17 research outputs found

    Abnormal Tissue Zone Detection and Average Active Stress Estimation in Patients with LV Dysfunction

    Get PDF
    Detection of regional ventricular dysfunction is a challenging problem. This study presents an efficient method based on ultrasound (US) imaging and finite element (FE) analysis, for detecting akinetic and dyskinetic regions in the left ventricle (LV). The underlying hypothesis is that the contraction of a healthy LV is approximately homogeneous. Therefore, any deviations between the image-based measured deformation and a homogeneous contraction FE model should correspond to a pathological region. The method was first successfully applied to synthetic data simulating an acute ischemia; it demonstrated that the pathological areas were revealed with a higher contrast than those observed directly in the deformation maps. The technique was then applied to a cohort of eight left bundle branch block (LBBB) patients. For this group, the heterogeneities were significantly less pronounced than those revealed for the synthetic cases but the method was still able to identify the abnormal regions of the LV. This study indicated the potential clinical utility of the method by its simplicity in a patient-specific context and its ability to quickly identify various heterogeneities in LV function. Further studies are required to determine the model accuracy in other pathologies and to investigate its robustness to noise and image artifacts

    Ejection Time-Corrected Systolic Velocity Improves Accuracy in the Evaluation of Myocardial Dysfunction: A Study in Piglets

    Get PDF
    This study aimed to assess the effect of correcting for the impact of heart rate (HR) or ejection time (ET) on myocardial velocities in the long axis in piglets undergoing hypoxia. The ability to eject a higher volume at a fixed ET is a characteristic of contractility in the heart. Systolic velocity of the atrioventricular annulus displacement is directly related to volume changes of the ventricle. Both ET and systolic velocity may be measured in a single heartbeat. In 29 neonatal pigs, systolic velocity and ET were measured with tissue Doppler techniques in the mitral valve annulus, the tricuspid valve annulus, and the septum. All ejection time corrected velocities (S(ET), mean ± SEM, cm/s) decreased significantly during hypoxia (Smva(ET) 15.5 ± 0.2 to 13.2 ± 0.3 (p < 0.001), Sseptal(ET) 9.9 ± 0.1 to 7.8 ± 0.2 (p < 0.001), Stva(ET) 12.1 ± 0.2 to 9.8 ± 0.3 (p < 0.001)). The magnitude of change from baseline to hypoxia was greater for ejection time corrected systolic velocities than for RR-interval corrected velocities (mean ± SEM, cm/s); ΔSmva(ET) 2.3 ± 2.0 vs. ΔSmva(RR) 1.6 ± 1.1 (p = 0.02), ΔSseptal(ET) 2.1 ± 1.0 vs. ΔSseptal(RR) 1.6 ± 1.0 (p < 0.01), ΔStva(ET) 2.3 ± 1.1 vs. ΔStva(RR) 1.8 ± 1.3 (p = 0.04). The receiver operator characteristic (ROC) showed superior performance of S(ET) compared with uncorrected velocities. The decrease in S(ET) during hypoxia was not influenced by important hemodynamic determinants. ET-corrected systolic velocity improves accuracy and decreases variability in the evaluation of systolic longitudinal function and contractility during global hypoxia in neonatal pigs compared with systolic velocity alone. It is robust toward hemodynamic changes. This novel method has the potential of becoming a useful tool in clinical practice

    Clinical presentation of calmodulin mutations: the International Calmodulinopathy Registry

    Get PDF
    AIMS: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator

    Estimating cardiac contraction through high resolution data assimilation of a personalized mechanical model

    Get PDF
    Cardiac computational models, individually personalized, can provide clinicians with useful diagnosticinformation and aid in treatment planning. A major bottleneck in this process can be determining modelparameters to fit created models to individual patient data. However, adjoint-based data assimilationtechniques can now rapidly estimate high dimensional parameter sets. This method is used on a cohort ofheart failure patients, capturing cardiac mechanical information and comparing it with a healthy controlgroup. Excellent fit (R2≄ 0.95) to systolic strains is obtained, and analysis shows a significant differencein estimated contractility between the two groups

    High-resolution data assimilation of cardiac mechanics applied to a dyssynchronous ventricle

    No full text
    Computational models of cardiac mechanics, personalized to a patient, offer access to mechanical information above and beyond direct medical imaging. Additionally, such models can be used to optimize and plan therapies in-silico, thereby reducing risks and improving patient outcome. Model personalization has traditionally been achieved by data assimilation, which is the tuning or optimization of model parameters to match patient observations. Current data assimilation procedures for cardiac mechanics are limited in their ability to efficiently handle high-dimensional parameters. This restricts parameter spatial resolution, and thereby the ability of a personalized model to account for heterogeneities that are often present in a diseased or injured heart. In this paper, we address this limitation by proposing an adjoint gradient–based data assimilation method that can efficiently handle high-dimensional parameters. We test this procedure on a synthetic data set and provide a clinical example with a dyssynchronous left ventricle with highly irregular motion. Our results show that the method efficiently handles a high-dimensional optimization parameter and produces an excellent agreement for personalized models to both synthetic and clinical data

    Optimal Pacing Sites in Cardiac Resynchronization by Left Ventricular Activation Front Analysis

    No full text
    Cardiac resynchronization therapy (CRT) can substantially improve dyssynchronous heart failure and reduce mortality. However, about one-third of patients who are implanted, derive no measurable benefit from CRT. Non-response may partly be due to suboptimal activation of the left ventricle (LV) caused by electrophysiological heterogeneities. The goal of this study is to investigate the performance of a newly developed method used to analyze electrical wavefront propagation in a heart model including myocardial scar and compare this to clinical benchmark studies. We used computational models to measure the maximum activation front (MAF) in the LV during different pacing scenarios. Different heart geometries and scars were created based on cardiac MR images of three patients. The right ventricle (RV) was paced from the apex and the LV was paced from 12 different sites, single site, dual-site and triple site. Our results showed that for single LV site pacing, the pacing site with the largest MAF corresponded with the latest activated regions of the LV demonstrated during RV pacing, which also agrees with previous markers used for predicting optimal single-site pacing location. We then demonstrated the utility of MAF in predicting optimal electrode placements in more complex scenarios including scar and multi-site LV pacing. This study demonstrates the potential value of computational simulations in understanding and planning CRT

    Technological and clinical challenges in lead placement for cardiac rhythm management devices

    No full text
    CardiacCardiacdisease is aleading cause of death worldwide. Disturbance in the conduction system of the heart may trigger or aggravate heart dysfunction, affecting the efficiency of the heart, and lead to heart failure or cardiac arrest. Patients mayrequire implantable cardiac rhythm management devices (ICRMDs) to maintain or restore the heart rhythm. ICRMDs have undergone important improvements, yet limitations still exist, presentingimportant technological challenges. Most ICRMDs consist of a subcutaneous control unit and intracardiac electrodes. The leads, which connect the electrodes to the control unit, are usually placed transvenously through the subclavian veins. Various locations inside the heart areusedfor placement of electrodes, depending on the specific condition. Some of the limitationsto effective pacemaker therapyare associated with placement and location of the leads. Various approaches have been developed to overcome these challenges, such as multi-site pacing and leadless solutions.This paper aims to review the state of the art for the selection of placement sites for pacemakers, implantable cardioverter defibrillator (ICD)and cardiac resynchronization therapy devices (CRT)devices and discuss potential technological advancements to improve the results of ICRMD-therapyincluding development av leadless technolog

    Contractility surrogates derived from three-dimensional lead motion analysis and prediction of acute haemodynamic response to CRT

    No full text
    Patient-specific left ventricular (LV) lead optimisation strategies with immediate feedback on cardiac resynchronisation therapy (CRT) effectiveness are needed. The purpose of this study was to compare contractility surrogates derived from biventricular lead motion analysis to the peak positive time derivative of LV pressure (dP/dtmax) in patients undergoing CRT implantation.Twenty-seven patients underwent CRT implantation with continuous haemodynamic monitoring. The right ventricular (RV) lead was placed in apex and a quadripolar LV lead was placed laterally. Biplane fluoroscopy cine films facilitated construction of three-dimensional RV–LV interlead distance waveforms at baseline and under biventricular pacing (BIVP) from which the following contractility surrogates were derived; fractional shortening (FS), time to peak systolic contraction and peak shortening of the interlead distance (negative slope). Acute haemodynamic CRT response was defined as LV ∆dP/dtmax ≄ 10 %.We observed a mean increase in dP/dtmax under BIVP (899±205 mm Hg/s vs 777±180 mm Hg/s, p&lt;0.001). Based on ΔdP/dtmax, 18 patients were classified as acute CRT responders and nine as non-responders (23.3%±10.6% vs 1.9±5.3%, p&lt;0.001). The baseline RV–LV interlead distance was associated with echocardiographic LV dimensions (end diastole: R=0.61, p=0.001 and end systole: R=0.54, p=0.004). However, none of the contractility surrogates could discriminate between the acute CRT responders and non-responders (ΔFS: −2.5±2.6% vs − 2.0±3.1%, p=0.50; Δtime to peak systolic contraction: −9.7±18.1% vs −10.8±15.1%, p=0.43 and Δpeak negative slope: −8.7±45.9% vs 12.5±54.8 %, p=0.09).The baseline RV–LV interlead distance was associated with echocardiographic LV dimensions. In CRT recipients, contractility surrogates derived from the RV–LV interlead distance waveform could not discriminate between acute haemodynamic responders and non-responders

    An image fusion tool for echo‐guided left ventricular lead placement in cardiac resynchronization therapy: Performance and workflow integration analysis

    No full text
    Background The response rate to cardiac resynchronization therapy (CRT) may be improved if echocardiographic‐derived parameters are used to guide the left ventricular (LV) lead deployment. Tools to visually integrate deformation imaging and fluoroscopy to take advantage of the combined information are lacking. Methods An image fusion tool for echo‐guided LV lead placement in CRT was developed. A personalized average 3D cardiac model aided visualization of patient‐specific LV function in fluoroscopy. A set of coronary venography‐derived landmarks facilitated registration of the 3D model with fluoroscopy into a single multimodality image. The fusion was both performed and analyzed retrospectively in 30 cases. Baseline time‐to‐peak values from echocardiography speckle‐tracking radial strain traces were color‐coded onto the fused LV. LV segments with suspected scar tissue were excluded by cardiac magnetic resonance imaging. The postoperative augmented image was used to investigate: (a) registration accuracy and (b) agreement between LV pacing lead location, echo‐defined target segments, and CRT response. Results Registration time (264 ± 25 seconds) and accuracy (4.3 ± 2.3 mm) were found clinically acceptable. A good agreement between pacing location and echo‐suggested segments was found in 20 (out of 21) CRT responders. Perioperative integration of the proposed workflow was successfully tested in 2 patients. No additional radiation, compared with the existing workflow, was required. Conclusions The fusion tool facilitates understanding of the spatial relationship between the coronary veins and the LV function and may help targeted LV lead delivery

    Left bundle branch block increases left ventricular diastolic pressure during tachycardia due to incomplete relaxation

    No full text
    We investigated whether tachycardia in left bundle branch block (LBBB) decreases left ventricular (LV) diastolic distensibility and increases diastolic pressures due to incomplete relaxation, and if cardiac resynchronization therapy (CRT) modifies this response. Thirteen canines were studied at baseline heart rate (120 beats/min) and atrial paced tachycardia (180 beats/min) before and after induction of LBBB and during CRT. LV and left atrial pressures (LAP) were measured by micromanometers and dimensions by sonomicrometry. The time constant τ of exponential pressure decay and degree of incomplete relaxation at mitral valve opening (MVO) and end diastole (ED) based on extrapolation of the exponential decay were assessed. Changes in LV diastolic distensibility were investigated using the LV transmural pressure-volume (PV) relation. LBBB caused prolongation of τ ( P &lt; 0.03) and increased the degree of incomplete relaxation during tachycardia at MVO ( P &lt; 0.001) and ED ( P = 0.08) compared with normal electrical activation. This was associated with decreased diastolic distensibility seen as upward shift of the PV relation at MVO by 18.4 ± 7.0 versus 12.0 ± 5.0 mmHg, at ED by 9.8 ± 2.3 versus 4.7 ± 2.3 mmHg, and increased mean LAP to 11.4 ± 2.7 versus 8.5 ± 2.6 mmHg, all P &lt; 0.006. CRT shifted the LV diastolic PV relation downwards during tachycardia, reducing LAP and LV diastolic pressures ( P &lt; 0.03). Tachycardia in LBBB reduced LV diastolic distensibility and increased LV diastolic pressures due to incomplete relaxation, whereas CRT normalized these effects. Clinical studies are needed to determine whether a similar mechanism contributes to dyspnea and exercise intolerance in LBBB and if effects of CRT are heart rate dependent. NEW &amp; NOTEWORTHY Compared with normal electrical conduction, tachycardia in left bundle branch block resulted in incomplete relaxation during filling, particularly of the late activated left ventricular lateral wall. This further resulted in reduced left ventricular diastolic distensibility and elevated diastolic pressures and thus amplified the benefits of cardiac resynchronization therapy in this setting
    corecore