1,064 research outputs found

    Can parametric statistical methods be trusted for fMRI based group studies?

    Full text link
    The most widely used task fMRI analyses use parametric methods that depend on a variety of assumptions. While individual aspects of these fMRI models have been evaluated, they have not been evaluated in a comprehensive manner with empirical data. In this work, a total of 2 million random task fMRI group analyses have been performed using resting state fMRI data, to compute empirical familywise error rates for the software packages SPM, FSL and AFNI, as well as a standard non-parametric permutation method. While there is some variation, for a nominal familywise error rate of 5% the parametric statistical methods are shown to be conservative for voxel-wise inference and invalid for cluster-wise inference; in particular, cluster size inference with a cluster defining threshold of p = 0.01 generates familywise error rates up to 60%. We conduct a number of follow up analyses and investigations that suggest the cause of the invalid cluster inferences is spatial auto correlation functions that do not follow the assumed Gaussian shape. By comparison, the non-parametric permutation test, which is based on a small number of assumptions, is found to produce valid results for voxel as well as cluster wise inference. Using real task data, we compare the results between one parametric method and the permutation test, and find stark differences in the conclusions drawn between the two using cluster inference. These findings speak to the need of validating the statistical methods being used in the neuroimaging field

    Cluster Failure Revisited: Impact of First Level Design and Data Quality on Cluster False Positive Rates

    Full text link
    Methodological research rarely generates a broad interest, yet our work on the validity of cluster inference methods for functional magnetic resonance imaging (fMRI) created intense discussion on both the minutia of our approach and its implications for the discipline. In the present work, we take on various critiques of our work and further explore the limitations of our original work. We address issues about the particular event-related designs we used, considering multiple event types and randomisation of events between subjects. We consider the lack of validity found with one-sample permutation (sign flipping) tests, investigating a number of approaches to improve the false positive control of this widely used procedure. We found that the combination of a two-sided test and cleaning the data using ICA FIX resulted in nominal false positive rates for all datasets, meaning that data cleaning is not only important for resting state fMRI, but also for task fMRI. Finally, we discuss the implications of our work on the fMRI literature as a whole, estimating that at least 10% of the fMRI studies have used the most problematic cluster inference method (P = 0.01 cluster defining threshold), and how individual studies can be interpreted in light of our findings. These additional results underscore our original conclusions, on the importance of data sharing and thorough evaluation of statistical methods on realistic null data

    Reply to Chen et al.: Parametric methods for cluster inference perform worse for two-sided t-tests

    Full text link
    One-sided t-tests are commonly used in the neuroimaging field, but two-sided tests should be the default unless a researcher has a strong reason for using a one-sided test. Here we extend our previous work on cluster false positive rates, which used one-sided tests, to two-sided tests. Briefly, we found that parametric methods perform worse for two-sided t-tests, and that non-parametric methods perform equally well for one-sided and two-sided tests

    Gaussian process regression can turn non-uniform and undersampled diffusion MRI data into diffusion spectrum imaging

    Full text link
    We propose to use Gaussian process regression to accurately estimate the diffusion MRI signal at arbitrary locations in q-space. By estimating the signal on a grid, we can do synthetic diffusion spectrum imaging: reconstructing the ensemble averaged propagator (EAP) by an inverse Fourier transform. We also propose an alternative reconstruction method guaranteeing a nonnegative EAP that integrates to unity. The reconstruction is validated on data simulated from two Gaussians at various crossing angles. Moreover, we demonstrate on non-uniformly sampled in vivo data that the method is far superior to linear interpolation, and allows a drastic undersampling of the data with only a minor loss of accuracy. We envision the method as a potential replacement for standard diffusion spectrum imaging, in particular when acquistion time is limited.Comment: 5 page

    Bayesian uncertainty quantification in linear models for diffusion MRI

    Full text link
    Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.Comment: Added results from a group analysis and a comparison with residual bootstra

    True 4D Image Denoising on the GPU

    Get PDF
    The use of image denoising techniques is an important part of many medical imaging applications. One common application is to improve the image quality of low-dose (noisy) computed tomography (CT) data. While 3D image denoising previously has been applied to several volumes independently, there has not been much work done on true 4D image denoising, where the algorithm considers several volumes at the same time. The problem with 4D image denoising, compared to 2D and 3D denoising, is that the computational complexity increases exponentially. In this paper we describe a novel algorithm for true 4D image denoising, based on local adaptive filtering, and how to implement it on the graphics processing unit (GPU). The algorithm was applied to a 4D CT heart dataset of the resolution 512  × 512  × 445  × 20. The result is that the GPU can complete the denoising in about 25 minutes if spatial filtering is used and in about 8 minutes if FFT-based filtering is used. The CPU implementation requires several days of processing time for spatial filtering and about 50 minutes for FFT-based filtering. The short processing time increases the clinical value of true 4D image denoising significantly

    A defense of using resting state fMRI as null data for estimating false positive rates

    Get PDF
    A recent Editorial by Slotnick (2017) reconsiders the findings of our paper on the accuracy of false positive rate control with cluster inference in fMRI (Eklund et al, 2016), in particular criticising our use of resting state fMRI data as a source for null data in the evaluation of task fMRI methods. We defend this use of resting fMRI data, as while there is much structure in this data, we argue it is representative of task data noise and as such analysis software should be able to accommodate this noise. We also discuss a potential problem with Slotnick’s own method

    Reply to Brown and Behrmann, Cox, et al., and Kessler et al. : Data and code sharing is the way forward for fMRI

    Get PDF
    We are glad that our paper (1) has generated intense discussions in the fMRI field (2⇓–4), on how to analyze fMRI data, and how to correct for multiple comparisons. The goal of the paper was not to disparage any specific fMRI software, but to point out that parametric statistical methods are based on a number of assumptions that are not always valid for fMRI data, and that nonparametric statistical methods (5) are a good alternative. Through AFNI’s introduction of nonparametric statistics in the function 3dttest++ (3, 6), the three most common fMRI softwares now all support nonparametric group inference [SPM through the toolbox SnPM (www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm), and FSL through the function randomise]

    Nordhavnen - Tænk metro - kør bus! Vision for kollektiv trafikbetjening

    Get PDF
    Nordhavnsområdet rummer store muligheder for at skabe et attraktivt nyt bykvarter. Der planlægges for en kombination af boliger og erhverv med attraktive friarealer samt med forsatte havneaktiviteter, herunder en krydstogtterminal. En god infrastruktur og et velfungerende kollektivt trafiksystem er væsentlige forudsætninger for en vellykket udbygning. I dette paper præsenteres en vision for en kollektiv trafikbetjening af området baseret på en højklasset busforbindelse der på et tidspunkt kan erstattes af en metroforbindelse
    corecore