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Abstract

Detection of regional ventricular dysfunction is a challenging problem. This study pre-
sents an efficient method based on ultrasound (US) imaging and finite element (FE)
analysis, for detecting akinetic and dyskinetic regions in the left ventricle (LV). The
underlying hypothesis is that the contraction of a healthy LV is approximately homoge-
neous. Therefore, any deviations between the image-based measured deformation and a
homogeneous contraction FE model should correspond to a pathological region. The
method was first successfully applied to synthetic data simulating an acute ischemia; it
demonstrated that the pathological areas were revealed with a higher contrast than those
observed directly in the deformation maps. The technique was then applied to a cohort of
eight left bundle branch block (LBBB) patients. For this group, the heterogeneities were
significantly less pronounced than those revealed for the synthetic cases but the method
was still able to identify the abnormal regions of the LV. This study indicated the potential
clinical utility of the method by its simplicity in a patient-specific context and its ability to
quickly identify various heterogeneities in LV function. Further studies are required to
determine the model accuracy in other pathologies and to investigate its robustness to
noise and image artifacts.

Keywords: acute ischemia, left ventricle, cardiac mechanics, GE Healthcare US, EchoPac®

1. Introduction

Realistic finite element (FE) simulation of regional defects caused by pathologies such as acute

ischemia remains a significant problem for physiologically based FE analysis of the heart.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



From the moment that the cell death starts to the thinning and the expansion of the scar surface

of myocardium tissue, it takes approximately 21 days before the remodeling phase starts [1].

Therefore, an accessible method to detect and characterize the influenced region can provide a

better plan for diagnosis of these patients with medications and myocardial injection to avoid

tissue progressive remodeling [2, 3].

Tracking the deformation of the LV has been actively pursued for the last decades, but important

information is lacking about in-vivo wall stress reconstruction in medical imaging modalities for

computational purpose [4]. Accurate FE models based on high-resolution medical images can be

applied for stress reconstruction, but these models are still limited to medical research and not

generally available in the clinic.

Generally, the primary tool for ischemia detection is the analysis of standard electrocardio-

gram (ECG) signals. The majority of research focus regarding mathematical and computa-

tional tools of ischemic zone detection were addressed by electro-physiology models [5–8].

An alternative method for ischemia detection is to assess cardiac function with magnetic

resonance imaging (MRI) modalities. However, the abnormal zone detection in MRI modali-

ties is limited and remains a challenging problem [9–11]. In this context, the speckle tracking

technique which employs the non-invasive ultrasound (US) [12] has become a commonplace

technique in clinical daily practice [13] due to the accessibility of this system.

In this chapter, we study the possibilities of computing a region of abnormal function from 4D

strain acquired with the EchoPac® system. The strain estimates are based on speckle tracking,

and capture 3D strain through time for 17 LV regions based on the standardized segments of

the American Heart Association (AHA) [14].

Coupling US data with computations based on the FE method may provide more detailed

information about the mechanical state of the patient’s heart. The purpose of the present

chapter is to apply FE simulations to detect regions of abnormal function in the LV, based on

the hypothesis that a homogeneous contraction is a regional assumption for a healthy LV, and

large deviations between measured deformations and FE simulations based on homogeneous

contraction will correspond to an abnormal region. We aim to investigate the validity of this

hypothesis using the 4D strain data acquired with EchoPac®.

The chapter is organized as follows. First, we present an overview of our pipeline and of the

equations for the systolic phase of the heart cycle. Next, we test the accuracy of the method

using synthetic data, simulating zones of acute ischemia in the LV. Finally, the methodology is

applied to a cohort of patients with left bundle branch block (LBBB), and we discuss the results

and the strengths and limitations of the proposed method.

2. Material and method

Akinetic or dyskinetic regions such as ischemic regions or infarcts may be detected in medical

images as regions of abnormal deformation. However, healthy tissue surrounding a patholog-

ical region may also show abnormal patterns of deformation, which makes it challenging to
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locate the pathological region. The purpose of the present paper is to investigate an alternative

method for detecting abnormal regions, by comparing measured strains with strains resulting

from a homogeneous contraction. As noted earlier, the underlying hypothesis is that the

healthy contraction is approximately homogeneous [15, 16], and the largest deviation will

therefore be associated with the pathological region. To test our hypothesis, we propose to:

1. Build a patient-specific mesh from the images (using an in-house mesh morphing method

[17]),

2. Apply a uniform contraction and tune this to give the closest match to the patient’s strain

data,

3. Evaluate the spatial deviations, and compare the region of largest deviation to the (known)

regions of abnormalities.

These main steps of the methodology are illustrated in Figure 1. When applying the algorithm to

the patient data, it is necessary to generate a patient-specific FE mesh for each individual case.

Besides, the accuracy of the geometry associated with the generic LV model is greater than the

patient-specific geometries, hence, the need to adapt the generic model to each patient. This task

is accomplished by a previously developed mesh morphing method, which takes a generic LV

mesh and adapts it to the patients’ image data [17]. The rest of the methodology consists of a

minimization loop on the active tension af. For each patient-specific mesh, the algorithm assumes

a constant value for the actively generated stress, denoted as average active stress (AAS), and

performs a systolic FE simulation. Then, the resulting regional strains are compared with the

patient’s data, and a minimization procedure is performed to minimize the deviation between

measured and simulated regional strains. The final, minimized, deviation is then visualized and

analyzed in order to locate regions of dysfunctional LV segments.

Figure 1. The developed patient-specific pipeline. First, we morph a reference FE mesh to the patient data, and then we

estimate an average active stress (AAS) to minimize the deviations between FE simulation and the patient data using sum

of squared differences (LSQ). af is the active tension. Finally, we compare these results to detect the abnormal zone.
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The main reason why we focus on the systolic phase is that in acute ischemia, the passive

behavior of the abnormal zone during diastolic phase stays intact, whereas the first appear-

ance of the defected region is during the active contraction [4]. As a result, remodeling of

abnormal tissue induces a different deformation due to the average stress in regional LV

motion.

2.1. Reference FE simulation model for systolic phase

To examine the abnormal tissue size effects on global and regional deformation, we need to

explain the model which was used for FE systolic phase. We employed a healthy volunteer LV

extracted from 4D US [18] at end diastole (ED). A 3D mesh with eight-noded linear hexahedral

elements was created using Abaqus® mesh generation software. The reference mesh had

155,172 nodes and 141,405 elements.

To incorporate the known material anisotropy of the LV during the systolic phase, we defined

a local curvilinear coordinate system aligned with the local fibre orientation, to model myocyte

contraction [19, 20]. We assumed a helical fibre distribution, with a helical angle varying from

�70� at the epicardial surface to 60� at the endocardial surface (0� is the circumferential

direction). At each point, we defined the local orthonormal basis as (en
!

, es
!

, ef
!
), where (ef

!
) is

aligned with the local fibre [21].

We were interested in computing the mechanical state of the tissue at ES. The tissue deforma-

tion in the systolic phase results from a combination of active and passive mechanical proper-

ties. We modeled this interaction using a so-called active stress approach, where the total tissue

stress is decomposed into an active (σactive) and a passive (σpassive) part.

σtotal ¼ σpassive þ σactive: (1)

Introducing Rf as the matrix of transformation from global to local coordinate system, F as the

deformation gradient, and J ¼ det Fð Þ (J = 1 for incompressible tissue), the active stress in global

coordinates can be expressed as

σactive ¼ J�1FRf
�1

0 0 0

0 0 0

0 0 af

2

6

4

3

7

5
RfF

T , (2)

where af is the active tension developed by the contracting fibres.

Following our assumption of homogeneous contraction, the value of af is assumed constant in

space, and is tuned to provide the best possible match with the measured strain data for each

patient. The chosen maximum value for af was set to 135 kPa [22, 23]. The passive component

in Eq. (1) was modeled as hyperelastic, with stress derived from a strain energy function W;

σpassive ¼ J�1F ∂W=∂Eð ÞFT : (3)

Here E is the Green–Lagrange deformation tensor.
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In the literature, different strain energy functions have been proposed for the cardiac tissue

[24–26]. To reduce the complexity and number of parameters in the model, and based on the

assumption that at ES the tissue stress is dominated by the active component, we used a simple

Mooney-Rivlin strain energy model, as previously used by Marchesseau et al. [27]:

W ¼ c1 I1 � 3
� �

þ c2 I2 � 3
� �

þ K J � 1ð Þ2: (4)

Here c1, c2 are material parameters (MPs), I1 and I2 are the invariants of the right Cauchy-

Green tensor and K ¼ 2=d1 is the bulk modulus.

We performed a reference FE simulation using the following MPs: c1 = 0.0187 MPa, c2 = 0.0198

MPa, d1 = 0.1697 MPa, and the contraction model outlined earlier. The boundary conditions

were as follows: a pressure of 11.24 kPa was applied to the endocardial surface [23], the

epicardial surface was unloaded, and the basal nodes were assigned to remain coplanar during

deformation [27]. This reference FE simulation was compared with results reported by Dorri

et al. [23] and showed good agreement in terms of LV ejection fraction (EF) (33.83%), wall

thickness change (18.7%) and Von Mises stresses, which are in the range of 100–150 kPa

[23, 28–30].

We used these boundary conditions, MPs and contraction model for the patient-specific FE

simulations of the provided cohort with the Abaqus® software solver.

2.2. Application on synthetic acute ischemia

Two reference meshes have been used for application of our developed pipeline.

2.2.1. Ellipsoid reference mesh

A truncated ellipsoid mesh has been generated using Abaqus® software. The height of the

mesh was 9 cm, and the wall thickness was 1 cm. The fibre directions were assigned as

outlined earlier. We defined a small zone at the equatorial level of the septal wall (see Figure 2)

as acutely ischemic, i.e. non-contractile. The active stress in this region was set to zero, while

the rest of the reference FE model, af = 160 kPa, was attributed. The same condition as

explained in Section 2.1 in terms of boundary conditions, ES pressure, contraction model and

MPs was used to perform this model. In order to relate the results to the echo images, we

defined a midwall surface mesh that was split into 17 segments as shown in Figure 3 [14]. We

will refer to this mesh as the midwall mesh throughout this chapter. Regional deformations

were calculated as average strains in each segments (longitudinal, circumferential and area

strain), similar to the output of the EchoPac strain analysis.

To provide a first test of the hypothesis underlying this research, we performed an FE simula-

tion with an AAS, and tuned the active stress parameter to match the strains of the synthetic

reference model as closely as possible. The cost function was defined as the sum of the squared

differences (LSQ) between the AAS strains and the reference strains, and a simple minimiza-

tion was performed by gradually increasing af from 90 to 180 kPa in 5 kPa steps. The smallest

cost function obtained with this procedure was used as the closest match.
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Figure 2. The synthetic acute ischemia generated on ellipsoid and healthy LV obtained from US images. The elements

highlighted in red show the considered zone for zero active stress while other elements in green have a homogeneous

active contraction value (160 kPa). Here, the systolic pressure was defined to be 11.24 kPa.

Figure 3. The AHA (American Heart Association) convention which describes the LV model in 17 regions. The study

cases were divided into 4 separate regions as basal, mid-cavity, apical and apical cap. These regions were again split into

several slices to build 17 regions. Copyrights reserved to GE Healthcare for this illustration of AHA regions.
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2.2.2. Healthy reference mesh

The healthy mesh obtained from US imaging in Section 2.1 was used in this study case. The

abnormal zone for this mesh was defined on the mid-cavity anterior wall (Figure 2). The

boundary condition, systolic blood pressure, contraction model and the MPs were attributed

as in the ellipsoid study case. The midwall regions were also generated in order to follow the

regional deformations through the systolic phase. Reorientation of the fibre directions in

abnormal LV tissue is an open question [31–34]. Therefore, we leave the fibres unchanged in

the abnormal zone as defined for a healthy LV case in Section 2.1.

2.3. Prediction of abnormal tissue zone for LBBB patients

A cohort of patients suffering from LBBB was available for studying our proposed method for

abnormal zone detection (with chronic infarcts). Left bundle branch block (LBBB) is a cardiac

conduction abnormality which causes the LV to contract later than the right ventricle. We

presented, previously, our FE method for a healthy LV contraction. In order to introduce the

patient data to the FE software, we developed an in-house code to morph the reference FE

mesh to the patient geometries. We demonstrated the steps for estimating homogeneous active

contraction value data of acute ischemia in Section 2.2.

Eight LBBB patients were recruited after informed consent at Rikshospitalet, Oslo, Norway.

LV triangulated mesh geometries were acquired by a standard GE Healthcare echocardiog-

raphy examination [21]. The patient’s LV cavity pressures were measured via an arterial

catheter inside the left ventricle’s cavity. The 17 regional strains were measured using 4D

strain tracking EchoPac® US system manufactured by GE Healthcare [35]. EchoPac® algo-

rithm calculates the classical longitudinal, circumferential and area strains for each segment

at the midwall between endocardial and epicardial surfaces from the segment’s dimensions

[35] (Figure 4).

From area strain (AS), we can calculate the radial strain (RS) as detailed by Heimdal [35] from

the incompressibility assumption (R = Volume/Area) of the cardiac tissue:

RS ¼ �

ASES�ASED
ASED

ASES�ASED
ASEDþ1

: (5)

We morphed the reference mesh (refer to Section 2.1) onto the geometry of each patient at

ED time step for which US geometries were acquired. For this, endocardial and epicardial

nodes of the deformable mesh were projected onto the patient’s triangulated surfaces from

a defined LV centerline [17] with rigid and non-rigid transformation methods employing

an in-house developed Matlab® code. In order to deform the reference bulk model with

intermediate nodes, we used FE elastic rigid body deformation employing the displace-

ment vectors obtained from boundaries projection trajectories [17]. An in-house program

coded in Matlab® found the closest nodes to the midwall mesh nodal positions obtained

from the EchoPac® system for each patient at ED. Therefore, we can follow the evolution

Abnormal Tissue Zone Detection and Average Active Stress Estimation in Patients with LV Dysfunction
http://dx.doi.org/10.5772/intechopen.75202

75



of LV during its systolic phase by calculating the deformations of each segment’s mesh in

area, radial circumferential and longitudinal strains.

For each patient, after application of the mesh morphing method, we employed the pre-

ssure values at ES from pressure curves obtained during the medical intervention

(Table 1). This cavity pressure was applied as the boundary condition on the endocardial

surface as previously mentioned in Section 2.1. For the sake of simulation costs, for each

patient, we considered a set of af values from the literature starting at 60–280 kPa with

5 kPa of increments. Then, the LSQ simply takes the af which returns the minimum cost

value.

3. Results

In this section, we describe the results of applying the proposed method to synthetic reference

data and patient data from a group of LBBB patients.

3.1. Application to synthetic data

For the ellipsoid mesh, the closest match was achieved for af=155 kPa, which gave a cost function

value of 0.0096. The EF for the reference ischemic case was 41.32% and the closest match was

43%. Figure 5 shows the strains for the reference case (left) and the closest matching case with

Figure 4. The midwall mesh example for a patient obtained from EchoPac®. The red and green triangles are the

epicardium and endocardium surfaces, respectively. The yellow and purple meshes are segment’s midwall mesh. These

meshes permit us to follow the LV deformation through a cardiac cycle.

Case #1 #2 #3 #4 #5 #6 #7 #8

ES pressure (kPa) 16.8 14 14.27 15.47 12.67 16.53 14.53 8666

Table 1. The ES pressure values for LBBB patients measured through aortic valves.
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homogenous contraction (middle). The difference between the two is shown in the right panel,

and demonstrates that the method identifies the correct location of the ischemic zone (starred).

Figure 6 shows the results of applying the method on the healthy LV geometry, with synthet-

ically generated acute ischemic data. In this case, a minimum cost function value of 0.0387 was

obtained for af=130 kPa. Strain values are shown for the reference ischemic case (left) and the

closest matching case (middle), while the difference between the two (error) is shown on the

right. We observe that the ischemic zone is easily detectable from the error plots.

3.2. Application on LBBB patients’ data

We applied the mesh morphing method explained in Section 2.3 to construct patient-specific

FE meshes for 8 LBBBB patients, shown in the figure by Behdadfar et al. [17]. Table 2 shows

Figure 5. The regional deformations resulting from FE simulation and synthetic acute ischemia for the ellipsoid reference

mesh based on AHA standards. The ellipsoid reference synthetic acute ischemia, the closest match for regional deforma-

tion as well as the error are presented in this figure. The algorithm has successfully detected the abnormal zone at mid-

cavity (starred) as well as its impact on the neighboring tissue (Basal inferior).

Figure 6. The healthy FE simulations and the regional deformation results based on AHA standards are shown in this

figure. The results are presented for the reference generated acute ischemia, the closest match and the regional errors. The

starred region is the actual generated zone with zero active stress value (mid-anterior wall).

Abnormal Tissue Zone Detection and Average Active Stress Estimation in Patients with LV Dysfunction
http://dx.doi.org/10.5772/intechopen.75202

77



the minimum cost value and the AAS values for each patient. In addition, the measured and

simulated ED and ES cavity volumes are shown, as well as the EFs for both cases.

Case CostValue af (kPa) EDV-S (ml) ESV-S (ml) EF-S% EDV-P (ml) ESV-P (ml) EF-P%

#1 0.5279 130 160.764 139.827 13.02 171.3 121.8 28.72

#2 0.1960 135 196.815 140.20 28.76 215.9 159.4 26.16

#3 0.1298 135 179.602 161.53 10 179.3 131.3 26.77

#4 0.1686 95 120.082 124.195 Inflated 128.3 111.7 12.93

#5 — — — — — 319.1 241.2 24.41

#6 0.3358 180 168.118 132.808 21 179.7 111.2 38.11

#7 0.7901 175 242.429 273.670 Inflated 255.7 219.4 14.19

#8 0.1616 75 99.594 87.167 12.47 98.78 79.98 19

Table 2. The LBBB patients data measured (–P) and the FE results (–S). The ED volume (EDV), ES volume (ESV), LSQ

cost value, optimized active stress (af) and EF are shown in this table. Patient 5 had convergence issues.

Figure 7. The LBBB patient’s circumferential (C), radial (R) and longitudinal (L) strains at ES provided by EchoPac® US

system of patients 4 and 7. The deformation differences between patient’s data and the FE results from LSQ application under

AHA standards are also shown. In this figure, we can observe that the maximum/minimum value (left column) of the

4-posterior, and 7-lateral regions are also the regions of maximum deviations observed in the FE results (right column),

respectively.
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The deformations obtained from US are in circumferential, longitudinal and area strain of the

midwall mesh. Then, the RS was obtained by incompressibility hypothesis of the LV segments

as explained by Heimdal [35]. The radial, circumferential and longitudinal strains are shown in

Figure 7 for patients 4 and 7 where the pipeline detected the abnormal zone. The FE strain

results were subtracted from the patient’s respective data and are shown in this figure as well.

Figure 8 shows the transversal and longitudinal cuts of LBBB patients’ geometries superimposed

by the FE simulation results for the optimal AAS. These cuts are tuned to show the maximum

error zone (from 17 segments), obtained from LSQ application of regional deformation. Patient 5

had convergence issues and was not considered for further analysis.

Figure 8. The transversal (first and third columns) and longitudinal (second and fourth columns) cuts of LBBB patient

geometries (1–8) obtained from EchoPac® US system at ED (red lines) and ES (blue lines). The patient’s data were

superimposed with the FE simulation geometry for optimal AAS at ES (white lines). In this case, if the maximum error

happened to be at the septal wall segment, the cut (longitudinal and transversal) passes through this segment in FE

simulation and patient’s geometry. The results for increasing MPs by 12 times are also shown here (7*). The patient 5 had

no convergence success in this study.
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4. Discussion

In this study, a new approach for detecting potentially infarcted areas was first validated on

synthetic data and then applied to a cohort of 8 LBBB patients before resynchronization. The

results revealed zones of moderate heterogeneities which were often of smaller thickness but

the heterogeneities were significantly less pronounced than that revealed for a synthetic case of

acute ischemia. The method also revealed that the tissue tends to be stiffer in the lateral wall of

LBBB patients. It is very interesting to notice that the obtained results confirm what was

already observed by other researchers using standard medical imaging. More specifically,

Veress et al. [4] showed the typical septum-related abnormal wall motion and impairment of

wall thickening during systole, which caused LV remodeling. Often, technologies such as MRI

or PET (positron emission tomography) were used to characterize the infarct heterogeneities as

well as histological images [36–38]. We examined if such ability to detect abnormal tissue can

stand for novel 4D strain EchoPac® system.

In order to detect the abnormal tissue, we identified an AAS for all FE meshes which was the

closest match to the patient’s midwall mesh deformation (Figure 1). This AAS represents a

homogeneous contraction for each patient [15, 16]. In this condition, it is expected that for a

healthy and homogeneous contraction, the FE deformation responses will be different in

abnormal tissue than the rest of the LV model. In addition, this value represents the average

movement of remote (uninfarcted) and injured tissue.

Often, patients suffering from abnormal contractility are evaluated by an optimized gradient

of activation stress map. Wenk et al. [39] have developed an animal-specific FE model for such

reconstruction by minimizing the regional deformation error between experimental data and

the FE model. In this study, a border zone was considered for early stage of tissue damaging

process (due to calcium concentrations) which relates the injured to the remote tissue. They

confirm that the infarct zone has no contractile action (zero active value).

4.1. Impact of MPs on the FE LV deformation

In Table 2, the AASs are mentioned for optimal cost values. These identified values are strongly

coupled to the wall thickness, the blood pressure and the cavity volume. The FE results are based

on the midwall strain deformation which is not representative data for the complete wall motion

and might be affected by artifacts. Some meshes are inflated such as in cases 4 and 7 in Table 2,

even if, these cases are the most successful results of the abnormal tissue detection. The reason

for this inflation might be the compliance MPs for the studied cases. To study this hypothesis, we

increased the elastic parameters (c1 and c2) by factors [2, 4, 5, 7, 9, 11] to analyze the behavior of

the patient FE simulation to this increase in tissue rigidity.

For this test, patient 7 has been selected as the posterior and neighboring walls were deformed

dramatically in FE simulation while these walls had not been moved during ED to ES move-

ment. The cost value for this test from 0.7901 with 175 kPa of AAS was reduced to [0.1893,

0.0775, 0.0626, 0.0592, 0.0591, 0.0564], respectively, and it is shown in Figure 4 for factor 12 (c1
and c2) in 7*. Novak et al. [40] showed that the aneurysmal wall is stiffer than the remote tissue
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as well. In this test, we observed that the results (7*) were improved by increasing the rigidity

of the tissue MPs. It has been previously investigated, with a mathematical model and exper-

imental tests, that the infarct tissue stiffen (despite dilated infarctions) [41]. However, the

infarct tissue properties are still under investigation for various accompanying pathologies

such as LBBB.

Figure 8 shows several successful zone detections wherein the maximum error happens to be

at the abnormal region. In case 1, the maximum deformation was observed at the Inf-Sept-

AntSept regions where this neighborhood wall slightly inflates (blue lines at Max-error in

longitudinal cut) and the method detected this region successfully. However, in case 6, the

inhomogeneous strain was observed at the septal wall wherein the method detected the

posterior wall as the maximum error. These results show that the strain data in some cases

can be difficult to be judged on the detected zone and is subjective to the visual detection of the

patient’s strain and geometry data. However, a FE simulation of pathology cases permit us to

narrow down the potentially defeated zone to less regions, especially, in case 4 and 7 in

Figure 7 and to study the mechanical state of the cardiac tissue by analyzing the wall stress as

a post-processing step.

The results showed a good agreement with several patient deformations in RS, which

has been shown to be a better indicator than circumferential or longitudinal deformations

due to the homogeneous distribution of these deformation values, for discrimination of

possible heterogeneities in the active stress and abnormal tissue movement. We observed

that the identified active stress is highly coupled to the patient geometry and wall thick-

ness [42]. This is the advantage of the new generations of US system in extracting the RS

from measuring the surface of a given segment that is not possible for modalities such as

tagging MRI [43].

4.2. Remodeling in LBBB patients and its impact on the pipeline results

The LBBB, itself, causes tissue remodeling due to the redistribution of LV workload in the long

run, especially, in circumferential shortening, cardiac mass, septal hypoperfusion and myocar-

dial blood flow [44–47]. However, this pathology is, often, the result of other cardiac diseases.

Statistically, 40% of patients with cardiomyopathy (CMP), weakening of the heart muscle and

congestive heart failure have unsynchronized ventricular contraction. The resynchronization

procedure helps in reverse remodeling and hospitalization-free survival rate of 70–90% in

these patients [48–50].

The observed regional differences did not exist in the case of ellipsoid and healthy meshes

illustrated previously, where the wall thickness is nearly homogeneous. Thus, the change in

MPs or wall thickness in LBBB patients with previous infarct history should reduce the

efficiency of this method for some patients with high heterogeneity in the wall deformation

due to tissue remodeling. In Figure 8 and Table 2, we can observe that the FE simulation

responses in the maximal discrepancies with the patient’s data are mostly over or under

estimates of the tissue deformation. These maximal discrepancies have been observed to be at

the high heterogeneities in wall thickness.
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Patient 5 had convergence issues due to large cavity volume (319 ml at ED) and thin wall

thickness (remodeled tissue). The large cavity volume is related to an aneurysmal bulging

which made contraction simulation fail to reach a solution.

Several studies showed that LBBB patients respond poorly (30–50%) to resynchronization

procedure for multiple reasons and cases with developed scarred tissue tend to not respond

at all [51–53]. This study is a tool for patient cases which are not yet affected by this remodeling

phase and are in the early stages of LBBB pathology. Information on areas with pathology

within the left ventricular wall may be helpful in planning therapy with a resynchronization

pacemaker [54].

4.3. Limitations

One major limitation in this study is the choice of material and contraction models to simplify

the complexity and computational costs. In addition, we defined an af value which is also a

brutal simplification for AAS identification procedure. However, with all this simplifications,

the time of each simulation on a 12-core system was 72 h in average. One issue might be the

small elements generated by developed mesh morphing procedure that reduced the time steps

in the FE solver. One natural step can be improving the material model to anisotropic from the

state-of-the-art [24]. The mesh morphing method should also be improved to reduce the

computational costs in further work.

Another limitation is the lack of patient’s history information. In this study, the patients were

known to have LBBB pathology with infarct history but there was no other information on co-

morbidities that may cause depressed myocardial contraction. The large cavity volume, low

EF and low wall thickness can be related to various pathologies such as idiopathic dilated

CMP, and ischemic cardiomyopathy. So in this work, it is not possible to categorize the

patients with their pathologies (such as patient 5) and the identified AAS. We considered a

stress-free configuration to simulate the systolic phase for our cohort so this issue should be

further addressed.

5. Conclusion

In this study, a new approach for detecting potentially infarcted areas was introduced, vali-

dated and then applied onto a cohort of eight LBBB patients before their cardiac resynchro-

nization therapy. The results revealed zones of moderate heterogeneities which were often of

regions of thinner wall. However, the heterogeneities were significantly less pronounced than

what was revealed for a synthetic case of acute ischemia, which we interpreted as an effect of

remodeling induced by the therapy. The method also revealed that the tissue tends to be stiffer

in the lateral wall of LBBB patients, as the deformations are not as pronounced as they are in

the simulation. This study is promising for the assessment of LBBB and its quantification using

FE simulations. Again, this illustrates the importance of patient-specific FE simulations in the

domain of cardiac biomechanics.
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Further work is required to transfer the promising synthetic results to real acute ischemic

patient cases. A possible improvement is to reconstruct the patient fiber orientations from

MRI imaging modalities such as diffusion tensor and tagging MRI to improve the deformation

trajectories during contraction [55]. The possibility to compare this study results with cardiac

MRI for identifying the abnormal tissue is also an interesting future step. Finally, it would be

interesting to compare the reconstructions made with our methodology on LBBB patients at

different stages of remodeling after the cardiac resynchronization treatment.
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