86 research outputs found

    Additional safety risk to exceptionally approved drugs in Europe?

    Get PDF
    AIMS Regulatory requirements for new drugs have increased. Special approval procedures with priority assessment are possible for drugs with clear 'unmet medical need'. We question whether these Exceptional Circumstances (EC) or Conditional Approval (CA) procedures have led to a higher probability of serious safety issues. METHODS A retrospective cohort study was performed of new drugs approved in Europe between 1999 and 2009. The determinant was EC/CA vs. standard procedure approval. Outcome variables were frequency and timing of a first Direct Healthcare Professional Communication (DHPC). An association between approval procedure and the time from market approval to DHPC was assessed using Kaplan-Meyer survival analysis and Cox-regression to correct for covariates. RESULTS In total 289 new drugs were approved. Forty-six (16.4%) were approved under EC or CA, of which seven received a DHPC (15%). This was similar to the standard approval drugs (243), of which 33 received one or more DHPC (14%, P = 0.77). The probability of acquiring a DHPC for standard approval drugs vs. EC/CA drugs during 11-year follow-up is 22% (95% CI 14%, 29%) and 26% (95% CI 8%, 44%), respectively (log-rank P = 0.726). This difference remained not significant in the Cox-regression model: hazard ratio 0.94 (95% CI 0.40, 2.20). Only drug type was identified as a confounding covariate. CONCLUSION The EC/CA procedure is not associated with a higher probability of DHPCs despite limited clinical development data. These data do not support the view that early drug approval increases the risk of serious safety issues emerging after market approval

    Quantitative assessment of multiple pesticides in silicone wristbands of children/guardian pairs living in agricultural areas in South Africa

    Get PDF
    Little is known about personal and time-integrated exposure to past and current used pesticides in agricultural areas and within-family exposure similarities. We aimed to assess exposure to pesticides using silicone wristbands in child/guardian pairs living on farms and in villages within two agricultural areas in South Africa. Using silicone wristbands, we quantified 21 pesticides in child/guardian pairs in 38 households over six days in 2018. Levels (in ng/g wristband) of pesticides and their transformation products (12 current-use pesticides and nine organochlorine pesticides) were measured using GC-MS/MS. We assessed the correlation between pesticide levels and between household members using Spearman correlation coefficients (r(s)). Multivariable generalized least squares (GLS) models, using household id as intercept, were used to determine level of agreement between household members, exposure differences between children and guardians and exposure predictors (study area, household location [farm vs. village] and household pesticide use). We detected 16 pesticides with highest detection frequencies for deltamethrin (89%), chlorpyrifos (78%), boscalid (56%), cypermethrin (55%), and p,p'-DDT (48%). Most wristbands (92%) contained two or more pesticides (median seven (range one to 12)). Children had higher concentrations than guardians for four pesticides. Correlation between the pesticide levels were in most cases moderate (rs 0.30-0.68) and stronger in children than in guardians. Five pesticides showed moderate to strong correlation between household members, with the strongest correlation for boscalid (r(s) 0.84). Exposure differences between the two agricultural areas were observed for chlorpyri fas, diazinon, pmthiofos, cypermethrin, boscalid, p,p'-DDT and p,p'-DDE and within areas for cypermethrin. We showed that for several pesticides children had higher exposure levels than guardians. The positive correlations observed for child/guardian pairs living in the same household suggest non-occupational shared exposure pathways in these communities

    Qualitative aspects and validation of a screening method for pesticides in vegetables and fruits based on liquid chromatography coupled to full scan high resolution (Orbitrap) mass spectrometry

    Get PDF
    The analytical capabilities of liquid chromatography with single-stage high-resolution mass spectrometry have been investigated with emphasis on qualitative aspects related to selective detection during screening and to identification. The study involved 21 different vegetable and fruit commodities, a screening database of 556 pesticides for evaluation of false positives, and a test set of 130 pesticides spiked to the commodities at 0.01, 0.05, and 0.20 mg/kg for evaluation of false negatives. The final method involved a QuEChERS-based sample preparation (without dSPE clean up) and full scan acquisition using alternating scan events without/with fragmentation, at a resolving power of 50,000. Analyte detection was based on extraction of the exact mass (±5 ppm) of the major adduct ion at the database retention time ±30 s and the presence of a second diagnostic ion. Various options for the additional ion were investigated and compared (other adduct ions, M + 1 or M + 2 isotopes, fragments). The two-ion approach for selective detection of the pesticides in the full scan data was compared with two alternative approaches based on response thresholds. Using the two-ion approach, the number of false positives out of 11,676 pesticide/commodity combinations targeted was 36 (0.3 %). The percentage of false negatives, assessed for 2,730 pesticide/commodity combinations, was 13 %, 3 %, and 1 % at the 0.01-, 0.05-, and 0.20-mg/kg level, respectively (slightly higher with fully automated detection). Following the SANCO/12495/2011 protocol for validation of screening methods, the screening detection limit was determined for 130 pesticides and found to be 0.01, 0.05, and ≥0.20 mg/kg for 86, 30, and 14 pesticides, respectively. For the detected pesticides in the spiked samples, the ability for unambiguous identification according to EU criteria was evaluated. A proposal for adaption of the criteria was made

    Ultra-fast searching assists in evaluating sub-ppm mass accuracy enhancement in U-HPLC/Orbitrap MS data

    Get PDF
    A strategy, detailed methodology description and software are given with which the mass accuracy of U-HPLC-Orbitrap data (resolving power 50,000 FWHM) can be enhanced by an order of magnitude to sub-ppm levels. After mass accuracy enhancement all 211 reference masses have mass errors within 0.5 ppm; only 14 of these are outside the 0.2 ppm error margin. Further demonstration of mass accuracy enhancement is shown on a pre-concentrated urine sample in which evidence for 89 (342 ions) potential hydroxylated and glucuronated DHEA-metabolites is found. Although most DHEA metabolites have low-intensity mass signals, only 11 out of 342 are outside the ±1 ppm error envelop; 272 mass signals have errors below 0.5 ppm (142 below 0.2 ppm). The methodology consists of: (a) a multiple internal lock correction (here ten masses; no identity of internal lock masses is required) to avoid suppression problems of a single internal lock mass as well as to increase lock precision, (b) a multiple external mass correction (here 211 masses) to correct for calibration errors, (c) intensity dependant mass correction, (d) file averaging. The strategy is supported by ultra-fast file searching of baseline corrected, noise-reduced metAlign output. The output and efficiency of ultra-fast searching is essential in obtaining the required information to visualize the distribution of mass errors and isotope ratio deviations as a function of mass and intensity

    Proficiency and Interlaboratory Variability in the Determination of Phthalate and DINCH Biomarkers in Human Urine: Results from the HBM4EU Project

    Get PDF
    A quality assurance/quality control program was implemented in the framework of the EU project HBM4EU to assess and improve the comparability of biomarker analysis and to build a network of competent laboratories. Four rounds of proficiency tests were organized for 15 phthalate and two DINCH urinary biomarkers (0.2-138 ng/mL) over a period of 18 months, with the involvement of 28 laboratories. A substantial improvement in performance was observed after the first round in particular, and by the end of the program, an average satisfactory performance rate of 90% was achieved. The interlaboratory reproducibility as derived from the participants' results varied for the various biomarkers and rounds, with an average of 24% for the biomarkers of eight single-isomer phthalates (e.g., DnBP and DEHP) and 43% for the more challenging biomarkers of the mixed-isomer phthalates (DiNP, DiDP) and DINCH. When the reproducibility was based only on the laboratories that consistently achieved a satisfactory performance, this improved to 17% and 26%, respectively, clearly demonstrating the success of the QA/QC efforts. The program thus aided in building capacity and the establishment of a network of competent laboratories able to generate comparable and accurate HBM data for phthalate and DINCH biomarkers in 14 EU countries. In addition, global comparability was ensured by including external expert laboratories.This study was part of the HBM4EU project receiving funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 733032. Co-funding was received from the Dutch Ministry of Agriculture, Nature and Food Quality (project KB 37-002-014-001/002).S

    Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce

    Get PDF
    The ethyl acetate-based multi-residue method for determination of pesticide residues in produce has been modified for gas chromatographic (GC) analysis by implementation of dispersive solid-phase extraction (using primary–secondary amine and graphitized carbon black) and large-volume (20 μL) injection. The same extract, before clean-up and after a change of solvent, was also analyzed by liquid chromatography with tandem mass spectrometry (LC–MS–MS). All aspects related to sample preparation were re-assessed with regard to ease and speed of the analysis. The principle of the extraction procedure (solvent, salt) was not changed, to avoid the possibility invalidating data acquired over past decades. The modifications were made with techniques currently commonly applied in routine laboratories, GC–MS and LC–MS–MS, in mind. The modified method enables processing (from homogenization until final extracts for both GC and LC) of 30 samples per eight hours per person. Limits of quantification (LOQs) of 0.01 mg kg−1 were achieved with both GC–MS (full-scan acquisition, 10 mg matrix equivalent injected) and LC–MS–MS (2 mg injected) for most of the pesticides. Validation data for 341 pesticides and degradation products are presented. A compilation of analytical quality-control data for pesticides routinely analyzed by GC–MS (135 compounds) and LC–MS–MS (136 compounds) in over 100 different matrices, obtained over a period of 15 months, are also presented and discussed. At the 0.05 mg kg−1 level acceptable recoveries were obtained for 93% (GC–MS) and 92% (LC–MS–MS) of pesticide–matrix combinations

    Quantification of the Temporal Evolution of Collagen Orientation in Mechanically Conditioned Engineered Cardiovascular Tissues

    Get PDF
    Load-bearing soft tissues predominantly consist of collagen and exhibit anisotropic, non-linear visco-elastic behavior, coupled to the organization of the collagen fibers. Mimicking native mechanical behavior forms a major goal in cardiovascular tissue engineering. Engineered tissues often lack properly organized collagen and consequently do not meet in vivo mechanical demands. To improve collagen architecture and mechanical properties, mechanical stimulation of the tissue during in vitro tissue growth is crucial. This study describes the evolution of collagen fiber orientation with culture time in engineered tissue constructs in response to mechanical loading. To achieve this, a novel technique for the quantification of collagen fiber orientation is used, based on 3D vital imaging using multiphoton microscopy combined with image analysis. The engineered tissue constructs consisted of cell-seeded biodegradable rectangular scaffolds, which were either constrained or intermittently strained in longitudinal direction. Collagen fiber orientation analyses revealed that mechanical loading induced collagen alignment. The alignment shifted from oblique at the surface of the construct towards parallel to the straining direction in deeper tissue layers. Most importantly, intermittent straining improved and accelerated the alignment of the collagen fibers, as compared to constraining the constructs. Both the method and the results are relevant to create and monitor load-bearing tissues with an organized anisotropic collagen network

    The METEX study: Methotrexate versus expectant management in women with ectopic pregnancy: A randomised controlled trial

    Get PDF
    Background: Patients with ectopic pregnancy (EP) and low serum hCG concentrations and women with a pregnancy of unknown location (PUL) and plateauing serum hCG levels are commonly treated with systemic methotrexate (MTX). However, there is no evidence that treatment in these particular subgroups of women is necessary as many of these early EPs may resolve spontaneously. The aim of this study is whether expectant management in women with EP or PUL and with low but plateauing serum hCG concentrations is an alternative to MTX treatment in terms of treatment success, future pregnancy, health related quality of life and costs. Methods/Design: A multicentre randomised controlled trial in TheNetherlands. Hemodynamically stable patients with an EP visible on transvaginal ultrasound and a plateauing serum hCG concentration < 1,500 IU/L or with a persisting PUL with plateauing serum hCG concentrations < 2,000 IU/L are eligible for the trial. Patients with a viable EP, signs of tubal rupture/abdominal bleeding, or a contra-indication for MTX will not be included. Expectant management is compared with systemic MTX in a single dose intramuscular regimen (1 mg/ kg) in an outpatient setting. Serum hCG levels are monitored weekly; in case of inadequately declining, systemic MTX is installed or continued. In case of hemodynamic instability and/or signs of tubal rupture, surgery is performed. The primary outcome measure is an uneventful decline of serum hCG to an undetectable level by the initial intervention. Secondary outcomes are (re)interventions (additional systemic MTX injections and/or surgery), treatment complications, health related quality of life, financial costs, and future fertility. Analysis is performed according to the intention to treat principle. Quality of life is assessed by questionnaires before and at three time points after randomisation. Costs are expressed as direct costs with data on costs and used resources in the participating centres. Fertility is assessed by questionnaires after 6, 12, 18 and 24 months. Patients' preferences will be assessed using a discrete choice experiment. Discussion: This trial will provide guidance on the present management dilemmas in women with EPs and PULs with low and plateauing serum hCG concentrations

    Pesticide Exposure of Residents Living Close to Agricultural Fields in the Netherlands:Protocol for an Observational Study

    Get PDF
    Background: Application of pesticides in the vicinity of homes has caused concern regarding possible health effects in residents living nearby. However, the high spatiotemporal variation of pesticide levels and lack of knowledge regarding the contribution of exposure routes greatly complicates exposure assessment approaches. Objective: The objective of this paper was to describe the study protocol of a large exposure survey in the Netherlands assessing pesticide exposure of residents living close ( Methods: We performed an observational study involving residents living in the vicinity of agricultural fields and residents living more than 500 m away from any agricultural fields (control subjects). Residential exposures were measured both during a pesticide use period after a specific application and during the nonuse period for 7 and 2 days, respectively. We collected environmental samples (outdoor and indoor air, dust, and garden and field soils) and personal samples (urine and hand wipes). We also collected data on spraying applications as well as on home characteristics, participants' demographics, and food habits via questionnaires and diaries. Environmental samples were analyzed for 46 prioritized pesticides. Urine samples were analyzed for biomarkers of a subset of 5 pesticides. Alongside the field study, and by taking spray events and environmental data into account, we developed a modeling framework to estimate environmental exposure of residents to pesticides. Results: Our study was conducted between 2016 and 2019. We assessed 96 homes and 192 participants, including 7 growers and 28 control subjects. We followed 14 pesticide applications, applying 20 active ingredients. We collected 4416 samples: 1018 air, 445 dust (224 vacuumed floor, 221 doormat), 265 soil (238 garden, 27 fields), 2485 urine, 112 hand wipes, and 91 tank mixtures. Conclusions: To our knowledge, this is the first study on residents' exposure to pesticides addressing all major nondietary exposure sources and routes (air, soil, dust). Our protocol provides insights on used sampling techniques, the wealth of data collected, developed methods, modeling framework, and lessons learned. Resources and data are open for future collaborations on this important topic
    corecore