Timetable construction belongs to the most important optimization problems in
public transport. Finding optimal or near-optimal timetables under the
subsidiary conditions of minimizing travel times and other criteria is a
targeted contribution to the functioning of public transport. In addition to
efficiency (given, e.g., by minimal average travel times), a significant
feature of a timetable is its robustness against delay propagation. Here we
study the balance of efficiency and robustness in long-distance railway
timetables (in particular the current long-distance railway timetable in
Germany) from the perspective of synchronization, exploiting the fact that a
major part of the trains run nearly periodically. We find that synchronization
is highest at intermediate-sized stations. We argue that this synchronization
perspective opens a new avenue towards an understanding of railway timetables
by representing them as spatio-temporal phase patterns. Robustness and
efficiency can then be viewed as properties of this phase pattern