11 research outputs found

    InterMEL: An international biorepository and clinical database to uncover predictors of survival in early-stage melanoma

    Get PDF
    We are conducting a multicenter study to identify classifiers predictive of disease-specific survival in patients with primary melanomas. Here we delineate the unique aspects, challenges, and best practices for optimizing a study of generally small-sized pigmented tumor samples including primary melanomas of at least 1.05mm from AJTCC TNM stage IIA-IIID patients. We also evaluated tissue-derived predictors of extracted nucleic acids’ quality and success in downstream testing. This ongoing study will target 1,000 melanomas within the international InterMEL consortium.Medicin

    A TGFβ-miR-182-BRCA1 axis controls the mammary differentiation hierarchy.

    No full text
    Maintenance of mammary functional capacity during cycles of proliferation and regression depends on appropriate cell fate decisions of mammary progenitor cells to populate an epithelium consisting of secretory luminal cells and contractile myoepithelial cells. It is well established that transforming growth factor-β (TGFβ) restricts mammary epithelial cell proliferation and that sensitivity to TGFβ is decreased in breast cancer. We show that TGFβ also exerts control of mammary progenitor self-renewal and lineage commitment decisions by stringent regulation of breast cancer associated 1 (BRCA1), which controls stem cell self-renewal and lineage commitment. Either genetic depletion of Tgfb1 or transient blockade of TGFβ increased self-renewal of mammary progenitor cells in mice, cultured primary mammary epithelial cells, and also skewed lineage commitment toward the myoepithelial fate. TGFβ stabilized the abundance of BRCA1 by reducing the abundance of microRNA-182 (miR-182). Ectopic expression of BRCA1 or antagonism of miR-182 in cultured TGFβ-deficient mammary epithelial cells restored luminal lineage commitment. These findings reveal that TGFβ modulation of BRCA1 directs mammary epithelial cell fate and, because stem or progenitor cells are thought to be the cell of origin for aggressive breast cancer subtypes, suggest that TGFβ dysregulation during tumorigenesis may promote distinct breast cancer subtypes

    Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor

    No full text
    The highly aggressive character of melanoma makes it an excellent model for probing the mechanisms underlying metastasis, which remains one of the most difficult challenges in treating cancer. We find that miR-182, member of a miRNA cluster in a chromosomal locus (7q31–34) frequently amplified in melanoma, is commonly up-regulated in human melanoma cell lines and tissue samples; this up-regulation correlates with gene copy number in a subset of melanoma cell lines. Moreover, miR-182 ectopic expression stimulates migration of melanoma cells in vitro and their metastatic potential in vivo, whereas miR-182 down-regulation impedes invasion and triggers apoptosis. We further show that miR-182 over-expression promotes migration and survival by directly repressing microphthalmia-associated transcription factor-M and FOXO3, whereas enhanced expression of either microphthalmia-associated transcription factor-M or FOXO3 blocks miR-182's proinvasive effects. In human tissues, expression of miR-182 increases with progression from primary to metastatic melanoma and inversely correlates with FOXO3 and microphthalmia-associated transcription factor levels. Our data provide a mechanism for invasion and survival in melanoma that could prove applicable to metastasis of other cancers and suggest that miRNA silencing may be a worthwhile therapeutic strategy

    miR-30b/30d Regulation of GalNAc Transferases Enhances Invasion and Immunosuppression during Metastasis

    Get PDF
    To metastasize, a tumor cell must acquire abilities such as the capacity to colonize new tissue and evade immune surveillance. Recent evidence suggests that microRNAs can promote the evolution of malignant behaviors by regulating multiple targets. We performed a microRNA analysis of human melanoma, a highly invasive cancer, and found that miR-30b/30d upregulation correlates with stage, metastatic potential, shorter time to recurrence, and reduced overall survival. Ectopic expression of miR-30b/30d promoted the metastatic behavior of melanoma cells by directly targeting the GalNAc transferase GALNT7, resulted in increased synthesis of the immunosuppressive cytokine IL-10, and reduced immune cell activation and recruitment. These data support a key role of miR-30b/30d and GalNAc transferases in metastasis, by simultaneously promoting cellular invasion and immunosuppression

    The State of Melanoma: Emergent Challenges and Opportunities.

    No full text
    Five years ago, the Melanoma Research Foundation (MRF) conducted an assessment of the challenges and opportunities facing the melanoma research community and patients with melanoma. Since then, remarkable progress has been made on both the basic and clinical research fronts. However, the incidence, recurrence and death rates for melanoma remain unacceptably high and significant challenges remain. Hence, the MRF Scientific Advisory Council and Breakthrough Consortium, a group that includes clinicians and scientists, reconvened to facilitate intensive discussions on thematic areas essential to melanoma researchers and patients alike - prevention, detection, diagnosis, metastatic dormancy and progression, response and resistance to targeted and immune-based therapy, and the clinical consequences of COVID-19 for melanoma patients and providers. These extensive discussions helped to crystalize our understanding of the challenges and opportunities facing the broader melanoma community today. In this report, we discuss the progress made since the last MRF assessment, comment on what remains to be overcome and offer recommendations for the best path forward
    corecore