498 research outputs found
Design and Testing of an Autonomous Ground Robot for Agricultural Applications
This senior project discusses the design and testing of an autonomous ground robot for agricultural applications such as strawberries. The vehicle will feature a robotic arm that will be programmed to perform various tasks, such as collecting soil and leaf samples of the crop or measuring soil moisture and salinity. Various components were chosen to be implemented on the vehicle due its power requirements and operating environment. Finite Element Analysis testing was done on the frame of the vehicle to ensure the adequacy of the design
Greenbelt Community Project: Solar energy retrofit for a multi-family dwelling
A cooperative project was initiated between Goddard Space Flight Center and the nearby community of Greenbelt, Maryland. The purpose was to design, install and operate an experimental solar heating system on a group of four tandem town houses. The system was successfully developed and is operating. A description is given of the design, installation, system operation and performance as well as the important considerations for judging the economic feasibility of solar heating systems
Disordered systems on various time scales: a-Si3B3N7 and homogeneous sintering
Modeling of materials systems for long times commonly requires the use of
separation of time scale methods. We discuss this general approach and present
two example systems, a-Si3B3N7 and the generation of homogeneous sinters.Comment: 22 pages, 7 figure
Biomarkers of the L-arginine / dimethylarginine / nitric oxide pathway in people with chronic airflow obstruction and obstructive sleep apnoea
Background: Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnoea (OSA) are common chronic diseases that are associated with chronic and intermittent hypoxemia, respectively. Patients affected by the overlap of COPD and OSA have a particularly unfavourable prognosis. The L-arginine/nitric oxide (NO) pathway plays an important role in regulating pulmonary vascular function. Asymmetric (ADMA) and symmetric dimethylarginine (SDMA) interfere with NO production. Methods: We analysed the serum concentrations of ADMA, SDMA, L-arginine, L-citrulline, and L-ornithine in a large sample of the Icelandic general population together with chronic airflow obstruction (CAO), a key physiological marker of COPD that was assessed by post-bronchodilator spirometry (FEV1/FVC 0.5. SDMA was significantly higher in individuals with CAO (0.518 [0.461–0.616] vs. 0.494 [0.441–0.565] µmol/L; p = 0.005), but ADMA was not. However, ADMA was significantly associated with decreasing FEV1 percent predicted among those with CAO (p = 0.002). ADMA was 0.50 (0.44–0.56) µmol/L in MAP ≤ 0.5 versus 0.52 (0.46–0.58) µmol/L in MAP > 0.5 (p = 0.008). SDMA was 0.49 (0.44–0.56) µmol/L versus 0.51 (0.46–0.60) µmol/L, respectively (p = 0.004). The highest values for ADMA and SDMA were observed in individuals with overlap of CAO and MAP > 0.5, which was accompanied by lower L-citrulline levels. Conclusions: The plasma concentrations of ADMA and SDMA are elevated in COPD patients with concomitant intermittent hypoxaemia. This may account for impaired pulmonary NO production, enhanced pulmonary vasoconstriction, and disease progression
Phase Synchronization in Railway Timetables
Timetable construction belongs to the most important optimization problems in
public transport. Finding optimal or near-optimal timetables under the
subsidiary conditions of minimizing travel times and other criteria is a
targeted contribution to the functioning of public transport. In addition to
efficiency (given, e.g., by minimal average travel times), a significant
feature of a timetable is its robustness against delay propagation. Here we
study the balance of efficiency and robustness in long-distance railway
timetables (in particular the current long-distance railway timetable in
Germany) from the perspective of synchronization, exploiting the fact that a
major part of the trains run nearly periodically. We find that synchronization
is highest at intermediate-sized stations. We argue that this synchronization
perspective opens a new avenue towards an understanding of railway timetables
by representing them as spatio-temporal phase patterns. Robustness and
efficiency can then be viewed as properties of this phase pattern
The role of asymmetric dimethylarginine (ADMA) in COVID-19: association with respiratory failure and predictive role for outcome
We aimed to assess the potential role of Asymmetric dimethylarginine (ADMA) in conditioning respiratory function and pulmonary vasoregulation during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) infection. Within 72 h from admission, samples from 90 COVID-19 patients were assessed for ADMA, SDMA, L-arginine concentrations. In addition to classical statistics, patients were also clustered by a machine learning approach according to similar features. Multivariable analysis showed that C-reactive protein (OR 1.012), serum ADMA (OR 4.652), white blood cells (OR = 1.118) and SOFA (OR = 1.495) were significantly associated with negative outcomes. Machine learning-based clustering showed three distinct clusters: (1) patients with low severity not requiring invasive mechanical ventilation (IMV), (2) patients with moderate severity and respiratory failure whilst not requiring IMV, and (3) patients with highest severity requiring IMV. Serum ADMA concentration was significantly associated with disease severity and need for IMV although less pulmonary vasodilation was observed by CT scan. High serum levels of ADMA are indicative of high disease severity and requirement of mechanical ventilation. Serum ADMA at the time of hospital admission may therefore help to identify COVID-19 patients at high risk of deterioration and negative outcome
- …