coming out of this equation (a) here. There are
several methods available for handling non-linear least square problems. A non-
linear least square analysis is to be conducted for analyzingmodels such as y = abx .
Themost frequently used non-linear least square analysis technique isMarquardt’s
method. For a very efficient algorithm for non-linear least squares, which usually
never fails, may be seen from [9].

Exercises 14.7
14.7.5. For the linear model and data in Exercise 14.7.4, construct 95% confidence in-
tervals for (1) a1; (2) a2, and test the hypotheses, at 5% level of rejection, (3)H0 ∶ a1 = 0;
(4) H0 ∶ a2 = 0; (5) H0 ∶ (a1,a2) = (0,0).
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15.1 Introduction

InChapter 14,wehave looked into regressionand regression-typemodels in the areaof
model building. Here, we consider a slightly different type of model known as design
type models. All the technical terms used in this area are connected with agricultural
experiments because, originally, the whole area was developed for agricultural exper-
imentation of crop yield, methods of planting, the effects of various types of factors
on the yields, etc. The main technical terms are the following: A plot means an ex-
perimental unit. If different methods of teaching are compared and the students are
subjected to various methods of teaching, then the basic unit on which the experi-
ment is carried out is a student. Then a student in this case is a plot. If the breaking
strength of an alloy is under study and if 15 units of the same alloy are being tested,
then each unit of the alloy is a plot. If the gain in weight of experimental animals is
under study, then a plot here is an experimental animal. If experimental plots of land
are there where tapioca is planted and the experiment is conducted to study the ef-
fect of different types of fertilizers on the yield, then an experimental plot is a plot of
land. The basic unit which is subjected to experimentation is called a plot. A group of
such plots is called a block or block of plots. If a piece of land is divided into 10 plots
and experimentation is done on these 10 plots, then this block contains 10 plots. If an-
other piece of land is divided into 8 plots for experimentation, then that block contains
8 plots. The item or factor under study in the experimentation is called a treatment.
In the case of students being subjected to 3 different methods of teaching, there are
3 treatments. In the case of 6 different fertilizers being studied with reference to yield
of tapioca, then there are 6 treatments, etc. For a proper experimentation, all the plots
must be homogeneous, within and between, as far as variationswith respect to all fac-
tors are concerned, which are not under study. For example, if 3 different methods of
teaching are to be compared, then the students selected for this study must have the
same background, same exposure to the subject matter, or must be the same as far as
all other factors are concerned, whichmay have some relevance to the performance of
the students, performance may be measured by computing the grades obtained in an
examination at the end of subjecting the student with a particular method of teach-
ing.

Hence planning of an experiment means to make sure that all experimental
plots are fully homogeneous within and between with respect to all other factors,
other than the factors under study, which may have some effect on the experimental
outcome. If one variety of corn is planted on 10 different plots of land, where the
plots have different natural soil fertility level, different water drainage, different ex-
posure to sun, etc., then the plots are not homogeneous within or between them.
If we are trying to study the effect of different fertilizers on the yield of corn, then

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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the pieces of land (experimental plots) taken must be of the same type and fully ho-
mogeneous with respect to all factors of variation other than the effect of fertilizers
used.

15.2 Fully randomized experiments

In this experiment, suppose that we have selected n1 plots to try the first treatment,
n2 plots to try the second treatment, …, nk plots to try the k-th treatment, then all
n1 +⋯+nk = n plots must be fully homogeneous within and between andwith respect
to all factors of variation. If it is an agricultural experiment involving the study of 5
differentmethod of planting of one type of rubber trees, then the plots of land selected
must be of the same shape and size, of the same basic fertility of the soil, of the same
type of elevation, same type of drainage, same type of precipitation, etc., or in short,
identical with respect to all known factors which may have some effect on the yield of
rubber latex. It may not be possible to find such n plots of land at one place but we
may get identical plots at different locations, if not at the same place. There should
not be any effect of the location on the yield. Suppose we have n1 plots at one place,
n2 plots at another place, …, nk plots at the k-th place but all the n = n1 +⋯+ nk plots
are identical in every respect. Then take one of themethods at randomand subject the
n1 plots to this method, take another method at random, etc. or assign the methods
at random to the k sets of plots. If it is an experiment involving 4 different methods of
teaching and if all n homogeneous students can be found in one school, then divide
them into different groups according to convenience of the teachers and subject them
to these 4 different methods of teaching n1 + ⋯ + n4 = n. It is not necessary to divide
them into groups of different numbers. If equal numbers canbe grouped, then it iswell
and good. In most of the situations, we may find 50 students in one school with the
same background, 30 students with the same background within the group as well as
between the groups in another school, etc., and thus thenumbers in the groupsmaybe
different. The 50 studentsmay be subjected to onemethod of teaching, the 30 another
method of teaching, etc. Let xij be the grade obtained by the j-th student (j-th plot)
under the i-th method of teaching (i-th treatment). Then the possibility is that xij may
contain a general effect, call it μ, an effect due to the i-thmethod of teaching, call it αi .
The general effect can be given the following interpretation. Suppose that the student
is given a test without subjecting the student to any particular method of teaching.We
cannot expect the student to get a zero grade. There will be some general effect. Then
αi can be interpreted as the deviation from the general effect due to the i-th treatment.
In the experimentation, we have only controlled all known factors of variation. But
there may be still unknown factors which may be contributing towards xij . The sum
total effect of all unknown factors is known as the random effect eij . Thus, xij in this
fully randomized experiment is a function of μ, αi and eij . What is the functional form
orwhichway these effects enter into xij? The simplestmodel that we can come upwith
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is a simple linear additive model or we assume that

xij = μ + αi + eij , j = 1,… ,ni , i = 1,… ,k, eij ∼ N(0,σ2). (15.1)

That is, for i = 1,

x11 = μ + α1 + e11
x12 = μ + α1 + e12
⋮ =⋮

x1n1 = μ + α1 + e1n1

and similar equations for i = 2,… ,k. If the αi ’s are assumed to be some unknown con-
stants, then the model in (15.1) is called a simple additive fixed effect one-way classifi-
cation model. Here, one-way classification means that only one set of treatments are
studied here, one set of methods of teaching, one set of fertilizers, one set of varieties
of corn, etc. There is a possibility that αi ’s could be random variables then the model
will be a random effectmodel. We will start with a fixed effect model.

The first step in the analysis of any model is to estimate the effects and then try
to test some hypotheses by putting some assumptions on the random part eij ’s. For
estimating μ, αi, i = 1,… ,k, we will use the method of least squares because we do not
have any assumption of any distribution on eij ’s or xij ’s. The error sum of squares is
given by the following, where we can use calculus for minimization, observing that
the maximum is at +∞ and hence the critical point will correspond to a minimum.

k
∑
i=1

ni
∑
j=1

e2ij = ∑
i,j

(xij − μ − αi)2 (a)

𝜕
𝜕μ

∑
ij
e2ij = 0 ⇒ −2∑

ij
(xij − μ̂ − α̂i) = 0 (b)

⇒ x.. − n.μ̂ −
k
∑
i=1

niα̂i = 0 ⇒ μ̂ =
x..
n.

−
∑k
i=1 niα̂i
n.

(c)

because when we sum upwith respect to j we get ni and then summation with respect
to i is denoted by n.. Also the standard notation ∑j xij = xi., ∑i xij = x.j, when j is free
of i, will be used, where the summationwith respect to a subscript is denoted by a dot.
Hence x.. = ∑ij xij . Differentiation of (a) with respect to αi for a specific i such as α1 will
yield the following:

𝜕
𝜕αi

∑
ij
e2ij = 0 ⇒

ni
∑
j=1

(xij − μ̂ − α̂i) = 0

⇒ α̂i =
xi.
ni

− μ̂. (d)
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Note that in (c), without loss of generality, ∑i niαi can be taken as zero because our
αi ’s are defined as deviations from the general effect due to the i-th treatment, then
the sum of the deviations is zero, because for any set of numbers y1,… ,yn, (y1 − ȳ) +
⋯ + (yn − ȳ) = 0. Our analysis in equations (a) to (d) will go through even if we do not
wish to use this condition. The least squareminimum, denoted by s2, is available from
(a) by substituting the least square estimates μ̂ and α̂i . That is,

s2 = ∑
ij
(xij − μ̂ − α̂i)2 = ∑

ij
(xij − μ̂ − [

xi.
ni

− μ̂])
2

= ∑
ij
(xij −

xi.
ni

)
2

(15.2)

= ∑
ij
(xij −

x..
n.

)
2
− ∑

i
(xi.
ni

− x..
n.

)
2

(15.3)

= (∑
ij
x2ij −

x2..
n.

) − (∑
i

x2i.
ni

− x2..
n.

). (15.4)

This s2 is called the residual sum of squares. All the different representations in (15.2)
to (15.4) will be made use of later. The derivations are left to the student. If we have a
hypothesis of the typeH0 ∶ α1 = 0 = α2 = ⋯ = αk , thenunder thisH0 themodel becomes
xij = μ+ eij and if we proceed as before then the least square minimum, denoted by s20,
is given by the following:

s20 = ∑
ij
(xij −

x..
n.

)
2
= ∑

ij
x2ij −

x2..
n.

. (15.5)

Then

s20 − s2 = ∑
ij
(xi.
ni

−
x..
n.

)
2
= ∑

i

x2i.
ni

−
x2..
n.

. (15.6)

can be called the sum of squares due to the hypothesis or the sum of squares due to
the αi ’s. Thus we have the following identity:

s20 ≡ [s20 − s2] + [s2]

= sum of squares due to the treatments + residual sum of squares

= between treatment sum of squares

+within treatment sum of squares

Definition 15.1 (Analysis of variance principle). The principle of splitting the to-
tal variation in the data into the sum of variations due to different components is
known as the analysis of the variance principle or the ANOVA principle.
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Since we are not dividing by the sample sizes and making it per unit variation
or we are not taking sample variances, the principle is more appropriately called the
analysis of variation principle. For a one-way classification model as in (15.1), there
is only one component of variation, namely one set of treatments. More elaborate de-
signs will have more components of variation.

In order to test hypotheses of the type H0 ∶ α1 = ⋯ = αk = 0, which is the same as
saying μ1 = ⋯ = μk where μj = μ + αj, we will make use of the two results from Chap-
ter 10, namely Result 10.14 on the chi-squaredness of quadratic form and Result 10.15
on the independence of two quadratic forms in standard normal variables. The chi-
squaredness, in effect, says that if the m × 1 vector Y has a m-variate normal distri-
bution Y ∼ Nm(O,σ2Im), where σ2 is a scalar quantity and Im is the identity matrix of
orderm, then 1

σ2Y
′AY , A = A′, is a chi-square with ν degrees of freedom if and only if

A is idempotent and of rank ν. Result 10.15 says that two such quadratic forms Y′AY
and Y′BY are independently distributed if and only ifAB = O, whereO is a nullmatrix.
We will make use of these two results throughout the whole discussion of Design of
Experiments and Analysis of Variance. Derivations of each itemwill take up toomuch
space. One item will be illustrated here and the rest of the derivations are left to the
student. For illustrative purposes, let us consider

s2 = ∑
ij
(xij −

xi.
ni

)
2

= ∑
ij
([μ + αi + eij] − [μ + αi +

ei.
ni

])
2
= ∑

ij
(eij −

ei.
ni

)
2

If we write x(1) and e(1) for the subvectors,

x(1) =
[[[[

[

x11
x12
⋮
x1n1

]]]]

]

, e(1) =
[[[[

[

e11
e12
⋮
e1n1

]]]]

]

then [[

[

e11 −
e1.
n1

⋮
e1n1 −

e1.
n1

]]

]

(15.7)

which can be written in matrix notation as (In1 − B1)e(1) where B1 = 1
n1
J1J′1 with J′1 =

(1, 1,… , 1). We note that B1 = B21 and hence B1 is idempotent. Further, (I −B1)2 = (I −B1)
or I − B1 is also idempotent. Then we can write

∑
ij
(xij −

xi.
ni

)
2
= e′(I − B)e

where e′ = (e11,… ,e1n1 ,e21,… ,e2n2 ,… ,ek1,… ,eknk ) and B will be a block diagonal ma-
trix with the diagonal blocks being the matrices B1,… ,Bk where Bi =

1
ni
JiJ′i . Further,

we note that I − B is idempotent and of rank n. − k. Therefore, from Result 10.13,

s2

σ2
∼ χ2n.−k (15.8)
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that is, the least square minimum divided by σ2 is a chi-square with n. − k degrees of
freedom. In a similar fashion, we can show that

s20 = ∑
ij
(xij −

x..
n.

)
2
∼ σ2χ2n.−1 under H0

s20 − s2 = ∑
ij
(xi.
ni

− x..
n.

)
2
∼ σ2χ2k−1 under H0 (15.9)

s2 = ∑
ij
(xij −

xi.
ni

)
2
∼ σ2χ2n.−k

and that s2 and (s20 − s2) are independently distributed. Here, the decomposition is of
the following form:

χ2n.−1 ≡ χ2k−1 + χ2n.−k . (15.10)

From (15.8), (15.9) and Result 10.15, it follows that

(s20 − s2)/(k − 1)
s2/(n. − k)

∼ Fk−1,n.−k under H0. (15.11)

[If H0 is not true then the left side of (15.11) will be a non-central F with the numerator
chi-square being non-central.] The test criterionwill be to reject for large values of this
F-statistic or reject H0, at the level α, if the observed value of Fk−1,n.−k ≥ Fk−1,n.−k,α.

15.2.1 One-way classification model as a general linear model

The model in (15.1), which is a linear fixed effect one-way classification model, can
be put in matrix notation as a general linear model of the type Y = Xβ + e of Chap-
ter 14. Here, Y is the n. × 1 = (n1 + ⋯ + nk) × 1 vector of the observations xij ’s or Y′ =
(x11,… ,x1n1 ,x21,… ,x2n2 ,… ,xk1,… ,xknk ), e is the corresponding vector of eij ’s. β is the
(k + 1) × 1 vector of parameters or β′ = (μ,α1,… ,αk). Here, X is the design matrix. It is
n. × (k + 1) or (n1 + ⋯ + nk) × (k + 1) matrix with the first column all ones, the second
column is all ones for the first n1 rows only, the third column is all ones from (n1 + 1)-th
row to (n1 + n2)-th row, and so on. In other words, the sum of the second to (k + 1)-th
column is equal to the first column. Ifwedelete the first column, then all the remaining
columns are linearly independent and thus the column rank of X is k. But n. ≥ (k + 1),
and hence the rank of the design matrix in this case is k, and thus X is a less than full
rank matrix and therefore X′X is singular. If we use the notations of (15.7) then the
model in (15.1) can be written as follows, as a general linear model Y = Xβ + e, where.

Y =
[[[[

[

x(1)
x(2)
⋮
x(k)

]]]]

]

, β =
[[[[

[

μ
α1
⋮
αk

]]]]

]

, e =
[[[[

[

e(1)
e(2)
⋮
e(k)

]]]]

]

,
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X =

[[[[[[

[

J1 J1 O O … O
J2 O J2 O … O
J3 O O J3 … O
⋮ ⋮ ⋮ ⋮ … ⋮
Jk O O O … Jk

]]]]]]

]

(15.12)

where Jm is an m × 1 column vector of ones, m = n1,n2,… ,nk , and O denotes a null
matrix. In this general linear model if we wish to estimate the parameter vector, then
the minimization of the error sum of squares e′e leads to the normal equation:

X′Xβ̂ = X′Y ⇒ β̂ = (X′X)−X′Y . (15.13)

In the light of the discussion in (15.12), note that (15.13) is a singular system of normal
equations. Hence there is no unique solution since (X′X)−1 does not exist. A solution
can be written in terms of a g-inverse (X′X)− of X′X as indicated in (15.13). Thus, if
we use matrix-methods in analyzing a one-way classification model, or other design
models, then the procedure will be complicated. It will be seen that the procedure
adopted in Section 15.2 of separating the sum of squares is the simplest method, and
we will be using the same type of procedures in other design models also.

15.2.2 Analysis of variance table or ANOVA table

In data analysis connected with Design of Experiments, usually the final analysis is
put in a nice tabular format, known as the Analysis of Variance Table or the ANOVA
Table. For a one-way classification linear fixed effect model, which is applicable in a
completely randomized experiment, the following is the format of the ANOVA table,
where d.f = degrees of freedom, S.S = sum of squares, M.S =mean squares.

ANOVA table for a one-way classification

Variation due to d.f S.S M.S F-ratio
(1) (2) (3) (4) = (3)/(2) (5)

Between treatments k − 1 ∑i
x2i.
ni

− C.F T T/E ∼ (Fk−1,n.−k)
Within treatments n. − k (subtract) E

Total n. − 1 ∑ij xij − C.F

where C.F stands for “correction factor”, which is C.F = x2../n.. In this ANOVA table,
there is a (6)-th column called “Inference”. Due to lack of space, this column is not
listed above. In this column,write “significant” or “not significant” as the casemaybe.
Here, “significant” means that the observed F-value is significantly high or we reject
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the null hypothesis of the effects being zero, or in the one-way case the hypothesis
is that αi ’s are zeros or the treatment effect are zeros and this hypothesis is rejected.
Otherwise write “not significant”. The residual sum of squares can be obtained by
subtraction of the sum of squares due to treatments, namely, s20 − s2 = ∑i

x2i.
ni

−C.F from
the total sum of squares ∑ij x

2
ij − C.F. Similarly, the degrees of freedom corresponding

to the residual sum of squares s2 is available from total degrees of freedom, namely
n. − 1, minus the degrees of freedom for the treatment sum of squares, namely k − 1,
which gives (n. − 1) − (k − 1) = n. − k.

Example 15.1. The following table gives the yield of wheat per test plot under three
different fertilizers. These fertilizers are denoted by A,B,C.

Yield of wheat under fertilizers A,B,C

Total
A 50 60 60 65 70 80 75 80 85 75 700
B 60 60 65 70 75 80 70 75 85 80 720
C 40 50 50 60 60 60 65 75 70 70 600

Assume that a one-way classification fixed effect model is appropriate. Test the hy-
pothesis, at a 5% level of rejection, that the fertilizer effects are the same, assuming
eij ∼ N(0,σ2) and mutually independently distributed.

Solution 15.1. Let xij be the j-th observation under the i-th fertilizer, i = 1, 2,3 and here
all the sample sizes are equal to 10, and hence j = 1,… , 10.

∑
ij
xij = x.. = 600 + 720 + 700 = 2020;

C.F = x2..
n.

= (2020)2

30
= 136013.33;

∑
i

x2i.
ni

= 1
10

[6002 + 7202 + 7002] = 136840;

∑
ij
x2ij − C.F = 502 + ⋯ + 702 − C.F = 3636.67;

∑
i

x2i.
ni

− C.F = 827.67.

Now, we can set up the ANOVA table

Variation d.f S.S M.S F-ratio
due to

Between fertilizers k − 1 = 2 826.67 413.33 413.33
104.08 > 3.25

Within fertilizers 27 2810.00 104.08
Total n. − 1 = 29 3636.67
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The tabulated point F2,27,0.05 = 3.25 and our observed F2,27 > 3.25, and hence we reject
the hypothesis that the effects of the fertilizers are equal. In the column on inference,
which is not listed above, we will write as “significant” or the F-value is significantly
high.

15.2.3 Analysis of individual differences

If the hypotheses of no effect of the treatments is rejected, that is, if the observed
F-value is significantly high, then there is a possibility that this high value may be
contributed by some of the differences αi − αj, i ≠ j being not equal to zero or some
of the individual differences may not be zeros. If the hypothesis of no effect is not re-
jected, then we stop the analysis here and we do not proceed further. Wemay proceed
further only when the hypothesis is rejected or when the F-value is found to be signifi-
cantly high. Individual hypotheses of the typesH0 ∶ αi −αj = 0 for i ≠ j can be tested by
using a Student-t test when we assume that eij ∼ N(0,σ2) for all i and j and mutually
independently distributed. Note that the least square estimate is

α̂i − α̂j =
xi.
ni

−
xj.
nj

with variance

Var(α̂i − α̂j) = σ2( 1
ni

+ 1
nj

)

and under the hypothesis H0 ∶ αi − αj = δ (given)

α̂i − α̂j − δ

σ̂√ 1
ni

+ 1
nj

∼ tn.−k

where

σ̂2 = Least square minimum
n. − k

=
s2

n. − k

Hence the test criterion is the following: Reject H0 ∶ αi − αj = δ (given), if the observed
value of

|
xi.
ni

− xj.
nj

− δ

σ̂√ 1
ni

+ 1
nj

| ≥ tn.−k, α2

where Pr{tn.−k ≥ tn.−k, α2 } =
α
2 . A 100(1 − α)% confidence interval for αi − αj is then



502 | 15 Design of experiments and analysis of variance

(xi.
ni

−
xj.
nj

) ∓ tn.−k, α2 σ̂√
1
ni

+ 1
nj

.

Note 15.1. In order to see which difference or for which i and j, αi − αj is contribut-
ing towards the significant sumof squares due to the αj ’s, we should be considering
all differences α̂i − α̂j . Hence a practical procedure is the following: Take the largest
absolute difference | xi.ni − xj.

nj
|, then take the next largest difference, and so on, and

test the corresponding hypotheses αi − αj = 0 until the difference is found to be
not significant and then stop. If α̂r − α̂t is found to be significant or the hypothesis
αr −αt = 0 is rejected, then an estimate of αr −αt is

xr.
nr

− xt.
nt
. By using the same proce-

dure one can test hypotheses and construct confidence intervals on linear functions
c1α1 +⋯+ ckαk , for specific c1,… , ck . Then take cj ’s such that c1 +⋯+ ck = 0 so that
the contribution from μ, the general effect, is canceled. Such linear functions are
often called cosets.

Example 15.2. In Example 15.1, test the hypotheses on individual differences or hy-
potheses of the typeH0 ∶ αi −αj = 0 and seewhich differences are contributing towards
significant contribution due to the αj ’s. Test at a 5% level of rejection.

Solution 15.2. The individual differences to be considered are α1 −α2, α1 −α3, α2 −α3.
Consider the following computations:

σ̂2 = s2

n. − k
= 2810

27
; √

1
ni

+ 1
nj

= √ 1
5

x1.
n1

= 700
10

= 70; x2.
n2

= 720
10

= 72; x3.
n3

= 600
10

= 60;

t27,0.025 = 2.052; σ̂√ 1
n2

+ 1
n3

= 4.56.

The largest absolute difference between estimates is α̂2 − α̂3 = 72−60 = 12. Hence 12
4.56 =

2.63 > 2.052. This hypothesis is rejected. α̂1 − α̂3 = 10. 10
4.56 = 2.19 > 2.052. This is also

rejected but H0 ∶ α1 − α2 = 0 is not rejected. Hence the differences α1 − α3 and α2 − α3
are contributing significantly towards the treatment sum of squares.

Exercises 15.2
15.2.1. Under the assumption that the errors in the one-way classification fixed effect
model eij ∼ N(0,σ2), are mutually independently distributed prove, by examining the
corresponding quadratic forms or otherwise, that

s20 ∼ σ2χ2n.−1 under H0 (i)

s20 − s2 ∼ σ2χ2k−1 under H0 (ii)

and that s2 and s20 − s2 are independently distributed.
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15.2.2. Show that in Exercise 15.2.1, for s2 to be σ2χ2n.−k the null hypothesis need not
hold or for the chi-squaredness of the least squareminimumdividedby σ2 nohypothe-
ses need to hold, and that s20 − s2, divided by σ2, will be a non-central chi-square in
general and a central chi-square when H0 holds.

15.2.3. Write the model in (15.1) as a general linear model of the form Y = Xβ + e and
show that the rank of the design matrix X is k, thereby X′X is singular.

15.2.4. Set up the ANOVA table if the group sizes are equal to m and if there are k
groups in a completely randomized experiment.

15.2.5. Analyze fully the following one-way classification fixed effect data, which
means to test the hypothesis that the treatment effects are equal and if this hypoth-
esis is rejected, then test for individual differences and set up confidence intervals
for the individual differences. Test at 5% level of rejection and set up 95% confidence
intervals. Data:

Group 1 10 12 15 10 25 13
Group 2 20 25 32 33 28 34 30 32
Group 3 5 8 2 4 6 8 4

15.3 Randomized block design and two-way classifications

If it is an agricultural experiment for checking the effectiveness of 10 different fertiliz-
ers on the yield of sunflower seeds, then it may be very difficult to get n1 +⋯+ n10 = n.
identical experimental plots. A few plots may be available in one locality where all
the plots are homogeneous within the plots and between the plots. There may be a
few other plots available in a second locality but between these two localities there
may be differences due to the difference in the fertility of the soil in these two local-
ities. Then we have two blocks of plots which are fully homogeneous within each
block but there may be differences between blocks. Then there will be the treat-
ment effect due to the fertilizers and a block effect due to the different blocking
of experimental plots. If it is an experiment involving method of teaching, then it
is usually difficult to come up with a large number of students having exactly the
same backgrounds and intellectual capacities. In one school, the students of the
same class may have the same background but if we take students from two differ-
ent schools, then there may be differences in their backgrounds. Here, the schools
will act as blocks. In the above two cases, we have two different types of effects, one
due to the treatments and the other due to the blocks. If m blocks of n plots each
are taken, where the plots are homogeneous within each block and if the n treat-
ments are assigned at random to these n plots in each block then such an experiment
is called a randomized block experiment. If xij is the observation on the j-th treat-
ment from the i-th block, then we may write the simplest model in the following
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format:

xij = μ + αi + βj + eij , i = 1,… ,m, j = 1,… ,n, eij ∼ N(0,σ2) (15.14)

where for i = 1 we have

x11 = μ + α1 + β1 + e11
x12 = μ + α1 + β2 + e12
⋮ ⋮

x1n = μ + α1 + βn + e1n

and similar equations for i = 2,… ,m, where μ is a general effect, αi is the deviation
from the general effect due to the i-th block and βj being the deviation from the general
effect due to the j-th treatment. The model in (15.14) is called the linear, fixed effect,
two-way classificationmodel without interaction, with one observation per cell. Here,
“fixed effect” means that the αi ’s and βj ’s are taken as fixed unknown quantities and
not as random quantities. The word “interaction” will be explained with a simple
example. In a drug testing experiment, suppose that 5 different drugs are tried on 4
different age group of patients. Here, the age groups are acting as blocks and the drugs
as treatment. The effect of the drugmay be different with different age groups. In other
words, if βj is the effect of the j-th drug, then βj may vary with the age group. There is
a possibility of an effect due to the combination of the i-th block and j-th treatment,
something like γij, an effect depending on i and j. If a joint effect is possible then the
model will change to the following:

xij = μ + αi + βj + γij + eij , eijk ∼ N(0,σ2). (15.15)

Since both γij and eij have both the subscripts i and j, and since all quantities on the
right are unknown, there is no way of estimating the joint effect γij because it cannot
be separated from eij . Such joint effects are called interactions. If the interaction is to
be estimated, then the experiment has to be repeated a number of times, say, r times.
In this case, we say that the experiment is replicated r times. In that case, the k-th
observation in the i-th block corresponding to the j-th treatment can be denoted by
xijk or the model can be written as

xijk = μ + αi + βj + γij + eijk , i = 1,… ,m, j = 1,… ,n, k = 1,… , r, eijk ∼ N(0,σ2). (15.16)

In this case, we can estimate γij and test hypotheses on the interaction γij also. The
model in (15.16) is called the two-way classification model with interaction and (15.14)
is the two-way classification model without interaction. A randomized block exper-
iment is conducted in such a way that there is no possibility of interaction between
blocks and treatments so that the model in (15.14) is appropriate. When there is possi-
bility of interaction, then the experiment has to be replicated so that one can use the
model in (15.16) and complete the analysis. First, wewill startwith themodel in (15.14).
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15.3.1 Two-way classification model without interaction

Consider a randomized block experiment where there is no possibility of interaction
between blocks and treatments so that one can use the model in (15.14), which is an
additive, fixed effect, two-way classificationmodel without interaction. Suppose thatwe
have one observation per cell or one observation corresponding to each combination
of i and j. For estimating the parameters, wewill use themethod of least squares. That
is, we consider the error sum of squares

∑
ij
e2ij = ∑

ij
(xij − μ − αi − βj)2

differentiate with respect to μ, αi, βj, equate to zero and solve. [This part is left as an
exercise to the student.] We get the estimates as follows:

α̂i =
xi.
n

− μ̂, β̂j =
x.j
m

− μ̂

μ̂ = x..
mn

− nα. −mβ. =
x..
mn

.
(15.17)

Since we have defined αi as the deviation from the general effect due to the i-th treat-
ment, without loss of generality, we can take α. = α1 +⋯+ αm = 0, and similarly β. = 0
so that μ̂ = x..

mn . The least square minimum, denoted by s2, is given by the following
where C.F = x2..

mn :

s2 = ∑
ij
(xij − μ̂ − α̂i − β̂j)

2

= ∑
ij
(xij −

x..
mn

)
2
− ∑

ij
(xi.
n

− x..
mn

)
2
− ∑

ij
(
x.j
m

− x..
mn

)
2

= [∑
ij
x2ij − C.F] − [∑

i

x2i.
n

− C.F] − [∑
j

x2.j
m

− C.F]. (15.18)

The simplifications in (15.18) are given as exercises to the student. If we put the hy-
pothesis that α1 = 0 = ⋯ = αm, then the least square minimum, denoted by s20 will be
the same s2 as in (15.18), excluding the term

∑
ij
(
xi.
n

−
x..
mn

)
2
= ∑

i

x2i.
n

− C.F. (15.19)

Hence the sum of squares due to the αi ’s is given by (15.19). Similarly, the sum of
squares due to βj ’s is given by

∑
ij
(
x.j
m

− x..
mn

)
2
= ∑

j

x2.j
m

− C.F. (15.20)

If we assume eij ∼ N(0,σ2) for all i and j and mutually independently distributed,
thenwe can establish the following results by examining the corresponding quadratic
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forms:

Sum of squares due to αi’s

= ∑
i

x2i.
n

− C.F = σ2χ2m−1(λ1), λ1 = non-centrality parameter

= σ2χ2m−1 when α1 = 0 = ⋯ = αm
Sum of squares due to the βj’s

= ∑
j

x2.j
m

− C.F = σ2χ2n−1(λ2), λ2 = non-centrality parameter

= σ2χ2n−1 when β1 = 0 = ⋯ = βn
Total sum of squares = ∑

ij
x2ij − C.F = σ2χ2mn−1

Least square minimum = s2 = σ2χ2(m−1)(n−1).

(15.21)

Further, it can be shown that the least squareminimumor the residual sum of squares
s2 and the sum of squares due to the αi ’s are independently distributed. Similarly,
s2 and the sum of squares due to the βj ’s are independently distributed. But sum of
squares due the αi ’s and sum of squares due to βj ’s are not independently distributed.
Thus the total sum of squares (S.S) can be split into the sum of the sum of squares due
to αi ’s, sum of squares due to the βj ’s and the residual sum of squares. That is,

Total S.S = S.S due to αi’s
+ S.S due to βj’s + residual S.S

∑
ij
(xij −

x..
mn

)
2
= [∑

ij
(xi.
n

− x..
mn

)
2
]

+ [∑
ij
(
x.j
m

− x..
mn

)
2
] + s2 (15.22)

Then, under the hypothesis α1 = 0 = ⋯ = αm we have

(S.S due to αi’s)/(m − 1)
s2/[(m − 1)(n − 1)]

∼ Fm−1,(m−1)(n−1) (15.23)

and under the hypothesis β1 = 0 = ⋯ = βn we have

(S.S due to βj’s)/(n − 1)
s2/[(m − 1)(n − 1)]

∼ Fn−1,(m−1)(n−1). (15.24)

We can use (15.23) and (15.24) to test the hypotheses on αi ’s and βj ’s, respectively. The
degrees of freedom for the residual sum of squares is obtained by the formula:

mn − 1 − (m − 1) − (n − 1) =mn −m − n + 1 = (m − 1)(n − 1).
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The residual sum of squares can also be obtained in a similar fashion as the total sum
of squares minus the sum of squares due to αi ’s minus the sum of squares due to βj ’s.
Then the analysis of variance table or ANOVA table for a two-way classification with
one observation per cell can be set up as follows, where d.f = degrees of freedom, S.S =
sum of squares, M.S = mean square, C.F = correction factor = x2..

mn , ν = (m − 1)(n − 1):

ANOVA table for a randomized block experiment

Variation due to d.f S.S M.S F-ratio
(1) (2) (3) (4) = (3)/(2)

Blocks m − 1 ∑i
x2i.
n − C.F A A

C = Fm−1,ν
Treatments n − 1 ∑j

x2.j
m − C.F B B

C = Fn−1,ν

Residual ν (obtained by C
subtraction)

Total mn − 1 ∑ij x
2
ij − C.F

The last column in the ANOVA table is “Inference”, which is not shown in the
above table due to lack of space. In the column on “Inference” write “significant” or
“not significant”. Here, “significant” means the hypothesis of no effect of the corre-
sponding treatments is rejected, or we are saying that the contribution correspond-
ing to the effects is significantly high compared to the residual sum of squares or the
F-value is above the critical point. Similar is the inference on the significance of the
block sum of squares also.

As in the one-way classification case, we can test for individual differences among
αj ’s as well as individual differences among βj ’s. This should be done only when the
corresponding hypothesis is rejected or when the corresponding effect is found to be
significantly high. If the block effect is found to be significantly high or if the hy-
pothesis of no effect of the blocks is rejected, then test individual hypotheses of the
type

H0 ∶ αi − αj = 0

by using the fact that the estimates of the effects αi and αj are linear functions of eij ’s
and, therefore, normally distributed under normality assumption for the eij ’s. Hence
we can use a Student-t test since the population variance σ2 is unknown. Note that

α̂i − α̂j =
xi.
n

−
xj.
n

∼ N(αi − αj ,σ2(
1
n

+ 1
n
) = 2σ

2

n
)
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and hence under the hypothesis H0 ∶ αi − αj = 0

(α̂i − α̂j) − 0

√σ̂2( 2n )
=

( xi.n − xj.
n )

σ̂√ 2
n

=
xi. − xj.
√2nσ̂2

∼ t(m−1)(n−1).

Hence the criterionwill be to reject the hypothesisH0 ∶ αi −αj = 0 if the observed value
of

|
xi.
n − xj.

n − 0

σ̂√ 2
n

| ≥ t(m−1)(n−1), α2 (15.25)

where

σ̂2 = Least square minimum
(m − 1)(n − 1)

= s2

(m − 1)(n − 1)
(15.26)

and

Pr{t(m−1)(n−1) ≥ t(m−1)(n−1), α2 } =
α
2
.

Start with the biggest absolute difference of α̂i − α̂j and continue until the hypothe-
sis is not rejected. Until that stage, all the differences are contributing towards the
significant contribution due to αi ’s. Similar procedure can be adopted for testing in-
dividual hypotheses on βi − βj . This is to be done only when the original hypothesis
β1 = 0 = ⋯ = βn is rejected. Construction of confidence intervals can also be done as in
the case of one-way classification. A 100(1 − α)% confidence interval for αi − αj as well
as for βi − βj are the following:

xi.
n

−
xj.
n

∓ t(m−1)(n−1), α2 σ̂√
2
n

(15.27)

x.i
m

−
x.j
m

∓ t(m−1)(n−1), α2 σ̂√
2
m

(15.28)

where σ̂2 is given in (15.26).

Note 15.2. Suppose that the hypothesis α1 = 0 = ⋯ = αm is not rejected but suppose
that someone tries to test individual differences αi − αj = 0. Is it possible that some
of the individual differences are significantly high or a hypothesis on individual dif-
ference being zero is rejected? It is possible and there is no inconsistency because,
locally, some differencesmay be significantly high but overall contributionmay not
be significantly high. The same note is applicable to βj ’s also.

Example 15.3. The following is the data collected from a randomized block design
without replication and it is assumed that blocks and treatments do not interact with
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each other. The data is collected and classified according to blocks B1,B2,B3,B4 and
treatments T1,T2,T3. Do the first stage analysis of block effects and treatment effects
on this data.

T1 T2 T3

B1 1 5 8
B2 6 4 2
B3 2 4 4
B4 5 4 5

Solution 15.3. The number of rows m = 4 and the number of columns n = 3. The
marginal sums are the following: x1. = 14, x2. = 12, x3. = 10, x4. = 14. x.1 = 14, x.2 = 17,
x.3 = 19. x.. = 14 + 17 + 19 = 50. Then the correction factor

C.F = x2..
mn

= 502

12
≈ 208.33.

Then the sum of squares due to rows

∑
i

x2i.
n

− C.F = 1
3
[(14)2 + (12)2 + (10)2 + (14)2] − C.F ≈ 3.67.

Sum of squares due to treatments

∑
j

x2.j
m

− C.F = 1
4
[(14)2 + (17)2 + (19)2] − C.F ≈ 3.17.

Total sum of squares

∑
ij
x2ij − C.F = (1)2 + (5)2 + (8)2 + ⋯ + (5)2 − C.F ≈ 39.67

Residual sum of squares

s2 = 39.67 − 3.17 − 3.67 ≈ 32.83.

Then the analysis of variance table can be set up as follows:

Variation d.f S.S M.S F-ratio
due to (3)/(2) =

(1) (2) (3) (4)

Blocks 3 3.67 1.22 0.22 = F3,6
Treatments 2 3.17 1.59 0.29 = F2,6

Residual 6 32.83 5.47

Total 11 39.67
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Let us test at a 5% level of rejection. The tabulated values are the following:

F2,6,0.05 = 5.14, F3,6,0.05 = 4.76.

Hence thehypothesis that the block effects are the same is not rejected. Thehypothesis
that the treatment effects are the same is also not rejected. Hence the contributions
due to αi ’s as well as due to βj ’s are not significant. Hence no further analysis of the
differences between individual effects will be done here.

15.3.2 Two-way classification model with interaction

As explained earlier, there is a possibility that theremay be a joint effectwhen two sets
of treatments are tried in an experiment, such as variety of corn (one set of treatments)
and fertilizers (second set of treatments). Certain varietymay interact with certain fer-
tilizers. In such a situation, a simple randomized block experiment with one observa-
tion per cell is not suitable for the analysis of the data. We need to replicate the design
so that we have r observations each in each cell. We may design a randomized block
experiment to replicate r times. Suppose that it is an experiment involving planting of
tapioca. Animals like to eat the tapioca plant. Suppose that in some of the replicates
a few plots are eaten up by animals and the final set of observations is of the form of
nij observations in the (i, j)-th cell, where the nij ’s need not be equal. This is the gen-
eral situation of a two-way classification model with multiple observations per cell.
We will consider here only the simplest situation of equal numbers of observations
per cell, and the general case will not be discussed here. The students are advised to
read books on design of experiments for getting information on the general case as
well as for other designs and also see the paper [1].

Consider the model of (15.16) where the k-th observation on (i, j)-th combination
of the two types of treatments be xijk , i = 1,… ,m, j = 1,… ,n, k = 1,… , r. Then a linear,
fixed effect, additive model with interaction is of the following type:

xijk = μ + αi + βj + γij + eijk ,
i = 1,… ,m, j = 1,… ,n, k = 1,… , r, eijk ∼ N(0,σ2) (15.29)

= μij + eijk , μij = μ + αi + βj + γij (15.30)

where μ is a general effect, αi is the deviation from the general effect due to the i-th
treatment of the first set, βj is the deviation from the general effect due to the j-th
treatment of the second set, γij is the interaction effect and eijk is the random part.
Here again, without loss of generality, we may assume α. = 0, β. = 0, γ.. = 0. From the
model (15.30), one can easily compute the residual sum of squares. Consider the error
sum of squares as

∑
ijk
e2ijk = ∑

ijk
(xijk − μij)2. (15.31)
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By differentiating the left side of (15.31) with respect to μij and equating to zero, one
has

μ̂ij =
∑k xijk

r
=
xij.
r

. (15.32)

Hence the least square minimum, s2, is given by

s2 = ∑
ijk

(xijk −
xij.
r

)
2

= ∑
ijk

(xijk − x...
mnr

)
2
− ∑

ijk
(
xij.
r

− x...
mnr

)
2

= (∑
ijk
x2ijk − x2...

mnr
) − (∑

ij

x2ij.
r

− x2...
mnr

). (15.33)

The first hypothesis to be tested is that H0 ∶ γij = 0 or there is no interaction. Then the
model is

xijk = μ + αi + βj + eijk

and the least square minimum, denoted by s20, is given by

s20 = ∑
ijk

(xijk − x...
mnr

)
2
− ∑

ijk
(xi..
nr

− x...
mnr

)
2

− ∑
ijk

(
x.j.
mr

− x...
mnr

)
2
. (15.34)

Therefore, the sum of squares due to interaction is given by

s20 − s2 = [∑
ijk

(xijk − x...
mnr

)
2
− ∑

ijk
(
xi..
nr

−
x...
mnr

)
2

− ∑
ijk

(
x.j.
mr

−
x...
mnr

)
2
] − [∑

ijk
(xijk −

x...
mnr

)
2
− ∑

ijk
(
xij.
r

−
x...
mnr

)
2
]

= ∑
ijk

(
xij.
r

− x...
mnr

)
2
− ∑

ijk
(xi..
nr

− x...
mnr

)
2

− ∑
ijk

(
x.j.
mr

− x...
mnr

)
2

= [∑
ij

x2ij.
r

− C.F] − [∑
i

x2i..
nr

− C.F] − [∑
j

x2.j.
mr

− C.F] (15.35)



512 | 15 Design of experiments and analysis of variance

where C.F = x2...
mnr . When the interaction γij = 0, then there is meaning in estimating αi ’s

and βj ’s separately.When the interaction effect γij is present, thenpart of the effect due
to the i-th treatment of the first set is mixed up with γij . Similarly, part of the effect of
the j-th treatment of the second set is alsomixed upwith γij, and hence one should not
try to estimate αi and βj separately when γij is present. Hence, testing of hypotheses
on αi ’s should be done only if the hypothesis γij = 0 is not rejected; similar is the case
for testing hypotheses on βj ’s.

Now we can check the degrees of freedom for the various chi-squares when eijk ∼
N(0,σ2) for all i, j,k, andmutually independently distributed. The sum of squares due
to interaction is denoted by S.S.(int) and it is given by

S.S(int) = [∑
ij

x2ij.
r

− C.F] − [∑
i

x2i..
nr

− C.F] − [∑
j

x2.j.
mr

− C.F] (15.36)

with degrees of freedom [mn− 1] − [m− 1] − [n− 1] = (m− 1)(n− 1). The residual sum of
squares is [∑ijk x

2
ijk −C.F] − [∑ij

x2ij.
r −C.F]with degrees of freedom [mnr − 1] − [mn− 1] =

mn(r− 1). Once γij = 0, then the sum of squares due to αi is [∑i
x2i..
nr −C.F]with degrees of

freedom [m− 1]. Similarly, once γij = 0 then the sumof squares due to βj is [∑j
x2.j.
mr −C.F]

with degrees of freedom [n − 1]. Now, we can set up analysis of variance table.
In the following table, Set A means the first set of treatments and Set B means the

second set of treatments, C.F = correction factor = x2...
mnr , ρ =mn(r − 1), is the degrees of

freedom for the residual sum of squares, ν = (m− 1)(n− 1) is the degrees of freedom for
the interaction sum of squares, and interaction sum of squares, which is given above
in (15.36), is denoted by S.S(int).

ANOVA for two-way classification with r observations per cell

Variation d.f S.S M.S F-ratio
due to (3)

(2)
(1) (2) (3) = (4)

Set A m − 1 ∑i
x2i..
nr − C.F A A

D = Fm−1,ρ
Set B n − 1 ∑j

x2.j.
mr − C.F B B

D = Fn−1,ρ

Interaction (m − 1)(n − 1) S.S(int) C C
D = Fν,ρ

Between cells mn − 1 ∑ij
x2ij.
r − C.F

Residual ρ (by subtraction) D

Total mnr − 1 ∑ijk x
2
ijk − C.F
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Note 15.3. There is a school of thought that when the interaction effect is found
to be insignificant or the hypothesis H0 ∶ γij = 0 is not rejected, then add up the
sum of squares due to interaction along with the residual sum of squares, with the
corresponding degrees of freedoms added up, and then test the main effects αi ’s
and βj ’s against this new residual sum of squares. Wewill not adopt that procedure
because, even though the interaction sumof squares is not significantly high it does
not mean that there is no contribution from interaction. Hence we will not add up
the interaction sum of squares to the residual sum of squares. We will treat them
separately, even if the interaction effect is not significant. If insignificant then we
will proceed to test hypotheses on the main effects αi ’s and βj ’s, otherwise we will
not test hypotheses on αi ’s and βj ’s.

Individual hypotheses on the main effects αi ’s and βj ’s can be tested only if the
interaction effect is found to be insignificant. In this case,

α̂s − α̂t
σ̂√ 2

nr

=
xs..
nr − xt..

nr

σ̂√ 2
nr

∼ tmn(r−1) (15.37)

under the hypothesis αs − αt = 0, where

σ̂2 = Least square minimum
mn(r − 1)

= s2

mn(r − 1)
.

A similar result can be used for testing the hypothesis βs − βt = 0. The dividing factor
in this case ismr instead of nr. The confidence interval can also be set up by using the
result (15.37) and the corresponding result for β̂s − β̂t .

Example 15.4. A randomized block design is done on 3 blocks and 4 treatments and
then it is replicated 3 times. The final data are collected and classified into the follow-
ing format. Do an analysis of the following data:

T1 T2 T3
B1 1 4 2

2 2 3
3 4 4

,

T1 T2 T3
B2 5 6 4

6 8 9
4 5 5

,

T1 T2 T3
B3 8 6 4

5 5 6
6 5 4

,

T1 T2 T3
B4 1 2 2

2 1 1
1 3 2

Solution 15.4. Here, i = 1, 2,3,4 orm = 4, j = 1, 2,3 or n = 3, k = 1, 2,3 or r = 3.

x11. = 6, x12. = 10, x13. = 8,x21. = 15, x22. = 19, x23. = 18
x31. = 19, x32. = 16, x33. = 14x41. = 4, x42. = 6, x43. = 5

Total = ∑ijk xijk = 140. Hence C.F = x2...
mnr = (140)

2

36 ≈ 544.44

Block S.S = ∑
i

x2i..
nr

− C.F
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= 1
9
[(24)2 + (52)2 + (49)2 + (15)2] − C.F ≈ 111.78

Treatment S.S = ∑
j

x2.j.
mr

− C.F

= 1
12

[(44)2 + (51)2 + (45)2] − C.F ≈ 2.39

∑
ij

x2ij.
r

− C.F = 1
3
[(6)2 + (10)2 + ⋯ + (5)2] − C.F ≈ 122.23

Residual S.S. = 166.56 − 122.23 = 44.33
Total S.S. = ∑

ijk
x2ijk − C.F ≈ 166.56

Then the analysis of variance table is the following:

Variation d.f S.S M.S F-ratio
due to (3)/(2) =

(1) (2) (3) (4)

Blocks 3 111.78 37.26 20.14 = F3,24
Treatments 2 2.5 1.25 0.68 = F2,24

Interaction 6 7.95 1.34 4.30 = F6,24

Between cells 11 122.23
Residual 24 44.33 1.85

Total 35 166.56

Let us test at α = 0.05 level of rejection. Then F6,24,0.05 = 2.51 < 4.30 from tables, and
hence the hypothesis of no interaction is rejected. Since this hypothesis is rejected,
there is possibility of interaction, and hence we cannot test any hypothesis on the
main effects or on αi ’s and βj ’s, and hence we stop the analysis here.

Exercises 15.3
15.3.1. When eij ∼ N(0,σ2) and independently distributed in a two-way classification
linear fixed effect model without interaction, with i = 1,… ,m, j = 1,… ,n prove the fol-
lowing:

(i) The block sum of squares = ∑
ij
(
xi.
n

− x..
mn

)
2
= ∑

i

x2i.
n

− x2..
mn

= A ∼ σ2χ2m−1
under H0 ∶ α1 = 0 = ⋯ = αm
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(ii) Treatment sum of squares = ∑
ij
(
x.j
m

− x..
mn

)
2
= ∑

j

x2.j
m

− x2..
mn

= B ∼ σ2χ2n−1
under H0 ∶ β1 = 0 = ⋯ = βn

(iii) Residual sum of squares = C = ∑
ij
(xij −

x..
mn

)
2
− A − B

= ∑
ij
x2ij −

x2..
mn

− A − B

∼ σ2χ2(m−1)(n−1)

(iv) A and C are independently distributed, and

(v) B and C are independently distributed.
Hint: Write in terms of eij ’s and then look at the matrices of the corresponding

quadratic forms.

15.3.2. Consider the two-way classification fixed effect model with interaction as in
equation (15.16). Let eijk ∼ N(0,σ2), i = 1,… ,m, j = 1,… ,n, k = 1,… , r, and indepen-
dently distributed. By expressing various quantities in terms of eijk ’s and then study-
ing the properties of the corresponding quadratic forms establish the following re-
sults:

(i) Residual sum of squares = ∑
ijk

(xijk −
xij.
r

)
2

= [∑
ijk

(xijk − x...
mnr

)
2
] − [∑

ijk
(
xij.
r

− x...
mnr

)
2
]

= D ∼ σ2χ2mn(r−1)

(ii) Total sum of squares = ∑
ijk

(xijk − x...
mnr

)
2
∼ σ2χ2mnr−1

(iii) Interaction sum of squares = (∑
ij

x2ij.
r

−
x2...
mnr

) − (∑
i

x2i..
nr

−
x2...
mnr

)

− (∑
j

x2.k.
mr

−
x2...
mnr

) = C

∼ σ2χ2(m−1)(n−1)

when γij = 0 for all i and j.

(iv) when γij = 0 for all i and j then A and D as well as B and D are independently
distributed, where

A = (∑
i

x2i..
nr

− x2...
mnr

), B = (∑
j

x2.j.
mr

− x2...
mnr

).
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15.3.3. Do a complete analysis of the following data on a randomized block experi-
ment where B1,B2,B3 denote the blocks and T1,T2,T3,T4 denote the treatments. The
experiment is to study the yield xij of beans where the 3 blocks are the 3 locations and
the 4 treatments are the 4 varieties. If the block effect is found to be significant then
check for individual differences in αi ’s. Similarly, if the treatment effect is found to be
significant then check for individual differences, to complete the analysis.

T1 T2 T3 T4

B1 8 9 9 8
B2 5 6 5 4
B3 1 0 2 3

15.3.4. Do a complete analysis of the following data on a two-way classification with
possibility of interaction. The first set of treatments are denoted by A1,A2,A3 and
the second set of treatments are denoted by B1,B2,B3,B4 and there are 3 replications
(3 data points in each cell). If interaction is found to be insignificant, then test for the
main effects. If the main effects are found to be contributing significantly, then check
for individual differences.

B1 B2 B3 B4

A1 12 11 10 11
11 10 10 11
10 12 12 12

B1 B2 B3 B4

A2 5 6 5 5
6 6 5 5
5 6 6 6

B1 B2 B3 B4

A3 1 0 2 3
2 1 0 1
3 1 1 2

15.4 Latin square designs

Definition 15.2 (A Latin Square). A Latin Square is a square arrangement of m
Latin letters into m rows and m columns so that each letter appears in each row
and each column once and only once.

Consider the following arrangements of 3 Latin letters, 3 Greek letters and 3 num-
bers in to 3 rows and 3 columns:

M1 =
A B C
B C A
C A B

, M2 =
α β γ
γ α β
β γ α

, (15.38)

M3 =
1 2 3
2 3 1
3 1 2

, M12 =
Aα Bβ Cγ
Bγ Cα Aβ
Cβ Aγ Bα

(15.39)

Note thatM1,M2,M3 are all Latin squares,M2 hasGreek letters andM3 has numbers in
the cells but all satisfy the conditions in the Definition 15.2. Note thatM12 is in the form
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of M2 superimposed on M1. In this superimposed structure, every Greek letter comes
with every Latin letter once and only once. If there are two Latin squares, which when
superimposed, have the property that every letter in one square comes with every let-
ter in the other square, once and only once, then such squares are called orthogonal
Latin squares or Greek-Latin squares. There are some results on themaximumnumber
of such orthogonal squares possible for a givenm. Themaximumpossible is evidently
m− 1 but for every givenm thesem− 1 orthogonal squares may not exist. Construction
of all orthogonal squares for a given m is an open problem. Once in a while people
come up with all squares for a new numberm.

Here, we are concerned about using a Latin square for constructing designs called
Latin square designs. In a Latin square design, we will assign one set of treatments
corresponding to rows, one set of treatments corresponding to columns, one set of
treatments corresponding to Latin letters. If orthogonal squares are available, then
additional sets of treatments corresponding to the letters in each orthogonal square
can be tried. The total number of cells is onlym2 or by usingm2 experimental plots one
will be able to test hypotheses on different sets ofm treatments each. This is the main
advantage of a Latin square design. The trade-off is that all the treatment sets must
have equal number of treatments or m treatments in each set. Another drawback is
that in the analysis, there is no provision for interaction, and hence do not conduct
an experiment with the help of a Latin square design if the different sets of treatments
are likely to interact with each other, or if effects due to combination of treatments is
likely to be present then do not use a Latin square design. Let us start with one Latin
square with m sides, something like M1 in (15.38). A model that we can take is the
following:

xij(k) = μ + αi + βj + γ(k) + eij(k) (15.40)

where xij(k) is the observation in the (i, j)-th cell if the k-th letter is present in the (i, j)-th
cell. For example, in the illustrative design M1 the letter A or the first letter appears,
for example, in the first row first column cell. Hence x111 is there whereas x112 and
x113 are not there since the letters B and C do not appear in the (1, 1)-th cell. This is
the meaning of the subscript k put in brackets. Since every letter is present in every
row and every column, when we sum up with respect to i, row subscript, k is auto-
matically summed up. Similarly, when we sum up with respect to column subscript
j the subscript k is also automatically summed up. Let us use the following nota-
tions.

Ri = i-th row sum; Cj = j-th column sum; Tk = k-th letter sum.

For calculating Ri, sum up all observations in the i-th row. Similarly, sum of all ob-
servations in the j-th column to obtain Cj . But Tk is obtained by searching for the k-th
treatment in each row and then summing up the corresponding observations. By com-
puting the least square estimates of the effects and then substituting in the error sum
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of squares, we obtain the least square minimum s2. Then put the hypothesis that the
first set of treatment effects are zeros orH0 ∶ α1 = 0 = ⋯ = αm. Compute the least square
minimum under this hypothesis, s20. Then take s20 − s2 to obtain the sum of squares
due to the rows or due to αi ’s. Similarly, by putting H0 ∶ β1 = 0 = ⋯ = βm compute the
least square minimum under this hypothesis. Call it s200. Then s200 − s2 is the sum of
squares due to the second set of treatments or columns. ByputtingH0 ∶ γ1 = 0 = ⋯ = γm
and taking the difference between the least square minima, one under the hypoth-
esis and one without any hypothesis, we obtain the sum of squares due to γk ’s or
the third set of treatments. The sum of squares can be simplified to the following,
where the degrees of freedom corresponds to the degrees of freedom (d.f) associated
with the corresponding chi-squares when it is assumed that the eij ’s are indepen-
dently distributed as eij ∼ N(0,σ2). Here, C.F = x2..

m2 = correction factor and S.S = sum
of squares.

∑
i

R2i
m

− C.F = S.S due to rows, with d.f =m − 1

∑
j

C2j
m

− C.F = S.S due to columns, with d.f =m − 1

∑
k

T2k
m

− C.F = S.S due to letters, with d.f =m − 1.

(15.41)

The total sumof squares is∑ij x
2
ij −C.Fwith d.f =m2 −1 and the residual sumof squares

s2 = the total sum of squares minus the sum of squares due to rows, columns, and
letters or the three sets of treatments, with degrees of freedom ν = (m2 − 1) − 3(m− 1) =
(m − 1)(m − 2) for m ≥ 3. By using the above observations, one can set up the analysis
of variance or ANOVA table for a simple Latin square design, where the three sets of
treatments, one corresponding to the rows, one corresponding to the columns and one
corresponding to the letters, are such that there is no possibility of interactions among
any two of them.

One more set of treatments can be tried if we have a pair of orthogonal designs or
if we have a Greek-Latin square asM12 of (15.39). In this case, the model will be of the
form:

xij(kt) = μ + αi + βj + γk + δt + eij (15.42)

where i = 1,… ,m, j = 1,… ,m, k = 1,… ,m, t = 1,… ,m. When we sum up with respect
to i or j, automatically k and t are summed up. In this case, corresponding to (15.41),
there will be one more sum of squares due to the fourth set of treatments, denoted
by ∑t

U2
t
m − C.F with degrees of freedomm − 1 again. The correction factor remains the

same as above. In this case, the degrees of freedom for the residual sum of squares is
ν1 =m2 − 1 − 4(m − 1) = (m − 1)(m − 3) for m ≥ 4. The analysis of variance table for the
simple Latin square design and the Greek-Latin square designs are the following:
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ANOVA table for a simple Latin square design

Variation due to d.f S.S M.S F-ratio
(1) (2) (3) (4) = (3)/(2)

Rows m − 1 ∑i
R2i
m − C.F A A

D = Fm−1,ν
Columns m − 1 ∑j

C2j
m − C.F B B

D = Fm−1,ν
Letters m − 1 ∑k

T2
k
m − C.F C C

D = Fm−1,ν
Residue ν s2 D

Total m2 − 1 ∑ij x
2
ij − C.F

where ν = (m2 − 1) − 3(m − 1) = (m − 1)(m − 2).

ANOVA table for a Greek-Latin square design

Variation due to d.f S.S M.S F-ratio
(1) (2) (3) (4) = (3)/(2)

Rows m − 1 ∑i
R2i
m − C.F A A

E = Fm−1,ν1
Columns m − 1 ∑j

C2j
m − C.F B B

E = Fm−1,ν1
Latin letters m − 1 ∑k

T2
k
m − C.F C C

E = Fm−1,ν1
Greek letters m − 1 ∑t

U2
t
m − C.F D D

E = Fm−1,ν1
Residue ν1 s2 E

Total m2 − 1 ∑ij x
2
ij − C.F

where ν1 = (m − 1)(m − 3), m ≥ 4. If we have more orthogonal designs or a set of n
orthogonal designs, then by using one set of n orthogonal designs we can try (n + 2)
sets of treatments by using m2 test plots for m ≥ n + 2. The procedure is exactly the
same. The residual degrees of freedom in this case will be ν2 = (m2 − 1)− (n+ 2)(m− 1) =
(m−1)(m−n−1). One illustrative example ona simple Latin square designwill be given
here.

Example 15.5. The following is the design and the data on a simple Latin square de-
sign. Do the analysis of the data.

A B C

B C A

C A B

Sum

1 5 4 10

2 6 7 15

5 2 4 11

Sum 8 13 15 36
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Solution 15.5. According to our notation the row sums, denoted byR1,R2,R3, column
sums, denoted by C1,C2,C3 and sums corresponding to letters, denoted by T1,T2,T3 are
the following:

R1 = 10, R2 = 15, R3 = 11
C1 = 8, C2 = 13, C3 = 15
T1 = 10, T2 = 11, T3 = 15

Note that x.. = 36, and hence the

C.F = x2..
m2 = (36)2

9
= 144.

Also

S.S due to rows = ∑
i

x2i.
m

− C.F ≈ 144.67

S.S due to columns = ∑
j

x2.j
m

− C.F ≈ 148.67

S.S. due to letters = ∑
k

T2k
m

≈ 144.67

Hence the ANOVA table is the following:

Variation due to d.f S.S M.S F-ratio

Rows 2 4.67 2.32 0.17
Columns 2 8.67 4.32 0.31
Letters 2 4.67 2.32 0.17
Residue 2 13.99

Total 8 32

Let us test at α = 0.05. Then the tabulated value of F2,2,0.05 = 19. Hence the hypoth-
esis H0 ∶ α1 = α2 = α3 = 0 is not rejected or the row effect is not significant. Simi-
larly, it can be seen that the column effect as well as letter effect are not significant
here.

Exercises 15.4

15.4.1. For a Latin square design of side m, and with normality assumption for the
errors [eij ∼ N(0,σ2) and mutually independently distributed] show that the residual
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sum of squares s2 ∼ σ2χ2(m−1)(m−2) and that

∑
i

R2i
m

− C.F ∼ σ2χ2m−1 under H0 ∶ α1 = 0 = ⋯ = αm

∑
j

C2j
m

− C.F ∼ σ2χ2m−1 under H0 ∶ β1 = 0 = ⋯ = βm

∑
k

T2k
m

− C.F ∼ σ2χ2m−1 under H0 ∶ γ1 = 0 = ⋯ = γm

where C.F = correction factor = x2...
m2 , Ri = i-th row sum, Cj = j-th column sum and Tk is

the sum of the observations corresponding to the k-th letter.

15.4.2. In Exercise 15.4.1, show that s2 and sum of squares due to rows are indepen-
dently distributed and so is the case of column sum of squares and sum of squares
corresponding to letters.

15.4.3. Do a complete analysis of the following data where the design and the corre-
sponding data are given:

A B C D
B C D A
C D A B
D A B C

,

5 8 2 6
4 2 1 5
3 8 2 4
2 5 2 6

15.5 Some other designs

There are several other designs in practical use, such as incomplete blockdesigns, bal-
anced incomplete blockdesigns, partially balanced incomplete blockdesigns, Youden
square designs, factorial designs, etc.

15.5.1 Factorial designs

In drug testing experiments, usually the same drug at different doses are adminis-
tered. If two drugs at 5 different doses each are tried in an experiment, then we call
it two factors at 5 levels and write as 25 design. If m factors at n levels each are tried
in an experiment then the design is called a mn factorial design. If m1 factors at n1
levels each, …, mk factors at nk levels each are tried in an experiment, then we call it
a mn1

1 ⋯mnk
k factorial design. The analysis of factorial designs is completely different

from what we have done so far, because there can be all sorts of effects such as linear
effects, quadratic effects and so on, as well as different categories of interactions. This
is an area by itself.
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15.5.2 Incomplete block designs

In a randomized block experiment, each block has t plots and only t treatments are
tried, or in other words, all treatments appear in every block. Most of the times it may
be difficult to find sets of t plots eachwhich are fully homogeneous within each block.
In an experiment involving animals, it may be difficult to find a large number of iden-
tical animals with respect to genotype and other characteristics. In such a situation,
we go for incomplete block designs. In each block, there will be s homogeneous plots,
s < t, and take b such blocks so that bs plots are there. Then the t treatments are ran-
domly assigned to the plots so that each treatment is repeated r times in r different
blocks or bs = rt. Then such a design is called an incomplete block design. We may
put other restrictions such as each pair of treatments appear λ times or the i-th pair
is repeated λi times and so on. There are different types of balancing as well as par-
tial balancing possible and such classes of designs are called balanced and partially
balanced incomplete block designs.

Sometime, in a Latin square design, one or more rows or columns may be fully
lost before the experiment is completed. The remaining rows and columns, of course,
do not make a Latin square. They will be incomplete Latin squares, called Youden
squares. Such designs are called Youden square designs.

15.5.3 Response surface analysis

In all the analysis of various problems that we have considered so far, we took the
model as linear additive models. For example, in a one-way classification model we
have taken the model as

xij = μ + αi + eij (15.43)

where μ is the general effect, αi is the deviation from the general effect due to the
i-th treatment and eij is the random part. Here, xij, the observation, could be called
the response to the i-th treatment. In general, xij could be some linear or non-linear
function. Let us denote it by ϕ. Then

xij = ϕ(μ,αi ,eij). (15.44)

Analysis of this non-linear function ϕ is called the response surface analysis. This is
an area by itself.

15.5.4 Random effect models

So far,we have been considering only fixed effect models. For example, in a model
such as the one in (15.43), we assumed that αi is fixed unknown quantity, not another
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random variable. If αi is a random variable with E(αi) = 0 and Var(αi) = σ21 , then the
final analysis will be different. For simplifying matters, one can assume both αi ’s and
eij ’s are independently normally distributed. Suchmodelswill be called randomeffect
models, the analysis of which will be more complicated compared to the analysis of
fixed effect models. Students who are interested in this area are advised to read books
on the Design of Experiments and books on Response Surface Analysis.





16 Questions and answers
In this chapter, some of the questions asked by students at the majors level (middle
level courses) are presented. At McGill University, there are three levels of courses,
namely, honors level for very bright students, majors level for average students in
mathematical, physical and engineering sciences and faculty programs for below av-
erage students from physical, biological and engineering sciences, and students from
social sciences. Professor Mathai had taught courses at all levels for the past 57 years
from 1959 onward. Questions from honors level students are quite deep, and hence
they are not included here. Questions from students in the faculty programs are al-
ready answered in the texts in Chapters 1 to 15 and in the comments, notes and remarks
therein. Questions at themajors level that Professor Mathai could recollect and which
are not directly answered in the texts in Chapters 1 to 15 are answered here, mostly
for the benefits of teachers of probability and statistics at the basic level and curious
students. [These materials are taken from Module 9 of CMSS (Author: A.M. Mathai),
and hence the contexts are those of Module 9.]

16.1 Questions and answers on probability and random variables

Question. Can a given experiment be random and non-random at the same time?

Answer. The answer is in the affirmative. It all depend upon what the experimenter
is looking for in that experiment. Take the example of throwing a stone into a pond of
water. If the outcome that she is looking for is whether the stone sinks in water or not,
then the experiment is not a random experiment because from physical lawswe know
that the stone sinks, and hence the outcome is pre-determined, whereas if she is look-
ing for the region on the surface of the pond where the stone hits the water, then it be-
comes a randomexperiment because the location of hit is not determined beforehand.

Question. What are called, in general, postulates or axioms?

Answer. Postulates or axioms are assumptions that you make to define something.
These assumptions should be consistent and mutually non-overlapping. Since they
are your own assumptions, there is no question of proving or disproving these postu-
lates or axioms.

Question. In some books, a coin tossed twice and two coins tossed once are taken as
equivalent. Is this correct?

Answer. No. If the two coins are identical in every respect and the original act of
tossing twice and the second act of tossing once are identical in every respect, then
the two situations can be taken as one and the same, otherwise not, usually not.

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562545-016
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Question. In the situation of a random cut of an interval, the probability that the cut
is at a given point is zero. Does it mean that it is impossible to cut the string? The child
has already cut the string! Is there any contradiction here?

Answer. According to our rule here, we assigned probabilities proportional to length.
Since a point has zero length, the assigned probability is zero. Probability of the im-
possible eventϕ is zero but if the assigned probability of an event is zero this does not
mean that the event is impossible. We can cut the string.

Question. Does pair-wise independence imply mutual independence? For example,
ifA,B,C are three events in S and if P(A∩B) = P(A)P(B), P(A∩C) = P(A)P(C), P(B∩C) =
P(B)P(C), then does this imply that P(A ∩ B ∩ C) = P(A)P(B)P(C) also?

Question. The second doubt is that if P(A ∩ B ∩ C) = P(A)P(B)P(C) will it not be suffi-
cient for pair-wise independence also?

Answers. Apparently, in some books, P(A ∩ B ∩ C) = P(A)P(B)P(C) is stated as imply-
ing that they are pair-wise independent also. This is incorrect. In the following figures,
suppose that symmetry is assumed in the sample space S and S contains only a finite
number of elementary events. Figure 16.1 (a) is an illustration showing that pair-wise
independence does not imply mutual independence. Figure 16.1 (b) shows that if PPP
(product probability property) holds for three events then that need not imply pair-
wise independence.

Figure 16.1: Pairwise and mutual independence.

In Figure 16.1 (a), P(A) = 1
2 = P(B) = P(C), P(A ∩ B) = 1

4 = P(A)P(B), P(A ∩ C) = 1
4 =

P(A)P(C), P(B∩C) = 1
4 = P(B)P(C), and hence pair-wise independence holds but P(A∩

B ∩ C) = 1
20 ≠ P(A)P(B)P(C) = 1

8 . Hence pair-wise independence need not imply mu-
tual independence. In Figure 16.1 (b), P(A) = 1

2 , P(B) = 1
3 , P(C) = 1

2 and P(A ∩ B ∩ C) =
1
12 = P(A)P(B)P(C). But P(B ∩ C) = 1

12 ≠ P(B)P(C) = 1
6 . Hence if PPP (product probabil-

ity property) holds for three events, PPP need not hold pair-wise. If there are k events
Ai ⊂ S, i = 1,… ,k for mutual independence to hold, one must have PPP holding for
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all possible intersections of different events, that is, all intersections two at a time, all
intersections three at a time, …, intersection of all or k at a time.

Question. Will the probabilities P(A1|B),P(A2|B),… ,P(Ak |B) sum up to 1 when
A1,… ,Ak constitute a partitioning of the sample space and B is any other event in
the same sample space?

Answer. Note that

P(Aj|B) =
P(Aj ∩ B)
P(B)

, P(B) ≠ 0, j = 1,… ,k.

Hence by taking the sum for P(B) ≠ 0,

P(A1|B) + ⋯ + P(Ak |B) =
1

P(B)
[P(A1 ∩ B) + ⋯ + P(Ak ∩ B)] = P(B)

P(B)
= 1

since A1 ∩ B,… ,Ak ∩ B are the mutually exclusive partitions of B and their union is
B itself. Note that in the above results and procedures k need not be finite. There can
be a countably infinite number of events A1,A2,… in the partition and still the results
will hold.

Question. Are the procedures of sampling without replacement (taking one by one
without putting back the one already taken) and the procedure of taking one subset at
random, one and the same in the sense that both the procedures give rise to the same
probability statements in whatever the computations that we are going to do?

Answer. Yes. Let us look at the above example. [A box contains 10 red and 8 green
identical marbles andmarbles are taken at random.]What is the probability of getting
exactly 2 red and 1 green marbles? Consider the first procedure of taking one subset
of 3. Then the 2 red can come from the 10 red in (102 ) ways and the one green in (81 )
ways. Let D be the event of getting exactly 2 red and 1 green marbles. Then in the first
situation of taking one sample of 3 is given by

P(D) =
(102 )(81 )
(183 )

= 10 × 9
2!

8
1!

3!
18 × 17 × 16

= 3[ 1
18

× 9
17

× 8
16

].

Now, let us consider the secondprocedure of takingoneat a timewithout replacement.
Let A be the event that the first marble is red, B be the event that the second marble is
red and C be the event that the thirdmarble is green. Then the intersection A∩B∩C is
the event of getting the sequence RRG (red, red, green). Then the probability of getting
this sequence is given by the following by using the splitting of the intersections with
the help of the definition of conditional probabilities:

P(A ∩ B ∩ C) = P(A)P(B|A)P(C|A ∩ B) = 10
18

× 9
17

× 8
16
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because for the first trial there are 18 marbles and out of which 10 are red and the
selection is done at random and hence the probability is 10

18 . When one red marble
is removed then there are 9 red marbles left. Hence, given A, the probability for B or
P(B|A) = 9

17 . When two red marbles are removed there are 16 marbles, out of which 8
are green. Then the probability of C, given that two red marbles are taken, or given
A ∩ B, is P(C|A ∩ B) = 8

16 . Then from the multiplication rule of intersection and condi-
tional statement above the probability for the sequence RRG

P(RRG) = P(A ∩ B ∩ C) = 10
18

× 9
17

× 8
16

= [ 10 × 9 × 8
18 × 17 × 16

].

Howmany such sequences are there with two reds and one green? RRG, RGR, GRR or
three such sequences are there. For each such sequence, we see that the same proba-
bility as above appears. Hence the required probability in sampling without replace-
ment scheme is 3[ 1018 × 9

17 × 8
16 ]. This is the same result as in the case of taking one

subset of 3 from the whole set. Hence the two procedures will lead to the same result.
From the steps above, it is seen that this is true in general also.

Question. One doubt of the students is that why do we write “zero elsewhere” when
writing a probability or density function? Is it necessary?

Answer. Since a real random variable is defined over the whole real line, the den-
sity should also be defined over the whole real line. Hence the non-zero part is to be
mentioned as well as the zero part is to be mentioned.

Question. Another serious doubt is whether the boundary point, in the above case of
a three-parameter gamma density the lower boundary point x = γ is to be included in
the non-zero part or in the zero part since the probability at x = γ is zero in any case?
Should we write the range for the non-zero part as γ < x < ∞ or as γ ≤ x < ∞?

Answer. Suppose that x = γ is not included in the non-zero part. What is the maxi-
mum likelihood estimate (MLE) of the parameter γ? It does not exist if the point x = γ
is not included in the non-zero part. It exists and is equal to the smallest order statistic
if x = γ is included in the non-zero part or if the support is given as γ ≤ x < ∞. Since∞
is not a number or a point, the upper boundary point does not arise here.

As another example consider a uniform density:

f (x) =
{
{
{

1
b−a , a ≤ x ≤ b
0, elsewhere.

If the non-zero part is written as for a < x ≤ b, then the MLE for the parameter b ex-
ists but the MLE for a does not exist. If the support is written as a ≤ x < b, then the
MLE for a exists but the MLE for b does not exist. If the range is written as a < x < b,
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then MLE for a and b do not exist. If the range is written as a ≤ x ≤ b, then the MLE
for both a and b exist and they are the smallest order statistic and the largest or-
der statistic, respectively. Hence the range for the non-zero part must be written as
a ≤ x ≤ b even though the probabilities x = a and x = b are zeros. The rule to be fol-
lowed is that the non-zero part of the density or probability function has to be written
including the boundary points of the support or the interval where the non-zero part
is defined.

Question. What about the condition α > 0, where α is the shape parameter in a
gamma density? From where is this condition coming?

Answer. The function xα−1e−
x
β is a smooth function (no singularities or the function

doesnot becomezero in thedenominator at anypoint) if x is away from0and∞.When
integrating over [0,∞)when x → ∞, the integral behaves like the integral of e−

x
β , β > 0

since the polynomial part xα−1 is dominated by the exponential part e−
x
β . But when

x → ∞, e−
x
β goes to zero, which is finite since β > 0. Hence when x → ∞ there is no

problem with the integral. When x → 0, e−
x
β → 1. Hence the difficulty may come only

from the factor xα−1. In the integral, xα−1 behaves like xα
α . Hence α ≠ 0. If α is negative,

then xα behaves like 1
xγ , γ = −α > 0 and 1

xγ goes to = ∞ when x → 0+. Hence α is not
zero or negative or α must be positive, when real. If α is a complex quantity, then the
condition will be ℜ(α) > 0 where ℜ(⋅) denotes the real part of (⋅).

Question. How are the conditions α > 0 and β > 0 coming in a beta density with the
parameters α and β?

Answer. Take for example a type-1 beta integral. For integrating from a to b, a > 0,
b < 1 the integral is smooth, it exists and it hasnodifficulties, no singularities or thede-
nominator does not become zero at any point. There can be problemswhen approach-
ing 0 or 1.When approaching zero, 1−xwill behave like 1 and there is no problemwith
the second factor in the integrand. Consider the first factor xα−1. In the integral it be-
haves like xα

α and hence α ≠ 0. By using the same argument as in the gamma integral,
α must be positive, if real, otherwise the real part of α must be positive. Now, change
y = 1− x or consider the y-integral for type-1 beta. Now β appears at the place of α, and
hence β > 0. Similar arguments can be put forward to show that α > 0, β > 0 in type-2
beta integrals also. [This is left as an exercise to the students.]

Question. What exactly is dx the differential of x? Is it a small value of Δx?

Answer. Some teachers may have told you that it is small increment in some vari-
able x. There is another notation Δx for small increment in x. If it is small change,
then it can be negative or positive or zero.

Question. Can dx be zero or negative?
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Answer. Let x be an independent real variable, independent in the sense that wewill
be preassigning values to x. Let y = f (x) be a dependent variable, dependent on the
preassigned values of x, through the function f (x). Let Δx be a small increment in x
and let Δy be the corresponding increment in y = f (x). That is, Δy = f (x + Δx) − f (x).
Then Δy = 0 if y is a constant function of x. By convention, we take Δx > 0 always ( or
Δx not negative or zero) so thatwe can talk about increasing anddecreasing functions.
For Δx > 0 if Δy < 0, then the function y = f (x) is decreasing. For Δx > 0 if Δy > 0, then
y = f (x) is an increasing function of x. Hence Δx > 0 always by convention but Δy can
be negative, positive or zero. dx or dy by itself has no meaning. When Δx goes to zero,
it goes to zero and it does not by itself become dx or something else. Small increments
are denoted byΔx andΔy andnot by dx and dy. Thenwhat exactly is this dx? Consider
the ratio ΔyΔx . This ratio can always bewrittenbecausewehave assumed thatΔx > 0 and
Δx is always positive. Then we can write the identity

Δy ≡ Δy
Δx

Δx (i)

Consider Δx becoming smaller and smaller. If at any stage ΔyΔx attains a limit, then let
this limit be denoted by f ′(x). At this stagewhen the limit is attained, the value ofΔx is
denoted by dx and the corresponding Δy is denoted by dy. Thus we have the identity
(it is not any approximation)

dy ≡ f ′(x)dx ⇒ f ′(x) = dy divided by dx (ii)

or f ′(x) is a ratio of differentials. Thus, dx, being the differential associated with the
independent variable x, this dx > 0 by convention. The corresponding dependent vari-
able has the differential dy. This dy can be negative, positive or zero depending upon
the nature of the function.

Question. Which one x or y to be taken as the independent variable in the function
2x + 3y − 5 = 0? This is the same as x = 1

2 (5 − 3y) or it is also the same as y = 1
3 (5 − 2x).

Then which is the independent variable and which is the dependent variable?

Answer. It all depend upon whether we want to calculate x at preassigned values of
y or vice versa. If y is preassigned and x is calculated from there then y is the indepen-
dent variable and x is the dependent variable. If x is preassigned and y is calculated
from the preassigned x, then x is the independent variable and y is the dependent
variable. It will be more clear from the following case. There is a physical law pv = c
or pressure multiplied volume is a constant under constant temperature. In the equa-
tion, p represents pressure, v volume and c the constant. We can write the equation
as p = c

v or as v = c
p . If we want to ask the question: what will be the pressure if the

volume is 10 cubic centimeters? Then v is preassigned and p is calculated from the



16.1 Questions and answers on probability and random variables | 531

formula p = c
v . In this case, v is the independent variable and p is the dependent vari-

able. If we want to calculate v at preassigned values of p, then p is the independent
variable and v is the dependent variable.

Question. In an implicit function f (x1,x2,… ,xk) = 0 which is the dependent variable
and which are the independent variables?

Answer. If our aim is to calculate x1 at preassigned values of x2,… ,xk , then x2,… ,xk
are independent variables and x1 is the dependent variable. Then the differentials
dx2,… ,dxk are strictly positive by convention or dx2 > 0,… ,dxk > 0 and dx1 could be
negative, zero or positive according to the nature of the function f .

Question. What is the moment problem?

Answer. The famous moment problem in physics and statistics is the following: We
have seen that if arbitrary moments are available, then the corresponding density is
uniquelydetermined through inverseMellin transformsunder someminor conditions.
Suppose that only the integer moments are available, that is, for the single real vari-
able case let E(xh) for h = 0, 1, 2,… are all available, countably infinite number of in-
teger moments are available. Is the density f (x) uniquely determined by these integer
moments? This is the famous moment problem in physics and statistics. The answer
is: not necessarily. There can be two different density functions corresponding to a
given set of integer moments. There are several sets of sufficient conditions available
so that a given integer moment sequence will uniquely determine a density/probabil-
ity function. One such sufficient condition is that the non-zero part of the density is
defined over a finite range [a,b], −∞ < a ≤ x ≤ b < ∞. More sets of sufficient conditions
are available; see, for example, the book [15].

This is the case of a single random variable. In the multivariate case, the corre-
sponding problem is that if all integer product moments, that is, E(xh11 ⋯xhkk ) where
hi = 0, 1, 2,…, i = 1,… ,k are given, will these integer product moments uniquely deter-
mine the corresponding multivariate density/probability function? The answer is: not
necessarily so!

Let there be a multivariate density/probability function f (x1,… ,xk) and suppose
we wish to compute the expected value of a function of the variables, for example,
(i) E(xh1 ), (ii) E(x21x52 ).

Question. How do we compute these types of expected values? In (i), only x1 is in-
volved but we have amultivariate density/probability function.We can compute E(xh1 )
from the marginal density/probability function of x1 but if we compute it by using the
multivariate density/probability function will the two procedures give the same re-
sults?
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Answer. This is a usual doubt of the students. By using themultivariate density/prob-
ability function, for example, consider a continuous case [the procedure is parallel in
the discrete case]:

E(xh1 ) = ∫
X
xh1 f (x1,… ,xk)dX

where ∫X = ∫∞x1=−∞
⋯∫∞xk=−∞

and dX = dx1 ∧ ⋯ ∧ dxk . Since the function, for which the
expected value is to be computed, contains only x1, we can integrate out the other
variables x2,… ,xk . When x2,… ,xk are integrated out from the joint density, we get
the marginal density of the remaining variables, namely the marginal density of x1,
denoted by f1(x1). Then the integral to be evaluated reduces to

E(x1)h = ∫
∞

−∞
xh1 f1(x1)dx1.

Thus both the procedures give rise to the same result. (ii) Let us take for example,
x3,… ,xk to be discrete. In this case,

∞

∑
x3=−∞

⋯
∞

∑
xk=−∞

f (x1,… ,xk) = f12(x1,x2)

where f12(x1,x2) is the marginal probability or density function of x1,x2. Now

E(x21x52) =
∞

∑
x1=−∞

∞

∑
x2=−∞

x21x52 f12(x1,x2)

if x1 and x2 are both discrete. If they are continuous, then integrate out both, if one is
discrete and the other continuous then integrate out the continuous one and sum up
the discrete one. Thus one can compute expected values of a function of r, r < k of the
original k variables then those expected values can be computed either from the joint
density/probability function of all the k variables or from the marginal density/prob-
ability function of the r variables.

Question. Can ρ (correlation between real scalar random variables x and y) measure
relationship between x and y?

Answer. The answer is no; it cannot except at the boundary points. In general, we can
show that −1 ≤ ρ ≤ 1. This is easily proved by considering two variables u = x

σx
+ y

σy
and

v = x
σx

− y
σy
for σx ≠ 0, σy ≠ 0 (non-degenerate cases). Now, take the variances of u and

v and use the fact that for any real random variables u and v, Var(u) ≥ 0, Var(v) ≥ 0.
But

Var(u) = Var(x)
σ2x

+ Var(y)
σ2y

+ 2Cov(x,y)
σxσy

= 1 + 1 + 2ρ = 2(1 + ρ).
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Hence Var(u) ≥ 0⇒ 2(1+ρ) ≥ 0⇒ ρ ≥ −1. Similarly, Var(v) = 2(1−ρ) ≥ 0⇒ ρ ≤ 1. There-
fore,

−1 ≤ ρ ≤ 1.

From the Cauchy–Schwarz inequality, it follows that ρ = ±1 or the boundary values
if and only y = ax + b, where a ≠ 0, b are constants, almost surely. Because of this
property for boundary values, people are tempted to interpret ρ as measuring linear
relationship which means if ρ is near to +1 or −1, then near linearity is there and if ρ
is zero then no linearity is there, etc. We will show that this interpretation is also in-
valid. Some misuses go to the extent that some applied statisticians interpret positive
values, ρ > 0, as “increasing values of x go with increasing values of y” or “decreasing
values of x go with decreasing values of y”, and ρ < 0 means “increasing values of x
go with decreasing values of y and vice versa. We will show that this interpretation
is also invalid. We will show that no value of ρ in the open interval −1 < ρ < 1 can be
given anymeaningful interpretation, and no interpretation can be given asmeasuring
relationships between x and y. Take, for example, y = a + bx + cx2, c ≠ 0 and compute
the correlation between x and y. For convenience, take a symmetric variable x so that
all odd moments about the origin will be zeros. For example, take a standard normal
variable. Then the correlation coefficient ρwill be a function of b and c only. There are
infinitely many choices for b and c. By selecting b and c appropriately, all the claims
about ρ can be nullified except for the case when ρ = +1 or ρ = −1. This is left as an
exercise to the student.

Question. Do the mgf (moment generating function) of type-1 beta density and the
corresponding type-1 Dirichlet density exist, because these are not seen in books?

Answer. For type-1 beta and type-1 Dirichlet, moment generating function (mgf) ex-
ist. For type-2 beta and type-2 Dirichlet mgf do not exist but characteristic functions,
E(eitx), i = √−1, exist. For the type-1 beta, the mgf, denoted by Mx(t) where t is an ar-
bitrary parameter, is given by

Mx(t) = E[etx] =
Γ(α + β)
Γ(α)Γ(β)

∫
1

0
etxxα−1(1 − x)β−1dx.

Here, etx canbe expanded since termby term integrationwill be valid and the resulting
series is going to be uniformly convergent and the integral is also convergent.

Mx(t) =
Γ(α + β)
Γ(α)Γ(β)

∞

∑
k=0

tk

k!
∫
1

0
xα+k−1(1 − x)β−1dx

= Γ(α + β)
Γ(α)Γ(β)

∞

∑
k=0

tk

k!
Γ(α + k)Γ(β)
Γ(α + β + k)

, ℜ(α + k) > 0, k = 0, 1, 2,… .
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But

Γ(α + k) = (α)kΓ(α), Γ(α + β + k) = Γ(α + β)(α + β)k

where, for example, (a)k is the Pochhammer symbol, given by

(a)k = a(a + 1)⋯(a + k − 1), a ≠ 0, (a)0 = 1.

Hence

Mx(t) =
∞

∑
k=0

tk

k!
(α)k

(α + β)k
= 1F1(α;α + β; t)

where 1F1 is the confluent hypergeometric series which is convergent for all finite t.
Since it is a hypergeometric series, many books avoid the discussion of the mgf here.
By using the same procedure, one can evaluate the mgf in the type-1 Dirichlet case,
namely,

Mx1,…,xk (t1,… , tk) = E[et1x1+⋯+tkxk ]

= Γ(α1 + ⋯ + αk+1)
Γ(α1)⋯Γ(αk+1)

∫
Ω
et1x1+⋯+tkxkxα1−11 ⋯xαk−1k

× (1 − x1 − ⋯ − xk)αk+1−1dx1 ∧ ⋯ ∧ dxk .

When we expand the exponential part, we can write

et1x1+⋯+tkxk =
∞

∑
r1=0

⋯
∞

∑
rk=0

tr11 ⋯ trkk
r1!⋯ rk !

xr11 ⋯xrkk .

Then

∫
Ω
xα1+r1−11 ⋯xαk+rk−1k (1 − x1 − ⋯ − xk)αk+1−1dx1 ∧ ⋯ ∧ dxk

= Γ(α1 + r1)
Γ(α1)

⋯
Γ(αk + rk)

Γ(αk)

×
Γ(α1 + ⋯ + αk+1)

Γ(α1 + ⋯ + αk + r1 + ⋯ + rk + αk+1)

for ℜ(αj + rj) > 0, rj = 0, 1, 2,…; j = 1,… ,k. Now, the uniformly convergent multiple se-
ries above will sum up to a Lauricella function of the type FD; details may be seen
from [3].

Let us see what happens in the type-2 beta case if we expand the exponential part
and try to integrate term by term. Then the integral to be evaluated is the following:

∫
∞

0
xα+k−1(1 + x)−(α+β)dx =

Γ(α + k)
Γ(α)

Γ(β − k)
Γ(β)

, −ℜ(α) < k < ℜ(β).
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Note that k = 0, 1, 2,… but −ℜ(α) and ℜ(β) are fixed quantities, and hence the condi-
tion for the existence will be violated from some stage onwards. This means that the
integral is not convergent or expansion of the exponential part and term by term inte-
gration is not a valid procedure here. The moment generating function does not exist
for type-2 beta and type-2 Dirichlet cases.

Students have difficulty in evaluating the density f (x) from arbitrary moments by
using inverseMellin transforms. Ifϕ(s) isE(xs−1) for a positive continuous real random
variable x with density f (x) and if ϕ(s) exists for a complex s and ϕ(s) is analytic in a
strip in the complex plane then the inverse Mellin transform is given by

f (x) = 1
2πi

∫
c+i∞

c−i∞
ϕ(s)x−sds, i = √−1.

Detailed conditions for the existence of Mellin and inverse Mellin transforms may be
seen from [2]. We will work out the inverse Mellin transform for a known special case
here so that the procedure will be clear to the students.

Example 16.1. If Γ(s) is the Mellin transform of some function f (x) for x > 0, then
evaluate f (x) by using the formula for the inverse Mellin transform.

Solution 16.1. From the integral representation of a gamma function, we know that

Γ(s) = ∫
∞

0
xs−1e−xdx, ℜ(s) > 0. (a)

Thuswe know the function f (x) as e−x from this representation. Butwewant to recover
f (x) from the inverse Mellin transform. The function to be recovered is

f (x) = 1
2πi

∫
c+i∞

c−i∞
Γ(s)x−sds. (b)

Since Γ(s) has poles at s = 0, −1, −2,…, then the infinite semicircle c − i∞ to c + i∞ can
enclose all these poles if we take any c > 0, for example, c = 0.5 or 3.8 etc. From residue
calculus, f (x) in (b) is available as the sum of the residues at the poles of the integrand
in (b). The residue at s = −ν, denoted by Rν , is given by

Rν = lim
s→−ν

(s + ν)Γ(s)x−s.

We cannot substitute s = −ν and evaluate the limit. We will introduce a few more fac-
tors in the numerator and denominator so that the expression becomes simpler.

Rν = lim
s→−ν

(s + ν)(s + ν − 1)⋯ s
(s + ν − 1)⋯ s

Γ(s)x−s

= lim
s→−ν

Γ(s + ν + 1)
(s + ν − 1)⋯ s

x−s = Γ(1)xν

(−1)νν!
= (−1)νxν

ν!
.
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Then
∞

∑
ν=0

Rν =
∞

∑
ν=0

(−1)νxν

ν!
= e−x = f (x).

Thus f (x) is recovered through the inverse Mellin transform.

Question. Are there other multivariate generalizations of type-1 and type-2 beta den-
sities, other than type-1 and type-2 Dirichlet densities?

Answer. Yes, there are othermultivariatemodels available in the literature, for exam-
ple, see [10]. Now the question comes: for a given density, such as exponential density
ornormaldensity, is there anything called theuniquemultivariate analogue?Students
are used to the phrase “the multivariate normal density”. Is it a unique density corre-
sponding to the univariate normal density?

Question. In general, given a univariate density/probability function, is there any-
thing called the unique multivariate analogue?

Answer. There is no unique analogue. There can be different types of bivariate or
multivariate densities where the marginal densities are the given densities. This is ev-
idently obvious but some students have the feeling that the multivariate models are
unique.

Question. Is a “multivariable or multivariate” distribution the same as “vector-
variate” distribution?

Answer. Some authors use multivariate case and vector variable case as one and the
same. This is not so. There is a clear distinction between “multivariate” and “vector-
variate” cases. In the multivariate case, there is no order in which the variables enter
into the model or variables could be interchanged in the model with the correspond-
ing changes in the parameters, if any. A vector variable case is amultivariate case, and
in addition, the order in which the elements appear also enters into the model. If we
have a matrix-variate case and if we are looking at the marginal joint density of a par-
ticular row of the matrix, say for example, the first row of the matrix then we have a
vector variable case. Ifwehave a function f (x1,x2) = c1(x1+x2), 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 and
zero elsewhere, where c1 is the normalizing constant, then we can take the variables
as (x1,x2) or as (x2,x1) and both will produce the same function in the same square.
Suppose that our function is c2(x1 + x2) but defined in the triangle 0 ≤ x1 ≤ x2 ≤ 1 then
(x1,x2) is different from (x2,x1). They cannot be freely interchanged. The ordered set
(x1,x2) is different from the ordered set (x2,x1). Students must make a distinction be-
tween “multivariate case” and “vector variable case”. In the latter case, the order in
which the variables appear also enters into the model.
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Question. How is Pearson’s X2 statistic coming from a multinomial probability law?

Answer. The (mgf) in the multinomial case is the following:

E[et1x1+⋯+tk−1xk−1 ]

=
n
∑
x1=0

⋯
n
∑
xk=0

et1x1+⋯+tk−1xk−1 n!
x1!⋯xk !

px11 ⋯pxkk

= ∑⋯∑
n!

x1!⋯xk !
(p1et1)

x1 ⋯(pk−1etk−1)
xk−1pxkk

= (p1et1 + ⋯ + pk−1etk−1 + pk)
n =M(t1,… , tk−1) (i)

from a multinomial expansion. We can differentiate this multivariate mgf to obtain
integer moments. For example, denoting T = O⇒ t1 = 0,… , tk−1 = 0,

𝜕M
𝜕tj

|
T=O

= E(xj), j = 1,… ,k − 1 and E(xk) = n − E(x1) − ⋯ − E(xk−1)

𝜕M
𝜕tj

|
T=O

= npj(p1et1 + ⋯ + pk−1etk−1 + pk)
n−1|T=O = npj

for j = 1, 2,… ,k − 1 and E(xk) = n − np1 − ⋯ − npk−1 = n(1 − p1 − ⋯ − pk−1) = npk .

𝜕2M
𝜕ti𝜕tj

|
T=O

= n(n − 1)pipj , i ≠ j = 1,… ,k − 1 = E(xixj), i ≠ j.

𝜕2M
𝜕t2j

|
T=O

= n(n − 1)p2j + npj = E(x2j ).

Hence

Var(xj) = E(x2j ) − [E(xj)]
2 = n(n − 1)p2j + npj − n2p2j = npj(1 − pj),

for j = 1,… ,k − 1.

Cov(xi ,xj) = E(xixj) − E(xi)E(xj) = n(n − 1)pipj − (npi)(npj) = −npipj ,

for i ≠ j = 1,… ,k − 1.

Cov(xi ,xk) = Cov(xi ,n − x1 − ⋯ − xk−1)
= −Cov(xi ,x1) − ⋯ − Cov(xi ,xk−1)
= npi(p1 + ⋯ + pi−1 + pi+1 + ⋯ + pk−1) − npi(1 − pi)
= npi(1 − pk − 1) = −npipk .

Var(xk) = Var(n − x1 − ⋯ − xk−1) = Var(x1 + ⋯ + xk−1)

=
k−1
∑
i=1

Var(xi) + 2
k−1
∑
i<j=1

Cov(xi ,xj)

= np1(1 − p1) + ⋯ + npk−1(1 − pk−1) − 2
k−1
∑
i<j=1

npipj .
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But

−2
k−1
∑
i<j=1

npipj = −np1(1 − p1 − p2) − ⋯ − npk−1(1 − pk−1 − pk)

= −n(1 − pk) + n(p21 + ⋯ + p2k−1) + npk(1 − pk).

Hence

Var(xk) = n(p1 + ⋯ + pk−1) − n(p21 + ⋯ + p2k−1) − n(1 − pk)
+ n(p21 + ⋯ + p2k−1) + npk(1 − pk)

= npk(1 − pk).

Hence

Var(xi) = npi(1 − pi), i = 1, 2,… ,k

and

Cov(xi ,xj) = −npipj , i ≠ j = 1, 2,… ,k. (ii)

The k × k matrix of variances and covariances is given by

V1 =
[[[[

[

np1(1 − p1) −np1p2 … −np1pk
−np2p1 np2(1 − p2) … −np2pk

⋮ ⋮ … ⋮
−npkp1 −npkp2 … npk(1 − pk)

]]]]

]

.

This V1 is a singular matrix with determinant of V1, denoted by |V1|, is zero or |V1| = 0.
The non-singular covariance matrix in the multinomial case is given by

V =
[[[[

[

np1(1 − p1) −np1p2 … −np1pk−1
−np2p1 np2(1 − p2) … −np2pk−1

⋮ ⋮ … ⋮
−npk−1p1 −npk−1p2 … npk−1(1 − pk−1)

]]]]

]

.

The most important quantity associated with V and V1 is Pearson’s “goodness-of-fit”
statistic X2. The statistic, denoted by X2, is given by

X2 =
k
∑
i=1

(ni − npi)2

npi
. (iii)

This can be shown to be the square of a generalized distance between the observed
vector O and the expected vector E, where

O =
[[[[

[

n1
n2
⋮
nk−1

]]]]

]

, E =
[[[[

[

np1
np2
⋮

npk−1

]]]]

]

. (iv)



16.2 Questions and answers on model building | 539

The ordinary Euclidean distance between O and E is [(O− E)′(O− E)]
1
2 . A generalized

distance between O and E is available by scaling with the inverse of the square root
of the covariance matrix V . That is the Euclidean distance between V−

1
2O and V−

1
2 E.

That is,

[(V−
1
2O − V−

1
2 E)′(V−

1
2O − V−

1
2 E)]

1
2 = [(O − E)′V−1(O − E)]

1
2 . (v)

Hence the square of this generalized distance is (O − E)′V−1(O − E). This quantity
should be approximately a chi-square with k − 1 degrees of freedom according to the
central limit theorem, see the note below which explains why this is chi-square dis-
tributed. Note that we can write V as follows:

V = nD[I − JJ′D] = nD[D−1 − JJ′]D, D =
[[[[

[

p1 0 … 0
0 p2 … 0
⋮ ⋮ … ⋮
0 0 … pk−1

]]]]

]

, J =
[[[[

[

1
1
⋮
1

]]]]

]

. (vi)

It can be shown that

V−1 = n−1[D−1 + JJ′

pk
] (vii)

by inverting D−1 − JJ′ with the help of elementary transformations. Let (O− E)′ = (n1 −
np1,… ,nk−1 − npk−1). Then

(O − E)′V−1(O − E) = (O − E)′(D
−1

n
)(O − E) + (O − E)′( JJ′

npk
)(O − E)

where

(O − E)′(D
−1

n
)(O − E) =

k−1
∑
j=1

(nj − npj)2

npj

and

1
npk

(O − E)′JJ′(O − E) = (nk − npk)2

npk
.

Therefore, adding the above two terms we have

(O − E)′V−1(O − E) =
k
∑
j=1

(nj − npj)2

npj
= X2 (Pearson’s X2) → χ2k−1. (viii)

16.2 Questions and answers on model building

Question. Is regression the same as least square analysis?
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Answer. Definitely not. In a large number of books, regression is interpreted as least
square estimation and often start to define regression as least square estimation of
model building. Least square estimation is a procedure of model building, introduced
by Gauss. The basic principle there is to minimize the square of the Euclidean dis-
tance between the observed value and the value estimated by the model and then fit
the model in hand to the data at hand. If someone wishes to fit a second degree poly-
nomial y = a + bx + cx2, c ≠ 0 to paired observations (x1,y1), (x2,y2),… , (xn,yn), then
corresponding to xj, an observation on x, there is an observed value of y, denoted
by yj . Naturally, yj need not be equal to a + bxj + cx2j unless y = a + bx + cx2 is a math-
ematical relationship or the model selected is a perfect fit for all possible pairs of ob-
servations (xj ,yj). In reality, the selected model y = a + bx + cx2 is taken as a possible
behavior of the data in hand. Hence, naturally, there is an error which may be taken
as ej = yj − (a+bxj + cx2j ), the difference between the observed andmodeled value of y.

One question the students ask is: canwe take error as (a+bxj+cx2j )−yj = ej instead
of taking the other way around? The answer is “yes” because we are going to consider
only the distance and hence both will lead to the same answers at the end.

Here, the unknown quantities are a,b, c because an arbitrary second degree poly-
nomial is selected to fit the data in hand. The error sum of squares is then

n
∑
j=1

e2j =
n
∑
j=1

[yj − (a + bxj + cx2j )]
2.

This is the squared Euclidean distance between the observed yj and the modeled
a + bxj + cx2j . If a,b, c are estimated by minimizing the error sum of squares then the
method is the method of least squares or the sum of squares of the error is made a
minimum. Minimization can be done in many ways. If calculus is used, then consider
the equations:

𝜕
𝜕a

n
∑
j=1

e2j = 0 ⇒
n
∑
j=1

(yj − â − b̂xj − ĉx2j ) = 0 (i)

𝜕
𝜕b

m
∑
j=1

e2j = 0 ⇒
n
∑
j=1

(xjyj − âxj − b̂x2j − ĉx3j ) = 0 (ii)

𝜕
𝜕c

n
∑
j=1

e2j = 0 ⇒
m
∑
j=1

(x2j yj − âx2j − b̂x3j − ĉx4j ) = 0. (iii)

Note that (i), (ii), (iii) do not hold for all possible values of a,b, c but they hold only at
a point or points where (â, b̂, ĉ) satisfies all the equations (i), (ii), (iii). A solution of (i),
(ii), (iii) for (a,b, c) is denoted as (â, b̂, ĉ). Note that in (i), (ii), (iii) all xj ’s and yj ’s are
data or known numbers and the only unknown quantities are â, b̂, ĉ.

Question. Should we have used a,b, c in equations (i), (ii), (iii), usually that is done
in many books, rather than putting hat for a,b, c in these equations?



16.2 Questions and answers on model building | 541

Answer. If we write the equations (i), (ii), (iii) without hat, then it means that the
equations hold for all possible values of a,b, c, which is incorrect, and hence a proper
way of writing the equations is with the hat for the unknown quantities a,b, c to indi-
cate specific values for which the equations hold.

A solution of (i), (ii), (iii) is called a critical point and the equations (i), (ii), (iii) are
called normal equations.

Question. Why are they called normal equations, is there any normal distribution
involved?

Answer. As far as this author knows, there is no normality involved and someone
called the minimizing equations in least square procedure as normal equations and
from then on they are called normal equations. The points corresponding to a local
maximum or local minimum or saddle point is called a critical point when a calculus
procedure is used.

In a general situation where one has a model y = g(x1,… ,xr ,a1,… ,ak) to be fitted
to a given data where y and (x1,… ,xr) are going to be observed, and hence they will
be numbers eventually and the only parameters or the unknown quantities will be
a1,… ,ak . In our g, there is g(x,a,b, c) is a + bx + cx2 or y = a + bx + cx2. In the general
case, the normal equations are the following:

𝜕
𝜕aj

n
∑
j=1

e2j = 𝜕
𝜕aj

n
∑
j=1

[yj − g(x1,… ,xr ,a1,… ,ak)]
𝜕g
𝜕aj

= 0, j = 1,… ,k.

If theunknowns a1,… ,ak are such that g is a linear function in theunknowns a1,… ,ak
then the procedure is called linear least square procedure. Note that y, x1,… ,xr are
going to be observed and hence they will be numbers eventually, and hence if g is a
linear or non-linear function of x1,… ,xr it is still a linear least square problem as long
as g is linear in a1,… ,ak . In our model, the function g = a + bx + cx2 which is linear
in a,b, c but non-linear in x but the model is a linear model because it is linear in the
unknowns a,b, c. Students ask several questions in this connection.

Question. In least square analysis, usually we compute the critical points from the
normal equation and construct the model. Why are we not computing the second-
order derivatives and the matrix of second-order derivatives evaluated at a critical
point to check formaxima/minima and instead of doing this why dowe stop at critical
points and claim that we have minimized the sum of squares?

Answer. Since the parameters a1,… ,ak are arbitrary, we can set them arbitrarily
large. For example, in our example we can set a,b, c arbitrarily large and, therefore,
naturally, the maximum of ∑n

j=1 e
2
j is at +∞, and hence the critical point, usually

unique, will correspond to a minimum.
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Question. In least square and other model building situations, why are x1,… ,xr
called independent variables and y the dependent variable? What are they indepen-
dent of?

Answer. Independent is a little unfortunate term. What it means is that we as-
sign values to x1,…xr or at given values of x1,… ,xr we wish to estimate y. In this
sense, x1,… ,xr are called independent variables and y the dependent variable. In
y − 2x − 3 = 0, which one is independent variable and which is dependent variable
because we can write this equation as y = 2x + 3 or as x = 1

2 (y − 3). Independent and
dependent variables do not depend on how we write the equation. It depends upon
how are we going to use the equation. If we are going to evaluate y at given value of x,
then in this case x is an independent variable and y is the dependent variable or if we
are going to evaluate x at given y then in this case y, is the independent variable and
x is the dependent variable. In the general model, y = g(x1,… ,xr ,a1,… ,ak) we are
going to preassign values to x1,… ,xr and observe the corresponding value of y. Hence
x1,… ,xr will be the independent variables here and y is the only dependent variable.

Question. In almost all books onmodel building, a simple example is given claiming
how to convert a non-linearmodel into a linearmodel by taking themodel example as
y = abx , then take logarithms and write as Y = A+Bx where Y = lny, A = lnA, B = lnb.
Can we convert non-linear models to linear models by such a procedure?

Answer. Unfortunately, the above procedure is incorrect. For taking logarithms,
yj ’s must be positive since we are dealing with real numbers. Suppose that yj ’s are
positive, a,b are assumed to be positive. Still the procedure is incorrect.What happens
to the error? In this case, yj = abxj + ej, j = 1,… ,n. We cannot write the logarithm of
the sum on the right side and write as sum of the logarithms. Suppose that the error is
entering into the model as a product such as yj = abxjej then can we take logarithms
and proceed? The meaning of error is that it can be a positive or negative quantity. If
one can guarantee that in certain problems the error is always a positive number and
the error enters into the model as a product and the model is of the form abx , then
one can take logarithms. This is not a usual practical situation. The natural thing to
do in a model such as y = abx is to apply non-linear least square analysis.

Question. Then what is regression, if not least square analysis?

Answer. Regression is a prediction problem and it is not an estimation problem.
We are trying to predict one variable, say y, by using other variables such as x or
x1,… ,xr , using in the sense that what is the predicted value of y at preassigned values
of x1,… ,xr? What is the “best” predictor function of x, “best” in some sense? We can
use any arbitrary function ϕ(x), if there is only one variable x, to be used to predict,
as a predictor function. But the predicted value ϕ(x) for y and the true value of y may
be far apart. We would like to have ϕ(x) agreeing with y whatever be the value of y.
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This is not possible in a real-life situation unless there is a physical law behind it so
that there is a mathematical relationship between x and y. In the absence of a mathe-
matical relationship, the best thing to do is tominimize a distance between y andϕ(x)
and select a ϕ. Then this ϕ, whichminimizes a “distance” between y and ϕ(x), can be
called the “best predictor”. We can construct various measures of distance between y
and an arbitrary predictor functionϕ(x). A convenient squared distance is E|y−ϕ(x)|2

where E denotes the expected value.ϕ(x) at given x will be a constant, say a. Then the
question is what is a such that E|y − a|2 is a minimum? We already know the answer
to this. It is the expected value of y at that preassigned value of x or it is E(y|x) = the
conditional expectation of y at preassigned value of x. Hence this conditional expec-
tation is defined as the “best” predictor, “best” in theminimum mean square sense or
the mean value or expected value of the squared Euclidean distance is minimized.

Definition (Regression of y on x). It is defined as E(y|x) or the conditional expecta-
tion of y at preassigned value of x, if only one variable x is used, and it is E(y|x1,… ,xr)
if many variables x1,… ,xr are used for predicting y.

The reason for defining it like this is explained above, that it is the “best” predictor
of y “best” in the minimum mean square sense. Students usually ask the following
question:

Question. Regressmeans to go back. Arewe going back to something orwhy theword
regression is used for the best predictor?

Answer. By this process, we are not going back to anything. It is simply the best pre-
dictor, best in the minimum mean square sense. But originally the problem was to
study characteristics of offsprings and to say something about the parents or previous
generation. Thus the original problem was a problem of going back. Nowadays, we
are not using it for going back but using it to comewith the best predictor whatever be
the situation.

Question. Dowe need to know the joint distribution of x1,… ,xk in order to construct
the best predictor E(x1|x2,… ,xk)?

Answer. If the joint distribution is known and if the conditional expectation ex-
ists, then we can compute E(x1|x2,… ,xk) or if the conditional distribution of x1, given
x2,… ,xk , is known then alsowe can constructE(x1|x2,… ,xk)provided it exists. Hence,
we should know at least the conditional distribution, if not the joint distribution.

Example 16.2. From the joint density,

f (x,y) = 1
2√2π

e−
1
2 (y−1−2x−3x

2)2 , −∞ < y < ∞, 0 ≤ x ≤ 2

and zero elsewhere, compute the best predictor of y at given values of x.
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Solution 16.2. In order to get the marginal density of x, integrate out y. But
∫∞
−∞

1
√2π e
− 12 (y−μ)

2dy = 1, μ = 1 + 2x + 3x2. Hence the marginal density of x is f1(x) = 1
2 ,

0 ≤ x ≤ 2 and zero elsewhere. Dividing f (x,y) by this f1(x) we get the conditional
density of y, given x, as

g2(y|x) =
1

√2π
e−

1
2 (y−μ)

2
, μ = 1 + 2x + 3x2.

Hence from this conditional normal density, E(y|x) = 1 + 2x + 3x2 which is the best
predictor of y at given values of x in this case. Note that here it is a non-linear function
of x.

Question. It is said that linear regression uniquely determines a normal or Gaussian
density. In the above example, we get a non-linear function of x, namely 1 + 2x + 3x2

as the regression of y given x. Is there a contradiction here?

Answer. It is known that if y and x are jointly normally distributed then the regression
of y on x, and x on y, are linear and the linear functions are the following:

E(y|x) = μ2 + ρσ2
σ1

(x − μ1) (16.1)

where E(x) = μ1, E(y) = μ2, Var(x) = σ21 , Var(y) = σ22 and the correlation between x and
y is ρ, and

E(x|y) = μ1 +
ρσ1
σ2

(y − μ2). (16.2)

Also, linear regression, under some additional conditions characterize joint normal-
ity for x and y; see the books on characterizations or see, for example, [11]. In Exam-
ple 16.2, x and y are not jointly normally distributed. There, only the conditional den-
sity of y, given x, is normal with conditional expectation of y, given x, non-linear. We
can have the conditional density of y normalwith all sorts of conditional expected val-
ues, linear or non-linear. For computing E(y|x), we need only the conditional density
of y, given x, and the joint density is not necessary. Hence there is no contradiction
here.

Question. There is a theorem which says that E(y) = E[E(y|x)]. Is it true for all types
of variables x and y as long as there is a conditional distribution of y, given x, and a
marginal distribution of x, in the light of the answer to the previous question saying
that all sorts of E(y|x) can be there?

Answer. The theorem E(y) = E[E(y|x)] does not hold everywhere. In some examples,
the theoremwill hold and in others it need not hold. Consider the following example.
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Example 16.3. Evaluate E(y), if possible, from the following joint density:

f (x,y) = 1
x2

1
√2π

e−
1
2 (y−1−x)

2
, −∞ < y < ∞, 1 ≤ x < ∞

and zero elsewhere.

Solution 16.3. Integrating out y from the joint density we get the marginal density of
x here as

f1(x) =
{
{
{

1
x2 , 1 ≤ x < ∞

0, elsewhere.

Here, as well as in the previous examples in this section, we cannot integrate out x to
get an analytic expression for the density of y. But we can try to evaluate E(y) by using
the theorem

E(y) = E[E(y|x)]. (16.3)

Here, E(y|x) = 1 + x, and hence E[E(y|x)] = E(1 + x) = 1 + E(x). Note that

E(x) = ∫
∞

1
x 1
x2
dx = ∫

∞

1

1
x
dx = [lnx]∞1 = ∞

or does not exist. Hence E(y) cannot be computed by using the above theorem. That
theorem was valid only when all the expected values existed.

If the joint distribution or the conditional distribution is unknown, then the re-
gression of x1 on x2,… ,xk cannot be evaluated. In this case, if we have some idea
about the conditional expectation, such as it is a linear function of the conditioned
variables x2,… ,xk or some other specific form then we go for estimation of the regres-
sion function, where we use the method of least squares. Thus least square analysis
comes in for estimating the regression function when the conditional distribution is
not known. If the conditional expectation is suspected to be linear, that is,

E(x1|x2,… ,xk) = β1 + β2x2 + ⋯ + βkxk (i)

and if the conditional distribution of x1, given x1,… ,xk is unknown then we set up a
model of the type

x1j = a1 + a2x2j + ⋯ + akxkj + ej , j = 1,… ,n (ii)

and try to estimate a1,a2,… ,ak so that the regression function can be estimated by us-
ing the estimated values â1, â2,… , âk and substituting âj for βj in (i). The observation
matrix x1,x2,… ,xk is of the following form:

[[[[

[

x11 x21 … xk1
x12 x22 … xk2
⋮ ⋮ … ⋮
x1n x2n … xkn

]]]]

]
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Here, X = (xij). If the column averages are denoted by x̄i =
∑nj=1 xij

n , i = 1,… ,k. If a1 is
eliminated from the model by subtracting the averages, then we end up with the ma-
trix corresponding to X as

X̃ = X − X̄, X̄ =
[[[[

[

x̄1 x̄2 … x̄k
x̄1 x̄2 … x̄k
⋮ ⋮ … ⋮
x̄1 x̄2 … x̄k

]]]]

]

⇒ S = X̃′X̃ = (X − X̄)′(X − X̄)

where S = (sij), sij = ∑n
r=1(xir − x̄i)(xjr − x̄j). Then we may partition S as

S = [
s11 S12
S21 S22

] , s11 is 1 × 1 and S22 is (k − 1) × (k − 1).

Question. Why are sij ’s called “corrected” sum of products in some books?Was there
a mistake somewhere in the procedure?

Answer. The phrase “corrected” is used to indicate that deviations from the respec-
tive averages x̄i, i = 1,… ,k are taken. That is all. There is no mistake anywhere.

Question. Can we take S22 to be non-singular?

Answer. In a regression typemodel building situation, the xij ’s are preassignedquan-
tities for i = 2,… ,k and j = 1,… ,n. When we preassign vj = (x2j ,… ,xkj) for a specific j,
we are not going to preassign again a multiple of this vector or a linear function of
the points already selected because no additional information will be forthcoming.
Hence we may assume, without loss of generality, that S22 to be non-singular. If xij ’s
are coming from a design type model- then the xij ’s are determined by the design of
the experiment where usually X will be a less than full rankmatrix making S singular.

Then the sample multiple correlation, denoted by R1.2...k , is defined as

R21.2...k = S12S−122 S21
s11

, 1 − R21.2...k = |S|
|S22|s11

(a)

parallel to the corresponding population quantities.

Question. Why do we take the form in (a)? Is it because the regression may be linear
all the time?

Answer. If the regression is known to be linear, then we have proved in Chapter 14

that the population multiple correlation coefficient ρ1.2...k =
√Σ12Σ−122Σ21
√σ11

is the maximum
correlation in the class of linear predictors for x1, based on x2,… ,xk . If the regression is
known to be non-linear thenwe have a correspondingmeasure ofmultiple correlation
ratio and then that can be used. If nothing is known, whether the regression is linear
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or non-linear, then ρ1.2...k is a convenient quantity to calculate, and hence ρ1.2...k and
the corresponding sample value R1.2...k , given in (a), are used in practical situations.

Question. Is the sample multiple correlation coefficient a good measure to use to
check the “goodness” of a model, the procedure that is usually done in practice?

Answer. No. It is not an indicator of the ‘goodness” of the model in most practical
situations. In Section 14.6.2, it is seen that the multiple correlation coefficient keeps
on increasing if more and more variables are included, the variables themselves may
not have any relevance in estimating x1. If variables x1,x2,… ,xk are jointly normally
distributed, then one can checkwhether the samplemultiple correlation R21.2...k is “sig-
nificantly large” or not. In a practical situation, joint normality may not be there and
it is difficult to check for joint normality also. This author suggests to use s2 = the least
square minimum, to check for the “goodness” of the model. s2 is a squared distance
between the observed x1j and the estimated x1j, estimated by themodel. Hence the cri-
terion “smaller the distance better the model” can be used. At each stage compute s2

and if s2 increases or remains steady, then remove the new variable introduced. If s2

decreases, then proceed and stop the processwhen the decrease in s2 is insignificantly
small.

Question. Usually, the hypothesis H0 ∶ cj = 0 is tested by using a Student-t test to
delete or retain cj in the model. Is it a proper procedure?

Answer. A Student-t statistic arises from the normality assumption, that is, the as-
sumption that x1, at given x2,… ,xk , is conditionally normal or the conditional density
is a normal density. There are many characterization theorems available to character-
ize or uniquely determine a normal distribution. In the light of these, one can analyze
the practical situation at hand and decide whether a normality assumption is reason-
able. If reasonable, then a Student-t test can be used. But s2, the lest squareminimum,
avoids all such distributional problems.

If we are estimating x1 byusing x2 assuming a simple linearmodel, then themodel
will be of the form

x1j = c0 + c2x2j + ej . j = 1,… ,n

and the estimated linear function is of the following form:

x1 = x̄1 +
s12
s22

(x2 − x̄2) ⇒ x1 = x̄1 +
r√s11
√s22

(x2 − x̄2

where r represents the sample correlation coefficient.

Question. Suppose that we wish to test a hypothesis such as c2 = 0 or construct a
confidence interval for c2. Is it equivalent to testing the hypothesis ρ = 0 the corre-
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sponding population correlation coefficient, or constructing confidence interval for ρ
and then converting it for c2?

Answer. Unfortunately, the procedures are not equivalent. Decision making on the
coefficient c2 can be done in the conditional space at given values of x2 whereas in-
ference on ρ will require the joint distribution of x1 and x2, conditional distribution is
not sufficient. Hence the two procedures have two different premises and they are dif-
ferent. One can be done in the conditional space but the other needs the entire space
or joint space.

Question. In the model building situations usually we assume the errors ej ’s to be
normally distributed. Why assume normality? Are not the errors normally distributed
according to Gauss?

Answer. If errors satisfy some basic conditions such as (i) ej is contributed by in-
finitely many unknown factors, all independently contributing and such contribu-
tions are infinitesimally small; (ii) contribution of each such factor can be positive
or negative with probability 1

2 each; (iii) the total variance, Var(ej) is a finite quan-
tity σ2. Under these conditions, it can be mathematically derived that the error will
be normally distributed with expected value zero and variance σ2 or in such a situa-
tion ej ∼ N(0,σ2), j = 1,… ,n and independently distributed. Hence normality is a rea-
sonable assumption. But there are situations where the errors may not follow normal
distributions.

Question. If we knowbeforehand that y has a symmetric distribution so that E(y) = 0,
then should we take the model as yj = c1x1j + ⋯ + ckxkj + ej, j = 1,… ,n or including c0
also?

Answer. When we preassign x1 = 0,… ,xk = 0 if all observations on y are zeros, then
we can take the model with c0 = 0. If that does not happen, usually in a practical
situation this does not happen, then take themodel with c0 in and eliminate c0 by the
procedure described below and continue with the analysis. The error sum of squares
is ∑n

j=1 e
2
j . Then the equation

𝜕
𝜕c0

∑n
j=1 e

2
j = 0 gives

c0 = ȳ − c1 x̄1 − ⋯ − ck x̄k , x̄i =
∑n
j=1 xij
n

, i = 1,… ,k.

If we substitute for c0, then we have the model

yj − ȳ = c1(x1j − x̄1) + ⋯ + ck(xkj − x̄k) + ej , j = 1,… ,n.

Then the normal equations become the following:

(X − X̄)′(X − X̄)β̂ = (X − X̄)′(Y − Ȳ ) (16.4)
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where

Ȳ = [[

[

ȳ
⋮
ȳ

]]

]

, X̄ =
[[[[

[

x̄1 x̄2 … x̄k
x̄1 x̄2 … x̄k
⋮ ⋮ … ⋮
x̄1 x̄2 … x̄k

]]]]

]

, β̂ =
[[[[

[

ĉ1
ĉ2
⋮
ĉk

]]]]

]

, X − X̄ is n × k.

Then, under non-singularity for (X − X̄)′(X − X̄) we have the solution:

β̂ = [(X − X̄)′(X − X̄)]−1(X − X̄)′(Y − Ȳ ) (16.5)

and the least square minimum

s2 = (Y − Ȳ )′{I − (X − X̄)[(X − X̄)′(X − X̄)]−1(X − X̄)′}(Y − Ȳ )

with E(s2) = (n − k)σ2 and under normality s2
σ2 ∼ χ2n−k and an unbiased estimator for σ2

is s2
n−k or σ̂

2 = s2
n−k = unbiased estimator for σ2. Use this σ̂2 for constructing Student-t

for testing hypotheses on individual parameters c1,… , ck . In this case, the degrees of
freedom is n − k, not n − (k + 1).

16.3 Questions and answers on tests of hypotheses

Question. Why H0 is called the “null” hypothesis? Is there anything made empty or
zero by this hypothesis?

Answer. Nothing is made zero or empty. It is simply the hypothesis being tested. The
word “null” came due to historical reasons. Testing was originally developed for agri-
cultural experiments, where the experimenter liked tomake a claim that the expected
yield under a particular fertilizer was different from that of another fertilizer, that is,
a hypothesis of the type μ1 ≠ μ2 where μ1 and μ2 are the expected values. But open
statements cannot be tested, which will be seen later, and hence the hypothesis is
made as H0 ∶ μ1 = μ2 and tested against H1 ∶ μ1 ≠ μ2. Here, the negation is tested to say
something about the hypothesis of interest. Hence “no difference” brought in the term
“null”. Nowadays there is no such meaning. H0 simply means the hypothesis that is
being tested.

Question. Inmanybooks for testing ahypothesis suchasμ1 > μ2 it is suggested to take
H0 ∶ μ1 = μ2 and test it against μ1 > μ2. Can we take alternate as we please or according
to convenience?

Answer. No. The procedure is incorrect unless it is guaranteed that either μ1 = μ2
or μ1 > μ2 and nothing else is possible, which is not a practical situation. When
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H0 ∶ μ1 = μ2, then the natural alternate is H1 ∶ μ1 ≠ μ2. But if someone wishes to
make a claim μ1 > μ2, then take H0 ∶ μ1 ≤ μ2 and test it against the natural alter-
nate H1 ∶ μ1 > μ2. This is a valid procedure. The null and alternate hypotheses must
cover the entire parameter space. Hence one cannot select alternate according to
convenience. Some times, a wrong procedure can lead to the same test criterion ob-
tained through the correct procedure. This will be explained when we talk about test
criteria.

Question. Is there a practical situation where both H0 and H1 are simple?

Answer. Usually not, but there can be situations where there are only two points in
the parameter space. Consider a machine automatically filling 10 kg sugar bags. The
expected weight of each bag is 10 but there can be slight variations from bag to bag
because the machine is not counting sugar crystals, probably the machine is timing
it or automatic weighing process is there. Suppose that a machine is automatically
filling 20 kg sacks with coconuts, where the machine is not allowed to cut or chop any
coconut. Then the variation from bag to bagwill be substantial up to theweight of one
coconut. In both of these examples, at one case E(x) = 10 = expectedweight and in the
other case E(x) = 20. Suppose that the sugar filling machine went out of control for a
few minutes so that the setting went to 9.5 instead of the 10 before it was recognized
and corrected, or a dishonest wholesaler set the machine purposely at 9.5 for some
time. All bags are sent to the market. There are only two possibilities here, either the
expected value is 10 or the expected value is 9.5 and nothing else or the parameter
space has only two points 10 and 9.5, and hence a simpleH0 versus a simpleH1 is also
possible or makes sense here.

Question. Inmanybooks, it iswritten “rejectH0, acceptH0”. Is it non-rejection equiv-
alent to accepting the hypothesis?

Answer. You will see later that the whole testing procedure is geared to rejecting H0.
If H0 is not rejected, then nothing can be stated logically. Testing is carried out by us-
ing one data set. If H0 is not rejected in one data set, there is no guarantee that H0 is
not rejected in all data sets. We have several real-life examples. The drug thalidomide
was tested on mice, rabbits and several types of animals and the hypothesis that the
drugwas good or effective and safe was not rejected. The drugwas introduced into the
market and resulted in a large number of deformed babies and the drug was banned
eventually. If H0 is rejected in one data set, we are safe and justified in rejecting H0
because it is rejected at least in one data set. Also, these are not mathematical state-
ments. When we reject H0 we are not saying that H0 is not really true. It says only that
as per the testing procedure used and as per the data in hand,H0 is to be rejected. Log-
ical way of formulating the decision is “reject H0” and “not reject H0”. The question
of acceptance does not arise anywhere in the testing procedure.
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Question. In many books, it is stated “independent observations are taken”. Obser-
vations are numbers and how can we associate statistical independence to numbers?

Answer. A simple random sample or often called a sample, is a set of independently
and identically distributed random variables or (iid) variables, not numbers. Suppose
that {x1,… ,xn} be the sample of size n, where x1,… ,xn are iid variables and not num-
bers. If we take one observation on x1, one observation on x2, …, one observation on
xn then we say we have n independent observations. “‘Independent observations” is
used in this sense.

Question. Is the likelihood ratio test uniformlymost powerful test (UMPT) in the light
of the Neyman–Pearson lemma?

Answer. The Neyman–Pearson lemma is applicable in the case of simple H0 versus
simple H1, which can be stretched to simple H0 versus composite H1, as illustrated in
the worked example. But for composite H0 versus composite H1 there is no guarantee
that we get the UMPT. In most of the problems that we consider in this book, we have
UMPT.

Question. Is maximizing L, the likelihood function, the same asmaximizing lnL and
vice versa?

Answer. Yes. As long asϕ(L) is a one to one function of L, then 𝜕𝜕θL = 0⇒ 𝜕𝜕θϕ(L) = 0.

Question. Instead of differentiation with respect to σ2, as was done in the Gaussian
case, if we had differentiatedwith respect to σ dowe get the same estimate for σ2 as s2?

Answer. Yes. We would have got the same answer. The reason being
𝜕
𝜕σ

[⋅] = 0 ⇒
𝜕

𝜕σ2
[⋅]

𝜕
𝜕σ

σ2 = 2σ ×
𝜕

𝜕σ2
[⋅] = 0

or both will lead to the same solution. In fact, for any non-trivial function ψ(σ) for
which 𝜕ψ𝜕σ ≠ 0 the maximum likelihood estimate (MLE) of ψ(σ) is ψ(σ̂) where σ̂ is the
MLE of σ.

Question. In the maximum likelihood procedure, should we not have taken the
second-order derivatives and checked for the definiteness of the matrix of second-
order derivatives evaluated at the critical points to check for maxima/minima? Why
stop at finding the critical points and claiming that themaximumoccurs at the critical
point?

Answer. Yes. We should have taken the second-order derivatives and checked for the
definiteness of thematrix of second-order derivatives. Here (Gaussian case), it is easily
seen that the matrix of second-order derivatives is negative definite:
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𝜕
𝜕μ

lnL = n
σ2

(x̄ − μ)

𝜕2

𝜕μ2
lnL = − n

σ2
= − n

s2
at the critical point

𝜕
𝜕θ

𝜕
𝜕μ

lnL = − n
θ2

(x̄ − μ)|
θ̂,μ̂

= 0, θ = σ2

𝜕2

𝜕θ2
lnL = [ n

θ2
− 1
θ2

(ns2 + n(x̄ − μ)2)]|
θ̂,μ̂

= − n
2θ̂2

.

Therefore, the matrix of second-order derivatives, evaluated at θ̂, μ̂ is given by

[

[

− n
θ̂

0
0 − n

2θ̂2
]

]

which is negative definite. Hence the critical point corresponds to amaximum.We can
also note this by observing the behavior lnL for all possible values of μ and σ2. You
will see that lnL goes from −∞ back to −∞ through finite values, and hence the only
critical point must correspond to a maximum.

Question. If the null hypothesis is H0 ∶ μ < μ0, is there a MLE under the null hypoth-
esis?

Answer. No. There does not exist aMLE if the hypothesis is in an open interval. Noth-
ing can be maximized in an open interval. H0 must have a boundary point, otherwise
the MLE does not exist. This is a very important point. For a general θ, if the claim is
θ < θ0 then formulate the null hypothesis as θ ≥ θ0 and test it against θ < θ0. Such a
test is possible under the likelihood ratio test because the MLE under Ω (parameter
space) and under H0 are both available.

Question. If we had taken H0 ∶ μ = μ0 against H1 ∶ μ > μ0 would it not give the same
λ-criterion?

Answer. Yes. But the procedure is logically incorrect because the alternate must be
the natural alternate. If H0 is μ = μ0, then the natural alternate is H1 ∶ μ ≠ μ0. If the
possible parameter values are known to be μ0 ≥ μ < ∞, then the alternate for H0 ∶ μ =
μ0 is H1 ∶ μ > μ0. Otherwise, the procedure is logically incorrect.

Hint. Note that the rejection region is in the direction of the alternate. Here, the al-
ternate is H1 ∶ μ > μ0 and we reject for large values of z or for z ≥ zα. This, in fact, is a
general observation.

Question. Is it true that if x1,… ,xk are jointly normally distributed then any linear
function of x1,… ,xk is univariate normal?
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Answer. If the multivariate normal is taken as the usual multivariate function de-
noted by Np(μ, Σ), Σ > O or Σ is at least positive semi-definite, then it can be proved
that any linear function u of x1,… ,xk , containing at least one variable, is univariate
normal with the parameters E(u) and Var(u).

Question. Does non-rejection of H0 mean that the hypothesis H0 is accepted?

Answer. Non-rejection does notmean acceptance. Non-rejectionmay be due tomany
reasons. Our assumption of joint normality may be faulty and in another data set the
decision may be to reject. The procedure of constructing the test is geared to reject-
ing H0. We fixed the probability of rejection when H0 is true as α (we give that much
probability for our decision to be wrong) and we maximized the probability of rejec-
tion when H0 is not true. The maximum that we can say is that the data seems to be
consistent with the hypothesis.

Question. If we have the data in hand, then by looking at the data we can create a
hypothesis that can never be rejected or that can always be rejected. Then what is the
meaning of testing of hypotheses?

Answer. If we have the data in hand, then by looking at the data we can create a
hypothesis of our interest to reject or not to reject. This is not the idea of testing a
statistical hypothesis. We create a hypothesis first. Then we collect data in the form of
a random sample on the relevant variables. Then carry out the test by using one of the
testing procedures. This is the idea.

Question. Consider, for example, the hypothesis H0 ∶ μ ≤ μ0 in a N(μ,σ2) with σ2

known. Then we reject for large values of z = √n(x̄−μ0)σ . Since an n is present in the
numerator, can we not take n large enough so that we will not reject H0 at all. Is it not
true?

Answer. This is a question the critics of testing of statistical hypotheses raise. It is
not quite correct. By the weak law of large numbers, x̄ is going to the true value of μ. If
the null hypothesis is correct, then x̄ is going to μ0 when n→ ∞. Hence when n→ ∞,
z is not going to ∞ freely. When n is changing the density becomes more and more
peaked and still the probability for large z is kept as α. Hence, even though it appears
that z is going to infinity when n→ ∞ it is not so.

Question. In the likelihood function relating to Bernoulli population, why are we not
taking the binomial coefficient (nx )?

Answer. We are taking a simple random sample from a Bernoulli population. Then
the likelihood function is ∏n

j=1 p
xj (1 − p)1−xj and there is no binomial coefficient (nx ).

If we had taken one observation from a binomial distribution then there would have
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been this binomial coefficient because we have derived the probability function of x,
which has the binomial coefficient coming from the number of combinations of n
taking x at a time, where x = the binomial random variable is really the Bernoulli
sum.

Question. In all the problems before, we had taken the probability statement as ex-
actly equal to α. Why do we take it as ≤α, in the discrete case, why not ≥α?

Answer. In all the previous problems, our population was continuous, and hence we
were able to solve for the critical point with the right side exactly equal to α. When the
population is discrete, individual probability masses are at distinct points. When we
start adding up from one end the sum need not hit exactly α = 0.05, α = 0.01, etc. Up
to a certain point, the summay be less than α and when you add the mass at the next
point the total may exceed α. Then we stop at the point where the sum is less than α if
it did not hit α. Why not take bigger than α or the point when it just exceeds α? We are
prefixing α or allowing a certain tolerance and smaller the tolerance level to go wrong
is better. Hence we take less than or equal to α.

Question. In using lack-of-fit or goodness-of-fit tests, if we had created a claim by
looking at the data then we could have not rejected the hypothesis. Why not modify
the claim?

Answer. In any testing procedure, the hypothesis or the claim has to come first, then
we take the data and check the claim against the data and not the other way around.
If the claim is made by looking at the data, then we can always make the claim either
consistent with the data (not to reject H0) or reject H0. Then the purpose of testing
hypothesis will be defeated.

Question. Does it mean that no other Poisson model is a better fit to the data [testing
goodness-of-fit of a Poisson model]?

Answer. No. We only fitted one Poisson model with λ = 2.4. We did not exhaust all
possible parameter values. We got 2.4 as the MLE, which as an estimator has many
interesting properties. That is all.

Question. Even though MLE has many interesting properties, can we find a better
fitting Poisson model to this data?

Answer. Usually, we will be able to find a better fitting model from the same family.
In the present case, the answer is “yes”. Take λ = 2.5. Then the X2 value can be seen to
be 2.36 < 4.04 < 9.49 which shows that the Poisson models with λ = 2.4 and λ = 2.5 are
good fits to the data. Further, since X2 is a measure of generalized distance between
the observed and expected frequencies, smaller X2 value is better the model. Hence
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the Poisson model with λ = 2.5 is a better Poisson model to the data than the one with
λ = 2.4 given by the MLE. A Poissonmodel with λ = 2.3 can also be seen to be a good fit
(H0 is not rejected), not better than the cases for λ = 2.4 and 2.5.

Question. From the above conclusions, how good is this “goodness-of-fit” test?

Answer. In “goodness-of-fit tests”, the testing procedure defeats the purpose. As per
the testing procedure in hypotheses testing, if H0 is rejected then it is a valid con-
clusion and if H0 is not rejected the procedure does not help to say anything further
or the procedure does not allow you to “accept” H0. The whole purpose of going for
“goodness-of-fit” test is to claim that the model is a good fit to the data. Hence the sta-
tistical aspect is controversial and better to forget about the statistical part. Instead
of relying on the chi-square critical point, one can treat Pearson’s X2 as the square of
a distance between the observed and expected frequencies. Hence use the criterion:
“smaller the distance better the model”. By this process, if we want to fit a Poisson
model to the above data and if the three models with λ = 2.3, λ = 2.4, λ = 2.5 are com-
pared thenwewill select themodelwith λ = 2.5 because the distance there is the small-
est among the three. One should call this class of tests “lack-of-fit” tests, that is what
is exactly measured by the statistical procedure.

Question. Can we come upwith any other discrete distribution, other than a Poisson
model to fit this data?

Answer. Yes. We can come up with many other discrete models which will fit this
data. For example, consider a multinomial model where the hypothesized probabili-
ties are

p1 = 0.1, p2 = 0.2, p3 = 0.25, p4 = 0.2, p5 = 0.15, p6 = 0.1

[the observed proportions]. The distance between the observed and expected frequen-
cies is exactly zero. Hence there cannot be a bettermodel than this to fit this data. Con-
sider new multinomial models with slight changes in the above probabilities so that
the X2 value in each case will not reject H0. There can be infinitely many such mod-
els which will all fit the data, even with X2 value smaller than 2.36 the best among
the three Poisson models that we have considered. Thus, many better fitting models
can be constructed belonging to other families of distributions or may be to the same
family.

When Pearson’s X2 test or any other so-called “goodness-of-fit” test is used, the
decision of non-rejection cannot be given toomuch importance. If onemodel is found
to be a good fit, under some criterion, we may be able to find several other models
which are better fits or as good as the selected model, under the same criterion.

Question. Dowe have to compute the full X2 value [Pearson’s X2] tomake a decision?
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Answer. As illustrated in the example in this book, it is not necessary to compute the
fullX2 value.Weneed to check onlywhether the observedX2 exceeds the critical point
or not. This may be possible by computing from a few cells.

Question. Can we use this procedure whatever be the number of cells in our classifi-
cation?

Answer. No. In order to have a good chi-square approximation for Pearson’sX2 statis-
tic, the following is a rule of thumb. If there is no estimation involved, then the number
of cells k ≥ 5 and the expected frequencies in each cell, under H0, must be ≥5. If es-
timation of parameters is involved in obtaining the estimated expected frequencies
and if the resulting degrees of freedom is ν, then ν − 1 ≥ 5 and each of the estimated
expected frequency is ≥5. This is a rule of thumb. If the number of cells is only 2, then
binomial situation arises. Here, the total frequency n ≥ 20 for a reasonable approxima-
tion if the true probability is not close to zero or 1. Similarly, for k = 3,4 one can find
separate conditions for a good chi-square approximation.

Question. Rejection of H0 of no association means what [two-way contingency ta-
ble]?

Answer. In a testing procedure, rejection is a logical conclusion. IfH0 is not rejected,
then no valid conclusion can be made. Our decision is based on one data set. In an-
other data set, perhaps the decision may be different unless the original data set is a
representative of the whole population in every respect. This type of representation
is not possible in practice. Hence the maximum that we can say is that the data seem
to be consistent with the hypothesis when H0 is not rejected. Here, our situation is
different. The hypothesis of no association is rejected. Does it not mean that there is
possibility of association between the characteristics of classification? Since rejection
is a valid conclusion, we must admit that this data set suggests that there is possibil-
ity of some sort of association between the characteristics of classification or there is
possibility of association between weights and intelligence according to this data set
and according to this testing procedure.

Question. If the observations are 2,5,6, how many populations are possible from
where these observations came?

Answer. There canbe infinitelymanypopulations or all populationswhere the range,
with non-zero probabilities, cover these observations.

Question. Suppose that we computed Dn [Kolmogorov–Smirnov statistic for good-
ness-of-fit] for one sample with n = 10 and got the number 2.3. How many different
populations are possible where an observed sample of size 10 gave the Dn measure
as 2.3? How logical is the statistical procedure in this situation?
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Answer. Infinitely many populations are possible. The logical basis is very shaky. If
H0 is rejected, it is well and good. If H0 is not rejected and if we wish to say anything
about the selected model, then the statistical procedure cannot logically support the
move.What one can say is to computeDn or any suchdistancemeasure anduse the cri-
terion “smaller the distance better the fit” and then say that the selected model seems
to be a good fit if the distance is smaller than a preassigned number, remembering that
there could be several other models which may also be good fits to the same data.

Question. Are not the procedure of constructing confidence intervals the same as
testing of hypotheses; one seems to be a complement of the other?

Answer. Some people mix up the two procedures and give credence to the statement
of “acceptingH0” saying that confidence intervals and “acceptance regions” coincide
inmany cases. The two procedures are different and the premises are different also. In
some populations, such as the normal population the test statistics and pivotal quan-
tities are similar and this aspect may give rise to this doubt. Take the binomial and
Poisson parameters. Constructing confidence intervals is fully different from testing a
hypothesis there. Pivotal quantitiesmaynot be there for constructing confidence inter-
vals but under a null hypothesis the populationsmay be fully known. Testing is based
on somemotivating principle such as the likelihood ratio test, maximizing power, etc.
whereas for constructing confidence intervals one may select a pivotal quantity arbi-
trarily, the same pivotal quantity as well as different pivotal quantities giving different
confidence intervals for the same parameter with the same confidence coefficient. The
procedure of constructing confidence intervals and testing of hypotheses should not
be mixed up; these two have different premises.





Tables of percentage points
Table 1: Binomial coefficients

Entry: (nx) = ( nn−x) =
n!

x!(n−x)!
n x = 0 1 2 3 4 5 6 7 8

5 1 5 10
6 1 6 15 20
7 1 7 21 35
8 1 8 28 56 70
9 1 9 36 84 126

10 1 10 45 120 210 252
11 1 11 55 165 330 462
12 1 12 66 220 495 792 924
13 1 13 78 286 715 1287 1716
14 1 14 91 364 1001 2002 3003 3432
15 1 15 105 455 1365 3003 5005 6435
16 1 16 120 560 1820 4368 8008 11440 12870
17 1 17 136 680 2380 6188 12376 19448 24310
18 1 18 153 816 3060 8568 18564 31824 43758
19 1 19 171 969 3876 11628 27132 50388 75582
20 1 20 190 1140 4845 15504 38760 77520 125970
21 1 21 210 1330 5985 20349 54264 116280 203499
22 1 22 231 1540 7315 26334 74613 170544 319770
23 1 23 253 1771 8855 33649 100947 245157 490314
24 1 24 276 2024 10626 42504 134596 346104 735471
25 1 25 300 2300 12650 53130 177100 480700 1081575
26 1 26 325 2600 14950 65780 230230 657800 1562275
27 1 27 351 2925 17550 80730 296010 888030 2220075
28 1 28 378 3276 20475 98280 376740 1184040 3108105
29 1 29 406 3654 23751 118755 475020 1560780 4292145
30 1 30 435 4060 27405 142506 593775 2035800 5852925

n x = 9 10 11 12 13 14 15

18 48620
19 92378
20 167960 184756
21 293930 352716
22 497420 646646 705432
23 817190 1144066 1352078
24 1307504 1961256 2496144 2704156
25 2042975 3268760 4457400 5200300
26 3124550 5311735 7726160 9657700 10400600
27 4686825 8436285 13037895 17383860 20058300
28 6906900 3123110 21474180 30421755 37442160 40116600
29 10015005 20030010 34597290 51895935 67863915 77558760
30 14307150 30045015 54627300 86493225 119759850 145422675 155117520

OpenAccess.©2018ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562545-017
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Table 2: Cumulative binomial probabilities

Entry:∑xr=0 (
n
r)pr (1 − p)n−r =∑

n
r=n−x (

n
r)(1 − p)rpn−r

n x p = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

1 0 0.9500 0.9000 0.8500 0.8000 0.7500 0.7000 0.6500 0.6000 0.5500 0.5000
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.4225 0.3600 0.3025 0.2500
1 0.9975 0.9900 0.9775 0.9600 0.9375 0.9100 0.8775 0.8400 0.7975 0.7500
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 0.2746 0.2160 0.1664 0.1250
1 0.9927 0.9720 0.9392 0.8960 0.8437 0.7840 0.7182 0.6480 0.5747 0.5000
2 0.9999 0.9990 0.9966 0.9920 0.9844 0.9730 0.9571 0.9390 0.9089 0.8750
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0 0.8145 0.6561 0.5220 0.4096 0.3164 0.2401 0.1785 0.1296 0.0915 0.0625
1 0.9860 0.9477 0.8905 0.8912 0.7383 0.6517 0.5630 0.4752 0.3910 0.3125
2 0.9995 0.9963 0.9880 0.9728 0.9492 0.9163 0.8735 0.8208 0.7585 0.6875
3 1.0000 0.9999 0.9995 0.9984 0.9961 0.9919 0.9850 0.9744 0.9590 0.9375
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.1160 0.0778 0.0503 0.0313
1 0.9774 0.9185 0.8352 0.7373 0.6328 0.5282 0.4284 0.3370 0.2562 0.1875
2 0.9988 0.9914 0.9734 0.9421 0.8905 0.8369 0.7648 0.6826 0.5931 0.5000
3 1.0000 0.9995 0.9978 0.9933 0.9844 0.9692 0.9460 0.9130 0.8688 0.8125
4 1.0000 1.0000 0.9999 0.9997 0.9990 0.9976 0.9947 0.9898 0.9815 0.9688
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

6 0 0.7351 0.5314 0.3771 0.2621 0.1780 0.1176 0.0754 0.0467 0.0277 0.0156
1 0.9672 0.8857 0.7765 0.6554 0.5339 0.4202 0.3191 0.2333 0.1636 0.1094
2 0.9978 0.9841 0.9527 0.9011 0.8306 0.7443 0.6471 0.5443 0.4415 0.3438
3 0.9999 0.9987 0.9941 0.9830 0.9624 0.9295 0.8826 0.8208 0.7447 0.6562
4 1.0000 0.9999 0.9996 0.9984 0.9954 0.9891 0.9777 0.9590 0.9308 0.8906
5 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9982 0.9959 0.9917 0.9844
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 0 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0490 0.0280 0.0152 0.0078
1 0.9556 0.8503 0.7166 0.5767 0.4449 0.3294 0.2338 0.1586 0.1024 0.0625
2 0.9962 0.9743 0.9262 0.8520 0.7564 0.6471 0.5323 0.4199 0.3164 0.2266
3 0.9998 0.9973 0.9879 0.9667 0.9294 0.8740 0.8002 0.7102 0.6083 0.5000
4 1.0000 0.9998 0.9988 0.9953 0.9871 0.9712 0.9444 0.9037 0.8471 0.7734
5 1.0000 1.0000 0.9999 0.9996 0.9987 0.9962 0.9910 0.9812 0.9643 0.9375
6 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9994 0.9984 0.9963 0.9922
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8 0 0.6634 0.4305 0.2725 0.1678 0.1001 0.0576 0.0319 0.0168 0.0084 0.0039
1 0.9428 0.8131 0.6572 0.5033 0.3671 0.2553 0.1691 0.1064 0.0632 0.0352
2 0.9942 0.9619 0.8948 0.7969 0.6786 0.5518 0.4278 0.3154 0.2201 0.1445
3 0.9996 0.9950 0.9786 0.9437 0.8862 0.8059 0.7064 0.5941 0.4770 0.3633
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Table 2: (continued)

n x p = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

4 1.0000 0.9996 0.9971 0.9896 0.9727 0.9420 0.8939 0.8263 0.7396 0.6367
5 1.0000 1.0000 0.9998 0.9988 0.9958 0.9887 0.9747 0.9502 0.9115 0.8555
6 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9964 0.9915 0.9819 0.9648
7 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9983 0.9961
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 0 0.6302 0.3874 0.2316 0.1342 0.0751 0.0404 0.0207 0.0101 0.0046 0.0020
1 0.9288 0.7748 0.5995 0.4362 0.3003 0.1960 0.1211 0.0705 0.0385 0.0195
2 0.9916 0.9470 0.8591 0.7382 0.6007 0.4628 0.3373 0.2318 0.1495 0.0898
3 0.9994 0.9917 0.9661 0.9144 0.8343 0.7297 0.6089 0.4826 0.3614 0.2539
4 1.0000 0.9991 0.9944 0.9804 0.9511 0.9012 0.8283 0.7334 0.6214 0.5000
5 1.0000 0.9999 0.9994 0.9969 0.9900 0.9747 0.9464 0.9006 0.8342 0.7461
6 1.0000 1.0000 1.0000 0.9997 0.9987 0.9957 0.9888 0.9750 0.9502 0.9102
7 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9986 0.9962 0.9909 0.9805
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9992 0.9980
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0 0.5987 0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010
1 0.9130 0.7361 0.5443 0.3758 0.2440 0.1493 0.0860 0.0464 0.0233 0.0107
2 0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.0996 0.0547
3 0.9990 0.9872 0.9500 0.8791 0.7759 0.6496 0.5138 0.3823 0.2660 0.1710
4 0.9999 0.9984 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.3770
5 1.0000 0.9999 0.9986 0.9936 0.9803 0.9527 0.9051 0.8338 0.7384 0.6230
6 1.0000 1.0000 0.9999 0.9991 0.9965 0.9894 0.9740 0.9452 0.8980 0.8281
7 1.0000 1.0000 1.0000 0.9999 0.9996 0.9984 0.9952 0.9877 0.9726 0.9453
8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 0.9955 0.9803
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 0 0.5688 0.3138 0.1673 0.0859 0.0859 0.0422 0.0198 0.0088 0.0036 0.0005
1 0.8981 0.6974 0.4922 0.3221 0.1971 0.1130 0.0606 0.0302 0.0139 0.0059
2 0.9848 0.9104 0.7788 0.6174 0.4552 0.3127 0.2001 0.1189 0.0652 0.0327
3 0.9984 0.9815 0.9306 0.8389 0.7133 0.5696 0.4256 0.2963 0.1911 0.1133
4 0.9999 0.9972 0.9841 0.9496 0.8854 0.7897 0.6683 0.5328 0.3971 0.2744
5 1.0000 0.9997 0.9973 0.9883 0.9657 0.9218 0.8513 0.7535 0.6331 0.5000
6 1.0000 1.0000 0.9997 0.9980 0.9924 0.9784 0.9499 0.9006 0.8262 0.7256
7 1.0000 1.0000 1.0000 0.9998 0.9988 0.9957 0.9878 0.9707 0.9390 0.8867
8 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980 0.9941 0.9852 0.9673
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9993 0.9978 0.9941

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9995
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

12 0 0.5404 0.2824 0.1422 0.0687 0.0317 0.0138 0.0057 0.0022 0.0008 0.0002
1 0.8816 0.6590 0.4435 0.2749 0.1584 0.0850 0.0424 0.0196 0.0083 0.0032
2 0.9804 0.8891 0.7358 0.5583 0.3907 0.2528 0.1513 0.0834 0.0421 0.0193
3 0.9978 0.9744 0.9078 0.7946 0.6488 0.4925 0.3467 0.2253 0.1345 0.0730
4 0.9998 0.9957 0.9761 0.9274 0.8424 0.7237 0.5833 0.4382 0.3044 0.1938
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Table 2: (continued)

n x p = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

5 1.0000 0.9995 0.9954 0.9806 0.9456 0.8822 0.7873 0.6652 0.5269 0.3872
6 1.0000 0.9999 0.9993 0.9961 0.9857 0.9614 0.9154 0.8418 0.7393 0.6128
7 1.0000 1.0000 0.9999 0.9994 0.9972 0.9905 0.9745 0.9427 0.8883 0.8062
8 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 0.9944 0.9847 0.9644 0.9270
9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9972 0.9921 0.9807

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9968
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

13 0 0.5133 0.2543 0.1209 0.0550 0.0238 0.0097 0.0037 0.0013 0.0004 0.0001
1 0.8646 0.6213 0.3983 0.2336 0.1267 0.0637 0.0296 0.0126 0.0049 0.0017
2 0.9755 0.8661 0.6920 0.5017 0.3326 0.2025 0.1132 0.0572 0.0269 0.0112
3 0.9969 0.9658 0.8820 0.7473 0.5843 0.4206 0.2783 0.1686 0.0929 0.0461
4 0.9997 0.9935 0.9658 0.9009 0.7940 0.6543 0.5005 0.3530 0.2279 0.1334
5 1.0000 0.9991 0.9925 0.9700 0.9198 0.8346 0.7159 0.5744 0.4268 0.2905
6 1.0000 0.9999 0.9987 0.9930 0.9757 0.9376 0.8705 0.7712 0.6437 0.5000
7 1.0000 1.0000 0.9998 0.9988 0.9944 0.9818 0.9538 0.9023 0.8212 0.7095
8 1.0000 1.0000 1.0000 0.9998 0.9990 0.9960 0.9874 0.9679 0.9302 0.8666
9 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9975 0.9922 0.9797 0.9539

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9987 0.9959 0.9888
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

14 0 0.4877 0.2288 0.1028 0.0440 0.0178 0.0068 0.0024 0.0008 0.0002 0.0001
1 0.8470 0.5846 0.3567 0.1979 0.1010 0.0475 0.0205 0.0081 0.0029 0.0009
2 0.9699 0.8416 0.6479 0.4481 0.2811 0.1608 0.0839 0.0398 0.0170 0.0065
3 0.9958 0.9559 0.8535 0.6982 0.5213 0.3552 0.2205 0.1243 0.0632 0.0287
4 0.9996 0.9908 0.9533 0.8702 0.7415 0.5842 0.4227 0.2793 0.1672 0.0898
5 1.0000 0.9985 0.9885 0.9561 0.8883 0.7805 0.6405 0.4859 0.3373 0.2120
6 1.0000 0.9998 0.9978 0.9884 0.9617 0.9064 0.8164 0.6925 0.5461 0.3953
7 1.0000 1.0000 0.9997 0.9976 0.9897 0.9685 0.9247 0.8499 0.7414 0.6047
8 1.0000 1.0000 1.0000 0.9996 0.9978 0.9917 0.9757 0.9417 0.8811 0.7880
9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9983 0.9940 0.9825 0.9574 0.9102

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9989 0.9961 0.9886 0.9713
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9978 0.9935
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9991
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 0 0.4633 0.2059 0.0874 0.0352 0.0134 0.0047 0.0016 0.0005 0.0001 0.0000
1 0.8290 0.5490 0.3186 0.1671 0.0802 0.0353 0.0142 0.0052 0.0017 0.0005
2 0.9638 0.8159 0.6042 0.3980 0.2361 0.1268 0.0617 0.0271 0.0107 0.0037
3 0.9945 0.9444 0.8227 0.6482 0.4613 0.2969 0.1727 0.0905 0.0424 0.0176
4 0.9994 0.9873 0.8358 0.6865 0.5155 0.3519 0.3519 0.2173 0.1204 0.0592
5 0.9999 0.9978 0.9832 0.9389 0.8516 0.7216 0.5643 0.4032 0.2608 0.1509
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Table 2: (continued)

n x p = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

6 1.0000 0.9997 0.9964 0.9819 0.9434 0.8689 0.7548 0.6098 0.4522 0.3036
7 1.0000 1.0000 0.9994 0.9958 0.9827 0.9500 0.8868 0.7869 0.6535 0.5000
8 1.0000 1.0000 0.9999 0.9992 0.9958 0.9948 0.9578 0.9050 0.8182 0.6964
9 1.0000 1.0000 1.0000 0.9999 0.9992 0.9963 0.9876 0.9662 0.9231 0.8491

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9972 0.9907 0.9745 0.9408
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9937 0.9824
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9963
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

16 0 0.4401 0.1853 0.0743 0.0281 0.0100 0.0033 0.0010 0.0003 0.0001 0.0000
1 0.8108 0.5147 0.2839 0.1407 0.0635 0.0261 0.0098 0.0033 0.0010 0.0003
2 0.9571 0.7892 0.5614 0.3518 0.1971 0.0994 0.0451 0.0183 0.0066 0.0021
3 0.9930 0.9316 0.7899 0.5981 0.4050 0.2459 0.1339 0.0651 0.0281 0.0106
4 0.9991 0.9830 0.9209 0.7982 0.6302 0.4499 0.2892 0.1666 0.0853 0.0384
5 0.9999 0.9967 0.9765 0.9183 0.8103 0.6598 0.4900 0.3288 0.1976 0.1051
6 1.0000 0.9995 0.9944 0.9733 0.9204 0.8247 0.6881 0.5272 0.3660 0.2272
7 1.0000 0.9999 0.9989 0.9930 0.9729 0.9256 0.8406 0.7161 0.5629 0.4018
8 1.0000 1.0000 0.9998 0.9985 0.9925 0.9743 0.9329 0.8577 0.7441 0.5982
9 1.0000 1.0000 1.0000 0.9998 0.9984 0.9929 0.9771 0.9417 0.8750 0.7728

10 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9938 0.9809 0.9514 0.8949
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9851 0.9851 0.9616
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9965 0.9894
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 0 0.4181 0.1668 0.0631 0.0225 0.0075 0.0023 0.0007 0.0002 0.0000 0.0000
1 0.7922 0.4818 0.2525 0.1182 0.0501 0.0193 0.0067 0.0021 0.0006 0.0001
2 0.9497 0.7618 0.5198 0.3096 0.1637 0.0774 0.0327 0.0123 0.0041 0.0012
3 0.9912 0.9174 0.7556 0.5489 0.3530 0.2019 0.1028 0.0464 0.0184 0.0064
4 0.9988 0.9779 0.9013 0.7582 0.5739 0.3887 0.2348 0.1260 0.0596 0.0245
5 0.9999 0.9953 0.9681 0.8943 0.7653 0.5968 0.4197 0.2639 0.1471 0.0717
6 1.0000 0.9992 0.9917 0.9623 0.8929 0.7752 0.6188 0.4478 0.2902 0.1662
7 1.0000 0.9999 0.9983 0.9891 0.9598 0.8954 0.7872 0.4405 0.4743 0.3145
8 1.0000 1.0000 0.9997 0.9974 0.9876 0.9597 0.9006 0.8011 0.6626 0.5000
9 1.0000 1.0000 1.0000 0.9995 0.9969 0.9873 0.9617 0.9081 0.8166 0.6855

10 1.0000 1.0000 1.0000 0.9999 0.9994 0.9968 0.9880 0.9652 0.9174 0.8338
11 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9970 0.9894 0.9699 0.9283
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9975 0.9914 0.9755
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9936
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9988
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2: (continued)

n x p = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

18 0 0.3972 0.1501 0.0536 0.0180 0.0056 0.0016 0.0004 0.0001 0.0000 0.0000
1 0.7735 0.4503 0.2241 0.0991 0.0395 0.0142 0.0046 0.0013 0.0003 0.0001
2 0.9419 0.7338 0.4797 0.2713 0.1353 0.0600 0.0236 0.0082 0.0025 0.0007
3 0.9891 0.9018 0.7202 0.5010 0.3057 0.1646 0.0783 0.0328 0.0120 0.0038
4 0.9985 0.9718 0.8794 0.7164 0.5187 0.3327 0.1886 0.0942 0.0411 0.0154
5 0.9998 0.9936 0.9581 0.8671 0.7175 0.5344 0.3550 0.2088 0.1077 0.0481
6 1.0000 0.9988 0.9882 0.9487 0.8610 0.7217 0.5491 0.3743 0.2258 0.1189
7 1.0000 0.9998 0.9973 0.9837 0.9431 0.8593 0.7283 0.5634 0.3915 0.2403
8 1.0000 1.0000 0.9995 0.9957 0.9807 0.9404 0.8609 0.7368 0.5778 0.4073
9 1.0000 1.0000 0.9999 0.9991 0.9946 0.9790 0.9403 0.8653 0.7473 0.5927

10 1.0000 1.0000 1.0000 0.9998 0.9988 0.9939 0.9788 0.9424 0.8720 0.7597
11 1.0000 1.0000 1.0000 1.0000 0.9998 0.9986 0.9938 0.9797 0.9463 0.8811
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9956 0.9942 0.9817 0.9519
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9846
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9990 0.9962
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

19 0 0.3774 0.1351 0.0456 0.0144 0.0042 0.0011 0.0003 0.0001 0.0000 0.0000
1 0.7547 0.4203 0.1985 0.0829 0.0310 0.0104 0.0031 0.0008 0.0002 0.0000
2 0.9335 0.7054 0.4413 0.2369 0.1113 0.0462 0.0170 0.0055 0.0015 0.0004
3 0.9868 0.8850 0.6841 0.4551 0.2631 0.1332 0.0591 0.0230 0.0077 0.0022
4 0.9980 0.9643 0.8556 0.6733 0.4654 0.2822 0.1500 0.0696 0.0280 0.0096
5 0.9998 0.9914 0.9463 0.8369 0.6678 0.4739 0.2968 0.1629 0.0777 0.0318
6 1.0000 0.9983 0.9837 0.9324 0.8251 0.6655 0.4812 0.3081 0.1727 0.0835
7 1.0000 0.9997 0.9959 0.9767 0.9225 0.8180 0.6656 0.4878 0.3169 0.1796
8 1.0000 1.0000 0.9992 0.9933 0.9713 0.9161 0.8145 0.6675 0.4940 0.3238
9 1.0000 1.0000 0.9999 0.9984 0.9911 0.9674 0.9125 0.8139 0.6710 0.5000

10 1.0000 1.0000 1.0000 0.9997 0.9977 0.9895 0.9653 0.9115 0.8159 0.6762
11 1.0000 1.0000 1.0000 1.0000 0.9995 0.9972 0.9886 0.9648 0.9129 0.8204
12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9969 0.9884 0.9658 0.9165
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9969 0.9891 0.9682
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9972 0.9904
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9978
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 0 0.3585 0.1216 0.0388 0.0115 0.0032 0.0008 0.0002 0.0000 0.0000 0.0000
1 0.7358 0.3917 0.1756 0.0692 0.0243 0.0076 0.0021 0.0005 0.0001 0.0000
2 0.9245 0.6769 0.4049 0.2061 0.0913 0.0355 0.0121 0.0036 0.0009 0.0002
3 0.9841 0.8670 0.6477 0.4114 0.2252 0.1071 0.0444 0.0160 0.0049 0.0013
4 0.9974 0.9568 0.8298 0.6296 0.4148 0.2375 0.1182 0.0510 0.0189 0.0059
5 0.9997 0.9887 0.9327 0.8042 0.6172 0.4164 0.2454 0.1256 0.0553 0.0207
6 1.0000 0.9976 0.9781 0.9133 0.7858 0.6080 0.4166 0.2500 0.1299 0.0577
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Table 2: (continued)

n x p = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

7 1.0000 0.9996 0.9941 0.9679 0.8982 0.7723 0.6010 0.4159 0.2520 0.1316
8 1.0000 0.9999 0.9987 0.9900 0.9591 0.8867 0.7624 0.5956 0.4143 0.2517
9 1.0000 1.0000 0.9998 0.9974 0.9861 0.9520 0.8782 0.7553 0.5914 0.4119

10 1.0000 1.0000 1.0000 0.9994 0.9961 0.9829 0.9468 0.8725 0.7507 0.5881
11 1.0000 1.0000 1.0000 0.9999 0.9991 0.9949 0.9804 0.9435 0.8692 0.7483
12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9940 0.9790 0.9420 0.8684
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9935 0.9786 0.9423
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9936 0.9793
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9985 0.9941
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3: Cumulative poisson probabilities

Entry:∑xr=0
λre−λ
r!

x λ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.3679
1 0.9953 0.9825 0.9631 0.9384 0.9098 0.8781 0.8442 0.8088 0.7725 0.7358
2 0.9998 0.9989 0.9964 0.9921 0.9856 0.9769 0.9659 0.9526 0.9371 0.9197
3 1.0000 0.9999 0.9997 0.9992 0.9982 0.9966 0.9942 0.9909 0.9865 0.9810
4 1.0000 1.0000 1.0000 0.9999 0.9998 0.9996 0.9992 0.9986 0.9977 0.9963
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9997 0.9994
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

x λ = 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 0.3329 0.3012 0.2725 0.2466 0.2231 0.2019 0.1827 0.1653 0.1496 0.1353
1 0.6990 0.6626 0.6268 0.5918 0.5578 0.5249 0.4932 0.4628 0.4337 0.4060
2 0.9004 0.8795 0.8571 0.8335 0.8088 0.7834 0.7572 0.7306 0.7037 0.6767
3 0.9743 0.9662 0.9569 0.9463 0.9344 0.9212 0.9068 0.8913 0.8747 0.8571
4 0.9946 0.9923 0.9893 0.9857 0.9814 0.9763 0.9704 0.9636 0.9559 0.9473
5 0.9990 0.9985 0.9978 0.9968 0.9955 0.9940 0.9920 0.9868 0.9868 0.9834
6 0.9999 0.9997 0.9996 0.9994 0.9991 0.9987 0.9981 0.9974 0.9966 0.9955
7 1.0000 1.0000 0.9999 0.9999 0.9998 0.9997 0.9996 0.9994 0.9992 0.9989
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998 0.9998
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 3: (continued)

x λ = 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 0.1225 0.1108 0.1003 0.0907 0.0821 0.0743 0.0672 0.0608 0.0550 0.0498
1 0.3796 0.3546 0.3309 0.3084 0.2873 0.2674 0.2487 0.2311 0.2146 0.1991
2 0.6496 0.6227 0.5960 0.5967 0.5438 0.5184 0.4396 0.4695 0.4460 0.4232
3 0.8386 0.8194 0.7993 0.7787 0.7576 0.7360 0.7141 0.6919 0.6696 0.6472
4 0.9379 0.9275 0.9162 0.9041 0.8912 0.8774 0.8629 0.8477 0.8318 0.8153
5 0.9796 0.9751 0.9700 0.9643 0.9580 0.9510 0.9433 0.9349 0.9258 0.9161
6 0.9941 0.9925 0.9906 0.9884 0.9858 0.9828 0.9794 0.9756 0.9713 0.9665
7 0.9985 0.9980 0.9974 0.9967 0.9958 0.9947 0.9934 0.9919 0.9901 0.9881
8 0.9997 0.9995 0.9994 0.9991 0.9989 0.9985 0.9981 0.9976 0.9969 0.9962
9 0.9999 0.9999 0.9999 0.9998 0.9997 0.9996 0.9995 0.9993 0.9991 0.9989

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9998 0.9998 0.9997
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

x λ = 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 0.0450 0.0408 0.0369 0.0334 0.0302 0.0273 0.0247 0.0224 0.0202 0.0183
1 0.1857 0.1712 0.1586 0.1468 0.1359 0.1257 0.1162 0.1074 0.0992 0.0916
2 0.4012 0.3799 0.3594 0.3397 0.3208 0.3027 0.2854 0.2689 0.2531 0.2381
3 0.6248 0.6025 0.5803 0.5584 0.5366 0.5152 0.4942 0.4735 0.4532 0.4335
4 0.7982 0.7806 0.7626 0.7442 0.7254 0.7064 0.6872 0.6678 0.6484 0.6288
5 0.9057 0.8946 0.8829 0.8705 0.8576 0.8441 0.8301 0.8156 0.8006 0.7851
6 0.9612 0.9554 0.9490 0.9421 0.9247 0.9267 0.9182 0.9091 0.8995 0.8893
7 0.9858 0.9832 0.9802 0.9769 0.9733 0.9692 0.9648 0.9599 0.9546 0.9489
8 0.9953 0.9943 0.9931 0.9917 0.9901 0.9883 0.9863 0.9840 0.9815 0.9786
9 0.9986 0.9982 0.9978 0.9973 0.9967 0.9960 0.9952 0.9942 0.9931 0.9919

10 0.9996 0.9995 0.9994 0.9992 0.9990 0.9987 0.9984 0.9981 0.9977 0.9972
11 0.9999 0.9999 0.9998 0.9998 0.9997 0.9996 0.9995 0.9994 0.9993 0.9991
12 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9997
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

x λ = 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0 0.0166 0.0150 0.0136 0.0123 0.0111 0.0101 0.0091 0.0082 0.0074 0.0067
1 0.0845 0.0780 0.0719 0.0663 0.0611 0.0563 0.0518 0.0477 0.0439 0.0404
2 0.2238 0.2102 0.1974 0.1851 0.1736 0.1626 0.1523 0.1425 0.1333 0.1247
3 0.4142 0.3954 0.3772 0.3594 0.3423 0.3257 0.3097 0.2942 0.2793 0.2650
4 0.6093 0.5898 0.5704 0.5512 0.5321 0.5132 0.4946 0.4763 0.4582 0.4405
5 0.7693 0.7531 0.7367 0.7190 0.7029 0.6858 0.6684 0.6510 0.6335 0.6160
6 0.8786 0.8675 0.8558 0.8436 0.8311 0.8180 0.8046 0.7908 0.7767 0.7622
7 0.9427 0.9361 0.9290 0.9214 0.9134 0.9049 0.8960 0.8867 0.8769 0.8066
8 0.9755 0.9721 0.9683 0.9642 0.9597 0.9549 0.9497 0.9442 0.9382 0.9319
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Table 3: (continued)

x λ = 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

9 0.9905 0.9889 0.9871 0.9851 0.9829 0.9805 0.9778 0.9749 0.9717 0.9682
10 0.9966 0.9959 0.9952 0.9943 0.9933 0.9922 0.9910 0.9896 0.9880 0.9863
11 0.9989 0.9986 0.9983 0.9980 0.9976 0.9971 0.9966 0.9960 0.9953 0.9945
12 0.9997 0.9996 0.9995 0.9993 0.9992 0.9990 0.9988 0.9986 0.9983 0.9980
13 0.9999 0.9999 0.9998 0.9998 0.9997 0.9997 0.9996 0.9995 0.9994 0.9993
14 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999

x λ = 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

0 0.0061 0.0055 0.0050 0.0045 0.0041 0.0037 0.0033 0.0030 0.0027 0.0025
1 0.0372 0.0342 0.0314 0.0266 0.0244 0.0244 0.0224 0.0206 0.0189 0.0174
2 0.1165 0.1088 0.1016 0.0948 0.0884 0.0824 0.0768 0.0715 0.0666 0.0620
3 0.2513 0.2381 0.2254 0.2133 0.0217 0.1906 0.1800 0.1700 0.1604 0.1512
4 0.4231 0.4061 0.3895 0.3733 0.3575 0.3422 0.3272 0.3127 0.2987 0.2851
5 0.5984 0.5809 0.5635 0.5461 0.5289 0.5119 0.4950 0.4783 0.4619 0.4457
6 0.7474 0.7324 0.7171 0.7017 0.6860 0.6703 0.6544 0.6384 0.6224 0.6063
7 0.8560 0.8449 0.8335 0.8217 0.8095 0.7970 0.7841 0.7710 0.7576 0.7440
8 0.9252 0.9181 0.9106 0.9027 0.8944 0.8857 0.8766 0.8672 0.8574 0.8472
9 0.9644 0.9603 0.9559 0.9512 0.9462 0.9409 0.9352 0.9292 0.9228 0.9161

10 0.9844 0.9823 0.9800 0.9775 0.9747 0.9718 0.9686 0.9651 0.9614 0.9574
11 0.9937 0.9927 0.9916 0.9904 0.9890 0.9875 0.9859 0.9841 0.9821 0.9799
12 0.9976 0.9972 0.9967 0.9962 0.9955 0.9949 0.9941 0.9932 0.9922 0.9912
13 0.9992 0.9990 0.9988 0.9986 0.9983 0.9980 0.9977 0.9973 0.9969 0.9964
14 0.9997 0.9997 0.9996 0.9995 0.9994 0.9993 0.9991 0.9990 0.9988 0.9986
15 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998 0.9997 0.9996 0.9996 0.9995
16 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

x λ = 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

0 0.0022 0.0020 0.0018 0.0017 0.0015 0.0014 0.0012 0.0011 0.0010 0.0009
1 0.0159 0.0146 0.0134 0.0123 0.0113 0.0103 0.0095 0.0087 0.0080 0.0073
2 0.0577 0.0536 0.0498 0.0463 0.0430 0.0400 0.0371 0.0344 0.0320 0.0296
3 0.1425 0.1342 0.1264 0.1189 0.1118 0.1052 0.0988 0.0928 0.0871 0.0818
4 0.2719 0.2592 0.2469 0.2351 0.2237 0.2127 0.2022 0.1920 0.1823 0.1730
5 0.4298 0.4141 0.3988 0.3837 0.3690 0.3547 0.3406 0.3270 0.3137 0.3007
6 0.5902 0.5742 0.5582 0.5423 0.5265 0.5108 0.4953 0.4799 0.4647 0.4497
7 0.7301 0.7160 0.7017 0.6873 0.6728 0.6581 0.6433 0.6285 0.6136 0.5987
8 0.8367 0.8259 0.8148 0.8033 0.7916 0.7796 0.7673 0.7548 0.7420 0.7291
9 0.9090 0.9016 0.8939 0.8858 0.8774 0.8686 0.8596 0.8502 0.8405 0.8305

10 0.9531 0.9486 0.9437 0.9386 0.9332 0.9274 0.9214 0.9151 0.9084 0.9015
11 0.9776 0.9750 0.9723 0.9693 0.9661 0.9627 0.9591 0.9552 0.9510 0.9467
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Table 3: (continued)

x λ = 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

12 0.9900 0.9887 0.9873 0.9857 0.9840 0.9821 0.9801 0.9779 0.9755 0.9730
13 0.9958 0.9952 0.9945 0.9937 0.9929 0.9920 0.9909 0.9898 0.9885 0.9872
14 0.9984 0.9981 0.9978 0.9974 0.9970 0.9966 0.9961 0.9956 0.9950 0.9943
15 0.9994 0.9993 0.9992 0.9990 0.9988 0.9986 0.9984 0.9982 0.9979 0.9976
16 0.9998 0.9997 0.9997 0.9996 0.9996 0.9995 0.9994 0.9993 0.9992 0.9990
17 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998 0.9997 0.9997 0.9996
18 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

x λ = 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

0 0.0008 0.0007 0.0007 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0003
1 0.0067 0.0061 0.0056 0.0051 0.0047 0.0043 0.0039 0.0036 0.0033 0.0030
2 0.0275 0.0255 0.0236 0.0219 0.0203 0.0188 0.0174 0.0161 0.0149 0.0138
3 0.0767 0.0719 0.0674 0.0632 0.0591 0.0554 0.0518 0.0485 0.0453 0.0424
4 0.1641 0.1555 0.1473 0.1395 0.1321 0.1249 0.1181 0.1117 0.1055 0.0996
5 0.2881 0.2759 0.2640 0.2526 0.2414 0.2307 0.2203 0.2103 0.2006 0.1912
6 0.4349 0.4204 0.4060 0.3920 0.3782 0.3646 0.3514 0.3384 0.3257 0.3134
7 0.5838 0.5689 0.5541 0.5393 0.5246 0.5100 0.4596 0.4812 0.4670 0.4530
8 0.7160 0.7027 0.6892 0.6757 0.6620 0.6482 0.6343 0.6204 0.6065 0.5925
9 0.8202 0.8096 0.7988 0.7877 0.7764 0.7649 0.7531 0.7411 0.7290 0.7166

10 0.8942 0.8867 0.8788 0.8707 0.8622 0.8535 0.8445 0.8352 0.8257 0.8159
11 0.9420 0.9371 0.9319 0.9265 0.9208 0.9148 0.9085 0.9020 0.8952 0.8881
12 0.9703 0.9673 0.9642 0.9609 0.9573 0.9536 0.9496 0.9454 0.9309 0.9362
13 0.9857 0.9841 0.9824 0.9805 0.9784 0.9762 0.9739 0.9714 0.9087 0.9658
14 0.9935 0.9927 0.9918 0.9908 0.9897 0.9886 0.9873 0.9859 0.9844 0.9827
15 0.9972 0.9969 0.9964 0.9959 0.9954 0.9948 0.9941 0.9934 0.9926 0.9918
16 0.9989 0.9987 0.9985 0.9983 0.9980 0.9978 0.9974 0.9971 0.9967 0.9963
17 0.9996 0.9995 0.9994 0.9993 0.9992 0.9991 0.9989 0.9988 0.9986 0.9984
18 0.9998 0.9998 0.9998 0.9997 0.9997 0.9996 0.9996 0.9995 0.9994 0.9993
19 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998 0.9997
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999
21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

x λ = 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

0 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001
1 0.0028 0.0025 0.0023 0.0021 0.0019 0.0018 0.0016 0.0015 0.0014 0.0012
2 0.0127 0.0118 0.0109 0.0100 0.0093 0.0086 0.0079 0.0073 0.0068 0.0062
3 0.0396 0.0370 0.0346 0.0323 0.0301 0.0281 0.0262 0.0244 0.0228 0.0212
4 0.0940 0.0887 0.0837 0.0789 0.0744 0.0701 0.0660 0.0621 0.0584 0.0550
5 0.1822 0.1736 0.1653 0.1573 0.1496 0.1422 0.1352 0.1284 0.1219 0.1157
6 0.3013 0.2896 0.2781 0.2670 0.2562 0.2457 0.2355 0.2256 0.2160 0.2068
7 0.4391 0.4254 0.4119 0.3987 0.3856 0.3728 0.3602 0.3478 0.3357 0.3239
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Table 3: (continued)

x λ = 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

8 0.5786 0.5647 0.5507 0.5369 0.5231 0.5094 0.4958 0.4823 0.4689 0.4557
9 0.7041 0.6915 0.6788 0.6659 0.6530 0.6400 0.6269 0.6137 0.6006 0.5874

10 0.8058 0.7955 0.7850 0.7743 0.7634 0.7522 0.7409 0.7294 0.7178 0.7060
11 0.8807 0.8731 0.8652 0.8571 0.8487 0.8400 0.8311 0.8220 0.8126 0.8030
12 0.9313 0.9261 0.9207 0.9150 0.9091 0.9029 0.8965 0.8898 0.8829 0.8758
13 0.9628 0.9595 0.9561 0.9524 0.9486 0.9445 0.9403 0.9358 0.9311 0.9261
14 0.9810 0.9791 0.9771 0.9749 0.9726 0.9701 0.9675 0.9647 0.9617 0.9585
15 0.9908 0.9898 0.9887 0.9875 0.9862 0.9848 0.9832 0.9816 0.9798 0.9780
16 0.9958 0.9953 0.9947 0.9941 0.9934 0.9926 0.9918 0.9909 0.9899 0.9889
17 0.9982 0.9979 0.9977 0.9973 0.9970 0.9966 0.9962 0.9957 0.9952 0.9947
18 0.9992 0.9991 0.9990 0.9989 0.9987 0.9985 0.9983 0.9981 0.9978 0.9976
19 0.9997 0.9997 0.9996 0.9995 0.9995 0.9994 0.9993 0.9992 0.9991 0.9989
20 0.9999 0.9999 0.9998 0.9998 0.9998 0.9998 0.9997 0.9997 0.9996 0.9996
21 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998
22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999

x λ = 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0

0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001 0.0000
1 0.0011 0.0010 0.0009 0.0009 0.0008 0.0007 0.0007 0.0006 0.0005 0.0005
2 0.0058 0.0053 0.0049 0.0045 0.0042 0.0038 0.0035 0.0033 0.0030 0.0028
3 0.0198 0.0184 0.0172 0.0160 0.0149 0.0138 0.0129 0.0120 0.0111 0.0103
4 0.0517 0.0486 0.0456 0.0429 0.0403 0.0378 0.0355 0.0333 0.0312 0.0293
5 0.1098 0.1041 0.0986 0.0935 0.0885 0.0838 0.0793 0.0750 0.0710 0.0671
6 0.1978 0.1892 0.1808 0.1727 0.1649 0.1574 0.1502 0.1433 0.1366 0.1301
7 0.3123 0.3010 0.2900 0.2792 0.2687 0.2584 0.2485 0.2388 0.2294 0.2202
8 0.4126 0.4296 0.4168 0.4042 0.3918 0.3798 0.3676 0.3558 0.3442 0.3328
9 0.5742 0.5611 0.5479 0.5349 0.5218 0.5089 0.4960 0.4832 0.4705 0.4579

10 0.6941 0.6820 0.6699 0.6576 0.6453 0.6329 0.6205 0.6080 0.5955 0.5830
11 0.7932 0.8732 0.7730 0.7626 0.7520 0.7412 0.7303 0.7193 0.7081 0.6968
12 0.8684 0.8607 0.8529 0.8448 0.8364 0.8279 0.8191 0.8101 0.8009 0.7916
13 0.9210 0.9156 0.9100 0.9042 0.8981 0.8919 0.8853 0.8786 0.8716 0.8615
14 0.9552 0.9517 0.9480 0.9441 0.9400 0.9357 0.9312 0.9265 0.9216 0.9165
15 0.9760 0.9738 0.9715 0.9691 0.9665 0.9638 0.9609 0.9579 0.9546 0.9513
16 0.9878 0.9865 0.9852 0.9838 0.9823 0.9806 0.9789 0.9770 0.9751 0.9730
17 0.9941 0.9934 0.9927 0.9919 0.9911 0.9902 0.9892 0.9881 0.9870 0.9857
18 0.9973 0.9969 0.9966 0.9962 0.9957 0.9952 0.9947 0.9941 0.9935 0.9928
19 0.9988 0.9986 0.9985 0.9983 0.9980 0.9978 0.9975 0.9972 0.9969 0.9965
20 0.9995 0.9994 0.9993 0.9992 0.9991 0.9990 0.9989 0.9987 0.9986 0.9984
21 0.9998 0.9998 0.9997 0.9997 0.9996 0.9996 0.9995 0.9995 0.9994 0.9994
22 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998 0.9997 0.9997
23 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
24 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 3: (continued)

x λ = 11 12 13 14 15 16 17 18 19 20

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0012 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0049 0.0023 0.0011 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
4 0.0151 0.0076 0.0037 0.0018 0.0009 0.0004 0.0002 0.0001 0.0000 0.0000
5 0.0375 0.0203 0.0107 0.0055 0.0028 0.0014 0.0007 0.0003 0.0002 0.0001
6 0.0786 0.0458 0.0259 0.0142 0.0076 0.0040 0.0021 0.0010 0.0005 0.0003
7 0.1432 0.0895 0.0540 0.0316 0.0180 0.0100 0.0054 0.0029 0.0015 0.0008
8 0.2320 0.1550 0.0998 0.0621 0.0374 0.0220 0.0126 0.0071 0.0039 0.0021
9 0.3405 0.2424 0.1658 0.1094 0.0699 0.0433 0.0261 0.0154 0.0089 0.0050

10 0.4599 0.3472 0.2517 0.1757 0.1185 0.0774 0.0491 0.0304 0.0183 0.0108
11 0.5793 0.4616 0.3532 0.2600 0.1848 0.1270 0.0847 0.0549 0.0347 0.0214
12 0.6887 0.5760 0.4631 0.3585 0.2676 0.1931 0.1350 0.0917 0.0606 0.0390
13 0.7813 0.6815 0.5730 0.4644 0.3032 0.2745 0.2009 0.1426 0.0984 0.0661
14 0.8540 0.7720 0.6751 0.5704 0.4657 0.3675 0.2808 0.2081 0.1497 0.1049
15 0.9074 0.8444 0.7636 0.6694 0.5681 0.4667 0.3715 0.2867 0.2148 0.1565
16 0.9441 0.8987 0.8355 0.7559 0.6641 0.5660 0.4677 0.3751 0.2920 0.2211
17 0.9678 0.9370 0.8905 0.8272 0.7489 0.6593 0.5640 0.4686 0.3784 0.2970
18 0.9823 0.9626 0.9302 0.8826 0.8195 0.7423 0.6550 0.5622 0.4695 0.3814
19 0.9907 0.9787 0.9573 0.9325 0.8752 0.8122 0.7363 0.6509 0.5606 0.4703
20 0.9953 0.9884 0.9750 0.9521 0.9170 0.8682 0.8055 0.7307 0.6472 0.5591
21 0.9977 0.9939 0.9859 0.9712 0.9469 0.9108 0.8615 0.7991 0.7255 0.6437
22 0.9990 0.9970 0.9924 0.9833 0.9673 0.9418 0.9047 0.8551 0.7931 0.7206
23 0.9995 0.9985 0.9960 0.9907 0.9805 0.9633 0.9367 0.8989 0.8490 0.7875
24 0.9998 0.9993 0.9980 0.9950 0.9888 0.9777 0.9594 0.9317 0.8933 0.8432
25 0.9999 0.9997 0.9990 0.9974 0.9938 0.9869 0.9748 0.9554 0.9269 0.8878
26 1.0000 0.9999 0.9995 0.9987 0.9967 0.9925 0.9848 0.9718 0.9514 0.9221
27 1.0000 0.9999 0.9998 0.9994 0.9983 0.9959 0.9912 0.9827 0.9687 0.9475
28 1.0000 1.0000 0.9999 0.9997 0.9991 0.9978 0.9950 0.9897 0.9805 0.9657
29 1.0000 1.0000 1.0000 0.9999 0.9996 0.9989 0.9973 0.9941 0.9881 0.9782
30 1.0000 1.0000 1.0000 0.9999 0.9998 0.9994 0.9986 0.9967 0.9930 0.9865
31 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9993 0.9982 0.9960 0.9919
32 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9990 0.9978 0.9953
33 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9995 0.9988 0.9973
34 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9994 0.9985
35 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9992
36 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9996
37 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998
38 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
39 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 4: Normal probabilities

Entry: Probability = ∫x0
e−t2/2
√2π dt

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1627 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549
0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2882 0.2910 0.2939 0.2967 0.2996 0.3023 0.3051 0.3079 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3290 0.3315 0.3340 0.3365 0.3389

1.0 0.3414 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3888 0.3888 0.3906 0.3925 0.3943 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4146 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4278 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4453 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4610 0.4625 0.4633
1.8 0.4641 0.4648 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4762 0.4767

2.0 0.4773 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.2 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4914 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4933 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4986 0.4987 0.4987 0.4988 0.4988 0.4988 0.4989 0.4989 0.4990 0.4990
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Table 5: Student-t table, right tail

Entry: tν ,α where ∫
∞
tν ,α

f (tν )dtν = α
and f (tν ) is the density of a Student-t with ν degrees of freedom
ν α = 0.10 α = 0.05 α = 0.025 α = 0.01 α = 0.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
∞ 1.282 1.645 1.966 2.326 2.576
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Table 6: The chi-square table, right tail

Entry: χ2ν ,α where ∫
∞
χν ,α

f (χ2ν )dχ2ν = α
with f (χ2ν ) being the density of a chi-square with ν degrees of freedom
ν α = 0.995 0.99 0.975 0.95 0.10 0.05 0.025 0.01 0.005 0.001

1 0.0000 0.0002 0.0010 0.0039 0.2.71 3.84 5.02 6.63 7.88 10.83
2 0.0100 00201 0.0506 0.1030 0.4.61 5.99 7.38 9.21 10.60 13.81
3 0.0717 0.1148 0.2160 0.3520 6.25 7.81 9.35 11.34 12.84 16.27
4 0.2070 0.2970 0.4844 0.7110 7.78 9.49 11.14 13.26 14.86 18.47

5 0.412 0.5543 0.831 1.15 9.24 11.07 12.83 15.09 16.75 20.52
6 0.676 0.872 1.24 1.64 10.64 12.59 14.45 16.81 18.55 22.46
7 0.989 1.24 1.69 2.17 12.02 14.07 16.01 18.48 20.28 24.32
8 1.34 1.65 2.18 2.73 13.36 15.51 17.53 20.09 21.95 26.12
9 1.73 2.09 2.70 3.33 14.68 16.92 19.02 21.67 23.59 27.88

10 2.16 2.56 3.25 3.94 15.99 18.31 20.48 23.21 25.19 29.59
11 2.60 3.05 3.82 4.57 17.28 19.68 21.92 24.73 26.76 31.26
12 3.07 3.57 4.40 5.23 18.55 21.03 23.34 26.22 28.30 32.91
13 3.57 4.11 5.01 5.89 19.81 22.36 24.74 27.69 29.82 34.53
14 4.07 4.66 5.63 6.57 21.06 23.68 26.12 29.14 31.32 36.12

15 4.60 5.23 6.26 7.26 22.31 25.00 27.49 30.58 32.80 37.70
16 5.14 5.81 6.91 7.96 23.54 26.30 28.85 32.00 34.27 39.25
17 5.70 6.41 7.56 8.67 24.77 27.59 30.19 33.41 35.72 30.79
18 6.26 7.01 8.23 9.39 25.99 28.87 31.53 34.81 37.16 42.31
19 6.84 7.63 8.91 10.12 27.20 30.14 32.85 36.19 38.58 43.82

20 7.43 8.26 9.59 10.85 28.41 31.41 34.17 37.57 40.00 45.31
21 8.03 8.90 10.28 11.59 29.62 32.67 35.48 38.93 41.40 46.80
22 8.64 9.54 10.98 12.34 30.81 33.92 36.78 40.29 42.80 48.27
23 9.26 10.20 11.69 13.09 32.01 35.17 38.08 41.64 44.18 49.73
24 9.89 10.86 12.40 13.85 33.20 36.42 39.36 42.98 45.56 51.18

25 10.52 11.52 13.12 14.61 34.38 37.65 40.65 44.31 46.93 52.62
26 11.16 12.20 13.84 15.38 35.56 38.89 41.92 45.64 48.29 54.05
27 11.81 12.88 14.57 16.15 36.74 40.11 43.19 46.96 49.64 55.48
28 12.46 13.56 15.31 16.93 37.92 41.34 44.46 48.28 50.99 56.89
29 13.12 14.26 16.05 17.71 39.09 42.56 45.72 49.59 52.34 58.30

30 13.79 14.95 16.79 18.49 40.26 43.77 46.98 50.89 53.67 59.70
40 20.71 22.16 24.43 26.51 51.81 55.76 59.34 63.69 66.77 73.40
50 27.99 29.71 32.36 34.76 63.17 67.50 71.42 76.15 79.49 86.66
60 35.53 37.48 40.48 43.19 74.40 79.08 83.30 88.38 91.95 99.61

70 43.28 45.44 48.76 51.74 85.53 90.53 95.02 100.4 104.2 112.3
80 51.17 53.54 57.15 60.39 96.58 101.9 106.6 112.3 116.3 124.8
90 59.20 61.75 65.75 69.13 107.6 113.1 118.1 124.1 128.3 137.2

100 67.33 70.06 74.22 77.93 118.5 124.3 129.6 135.8 140.2 149.4
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Table 7: F -distribution, right tail, 5% points

Entry: Fν1,ν2,0.05 where ∫
∞
Fν1,ν2,0.05

f (Fν1,ν2 )dFν1,ν2 = 0.05
with f (Fν1,ν2 ) being the density of F -variable with ν1 and ν2 degrees of freedom
ν2 ν1 = 1 2 3 4 5 6 7 8 10 12 24 ∞

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 241.9 243.9 249.0 254.3
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.5 19.5
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.79 8.74 8.64 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.96 5.91 5.77 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.74 4.68 4.53 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.06 4.00 3.84 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.37 3.64 3.57 3.41 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.35 3.28 3.12 2.93
9 5.12 4.26 3.86 3.63 3.38 3.37 3.29 3.23 3.14 3.07 2.90 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.98 2.91 2.74 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.85 2.79 2.61 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.75 2.69 2.51 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.67 2.60 2.42 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.60 2.53 2.35 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.54 2.48 2.29 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.49 2.42 2.24 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.45 2.38 2.19 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.41 2.34 2.15 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.38 2.31 2.11 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.35 2.28 2.08 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.32 2.25 2.05 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.30 2.23 2.03 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.27 2.20 2.00 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.25 2.18 1.98 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.24 2.16 1.96 1.71
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.22 2.15 1.95 1.69
27 4.21 3.25 2.96 2.73 2.57 2.46 2.37 2.31 2.20 2.13 1.93 1.67
28 4.20 3.34 2.96 2.71 2.56 2.45 2.36 2.29 2.19 2.12 1.91 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.18 2.10 1.90 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.16 2.09 1.89 1.62
32 4.15 3.29 2.90 1.67 2.51 2.40 2.31 2.24 2.14 2.07 1.86 1.59
34 4.13 3.28 2.88 2.65 2.49 2.38 2.29 2.23 2.12 2.05 1.84 1.57
36 4.11 3.26 2.87 2.63 2.48 2.36 2.28 2.21 2.11 2.03 1.82 1.55
38 4.10 3.24 2.85 2.62 2.46 2.35 2.26 2.19 2.09 2.02 1.81 1.53

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.08 2.00 1.79 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 1.99 1.92 1.70 1.89

100 3.92 3.07 2.63 2.45 2.29 2.18 2.09 2.02 1.91 1.83 1.61 1.25
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.83 1.75 1.52 1.00
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Table 8: F -distribution, right tail, 1% points

Entry: Fν1,ν2,0.01 where ∫
∞
Fν1,ν2,0.01

f (Fν1,ν2 )dFν1,ν2 = 0.01
with f (Fν1,ν2 ) being the density of F -variable with ν1 and ν2 degrees of freedom
ν2 ν1 = 1 2 3 4 5 6 7 8 10 12 24 ∞

1 4052 4999.5 5403 5625 5764 5859 5928 5981 6056 6106 6235 6366
2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.2 27.1 26.6 26.1
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.5 14.4 13.9 13.5

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.05 9.89 9.47 9.02
6 13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.87 7.72 7.31 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.62 6.47 6.07 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.81 5.67 5.28 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.26 5.11 4.73 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.85 4.71 4.33 3.91
11 0.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.54 4.40 4.02 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.30 4.16 3.78 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.10 3.96 3.59 3.17
14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 3.94 3.80 3.43 3.00

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.80 3.67 3.29 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.69 3.55 3.18 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.59 3.46 3.08 2.65
18 8.20 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.51 3.37 3.00 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.43 3.30 2.92 2.49

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.37 3.23 2.86 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.31 3.17 2.80 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.26 3.12 2.75 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.21 3.07 2.70 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.17 3.03 2.66 2.21

25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.13 2.99 2.62 2.17
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.09 2.96 2.58 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.06 2.93 2.55 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.03 2.90 2.52 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.00 2.87 2.49 2.03

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 2.98 2.84 2.47 2.01
32 7.50 5.34 4.46 3.97 3.65 3.43 3.26 3.13 2.93 2.80 2.42 1.96
34 7.45 5.29 4.42 3.93 3.61 3.39 3.22 3.09 2.90 2.76 2.38 1.91
36 7.40 5.25 4.38 3.89 3.58 3.35 3.18 3.05 2.86 2.72 2.35 1.87
38 7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.83 2.69 2.32 1.84

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.80 2.66 2.29 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.63 2.50 2.12 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.47 2.334 1.95 1.38
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.32 2.18 1.79 1.00
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Table 9: Kolmogorov–Smirnov Dn

Entry: Dn,α where Pr{Dn ≥ Dn,α} = α
n ↓ α→ 0.20 0.15 0.10 0.05 0.01

1 0.900 0.925 0.950 0.975 0.995
2 0.684 0.726 0.776 0.842 0.929
3 0.565 0.597 0.642 0.708 0.828
4 0.494 0.525 0.564 0.624 0.733
5 0.446 0.474 0.510 0.565 0.669
6 0.410 0.436 0.470 0.521 0.618
7 0.381 0.405 0.438 0.486 0.577
8 0.358 0.381 0.411 0.457 0.543
9 0.339 0.360 0.388 0.432 0.514

10 0.322 0.342 0.368 0.410 0.490

11 0.307 0.326 0.352 0.391 0.468
12 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.314 0.349 0.418
15 0.266 0.283 0.304 0.338 0.404
16 0.258 0.274 0.295 0.328 0.392
17 0.250 0.266 0.280 0.318 0.381
18 0.244 0.259 0.278 0.309 0.371
19 0.237 0.252 0.272 0.301 0.363
20 0.231 0.246 0.264 0.294 0.356

25 0.210 0.220 0.240 0.270 0.320
30 0.190 0.200 0.220 0.240 0.290
35 0.180 0.190 0.210 0.230 0.270
>35 10.07/√n 1.14/√n 1.22/√n 1.36/√n 1.63/√n
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