30 research outputs found

    A Longitudinally Extensive Spinal Cord Lesion Restricted to Gray Matter in an Adolescent Male

    Get PDF
    Longitudinally extensive spinal cord lesions (LECL) restricted to gray matter are poorly understood as are their neurodevelopmental repercussions in children. We herein report the critical case of a 13-year-old male presenting with progressive quadriparesis found to have cervical LECL restricted to the anterior horns. Challenged with a rare diagnostic dilemma, the clinical team systematically worked through potential vascular, genetic, infectious, rheumatologic, and paraneoplastic diagnoses before assigning a working diagnosis of acute inflammatory myelopathy. Nuanced consideration of and workup for both potential ischemic causes (arterial dissection, fibrocartilaginous embolism, vascular malformation) and specific inflammatory conditions including Transverse Myelitis, Neuromyelitis Optica Spectrum Disorders (NMOSD), Multiple Sclerosis (MS), Acute Disseminated Encephalomyelitis (ADEM), and Acute Flaccid Myelitis (AFM) is explained in the context of a comprehensive systematic review of the literature on previous reports of gray matter-restricted longitudinally extensive cord lesions in children. Treatment strategy was ultimately based on additional literature review of treatment-refractory acute inflammatory neurological syndromes in children. A combination of high-dose steroids and plasmapheresis was employed with significant improvement in functional outcome, suggesting a potential benefit of combination immune-modulatory treatment in these patients. This case furthermore highlights quality clinical reasoning with respect to the elusive nature of diagnosis, nuances in neuroimaging, and multifocal treatment strategies in pediatric LECL

    Typing complex meningococcal vaccines to understand diversity and population structure of key vaccine antigens [version 1; referees: 2 approved]

    Get PDF
    Background: Protein-conjugate capsular polysaccharide vaccines can potentially control invasive meningococcal disease (IMD) caused by five (A, C, W, X, Y) of the six IMD-associated serogroups.  Concerns raised by immunological similarity of the serogroup B capsule, to human neural cell carbohydrates, has meant that ‘serogroup B substitute’ vaccines target more variable subcapsular protein antigens.  A successful approach using outer membrane vesicles (OMVs) as major vaccine components had limited strain coverage. In 4CMenB (Bexsero®), recombinant proteins have been added to ameliorate this problem.  Methods: Here, scalable, portable, genomic techniques were used to investigate the Bexsero® OMV protein diversity in meningococcal populations. Shotgun proteomics identified 461 proteins in the OMV, defining a complex proteome. Amino acid sequences for the 24 proteins most likely to be involved in cross-protective immune responses were catalogued within the PubMLST.org/neisseria database using a novel OMV peptide Typing (OMVT) scheme. Results: Among these proteins there was variation in the extent of diversity and association with meningococcal lineages, identified as clonal complexes (ccs), ranging from the most conserved peptides (FbpA, NEISp0578, and putative periplasmic protein, NEISp1063) to the most diverse (TbpA, NEISp1690).  There were 1752 unique OMVTs identified amongst 2492/3506 isolates examined by whole-genome sequencing (WGS). These OMVTs were grouped into clusters (sharing ≥18 identical OMVT peptides), with 45.3% of isolates assigned to one of 27 OMVT clusters. OMVTs and OMVT clusters were strongly associated with cc, genogroup, and Bexsero® antigen variants, demonstrating that combinations of OMV proteins exist in discrete, non-overlapping combinations associated with genogroup and Bexsero® Antigen Sequence Type. This highly structured population of IMD-associated meningococci is consistent with strain structure models invoking host immune selection. Conclusions: The OMVT scheme facilitates region-specific WGS investigation of meningococcal diversity and is an open-access, portable tool with applications for vaccine development, especially in the choice of antigen combinations, assessment and implementation

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    Impact of meningococcal ACWY conjugate vaccines on pharyngeal carriage in adolescents: evidence for herd protection from the UK MenACWY programme

    Get PDF
    Objective: Serogroup W and Y invasive meningococcal disease increased globally from 2000 onwards. Responding to a rapid increase in serogroup W clonal complex 11 (W:cc11) invasive meningococcal disease, the UK replaced an adolescent booster dose of meningococcal C conjugate vaccine with quadrivalent MenACWY conjugate vaccine in 2015. By 2018, the vaccine coverage in the eligible school cohorts aged 14 to 19 years was 84%. We assessed the impact of the MenACWY vaccination programme on meningococcal carriage. Methods: An observational study of culture-defined oropharyngeal meningococcal carriage prevalence before and after the start of the MenACWY vaccination programme in UK school students, aged 15 to 19 years, using two cross-sectional studies: 2014 to 2015 “UKMenCar4” and 2018 “Be on the TEAM” (ISRCTN75858406). Results: A total of 10 625 participants preimplementation and 13 434 postimplementation were included. Carriage of genogroups C, W, and Y (combined) decreased from 2.03 to 0.71% (OR 0.34 [95% CI 0.27–0.44], p < 0.001). Carriage of genogroup B meningococci did not change (1.26% vs 1.23% [95% CI 0.77–1.22], p = 0.80) and genogroup C remained rare (n = 7/10 625 vs 17/13 488, p = 0.135). The proportion of serogroup positive isolates (i.e. those expressing capsule) decreased for genogroup W by 53.8% (95% CI –5.0 to 79.8, p = 0.016) and for genogroup Y by 30.1% (95% CI 8.9–46·3, p = 0.0025). Discussion: The UK MenACWY vaccination programme reduced carriage acquisition of genogroup and serogroup Y and W meningococci and sustained low levels of genogroup C carriage. These data support the use of quadrivalent MenACWY conjugate vaccine for indirect (herd) protection

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Chondrocyte channel transcriptomics: do microarray data fit with expression and functional data?

    Get PDF
    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding the BK and aquaporin channels
    corecore