9 research outputs found

    Spatiotemporal local and abscopal cell death and immune responses to histotripsy focused ultrasound tumor ablation

    Get PDF
    IntroductionHistotripsy is a novel focused ultrasound tumor ablation modality with potent immunostimulatory effects.MethodsTo measure the spatiotemporal kinetics of local andabscopal responses to histotripsy, C57BL/6 mice bearing bilateral flank B16 melanoma or Hepa1-6 hepatocellular carcinoma tumors were treated with unilateral sham or partial histotripsy. Treated and contralateral untreated (abscopal) tumors were analyzed using multicolor immunofluorescence, digital spatial profiling, RNA sequencing (RNASeq), and flow cytometry.ResultsUnilateral histotripsy triggered abscopal tumor growth inhibition. Within the ablation zone, early high mobility group box protein 1 (HMGB1) release and necroptosis were accompanied by immunogenic cell death transcriptional responses in tumor cells and innate immune activation transcriptional responses in infiltrating myeloid and natural killer (NK) cells. Delayed CD8+ T cell intratumoral infiltration was spatiotemporally aligned with cancer cell features of ferroptosis; this effect was enhanced by CTLA-4 blockade and recapitulated in vitro when tumor-draining lymph node CD8+ T cells were co-cultured with tumor cells. Inoculation with cell-free tumor fractions generated by histotripsy but not radiation or freeze/thaw conferred partial protection from tumor challenge.DiscussionWe propose that histotripsy may evoke local necroptotic immunogenic cell death, priming systemic adaptive immune responses and abscopal ferroptotic cancer cell death

    A homozygous MED11 C-terminal variant causes a lethal neurodegenerative disease

    Get PDF
    Purpose: The mediator (MED) multisubunit-complex modulates the activity of the transcriptional machinery, and genetic defects in different MED subunits (17, 20, 27) have been implicated in neurologic diseases. In this study, we identified a recurrent homozygous variant in MED11 (c.325C>T; p.Arg109Ter) in 7 affected individuals from 5 unrelated families. Methods: To investigate the genetic cause of the disease, exome or genome sequencing were performed in 5 unrelated families identified via different research networks and Matchmaker Exchange. Deep clinical and brain imaging evaluations were performed by clinical pediatric neurologists and neuroradiologists. The functional effect of the candidate variant on both MED11 RNA and protein was assessed using reverse transcriptase polymerase chain reaction and western blotting using fibroblast cell lines derived from 1 affected individual and controls and through computational approaches. Knockouts in zebrafish were generated using clustered regularly interspaced short palindromic repeats/Cas9. Results: The disease was characterized by microcephaly, profound neurodevelopmental impairment, exaggerated startle response, myoclonic seizures, progressive widespread neurodegeneration, and premature death. Functional studies on patient-derived fibroblasts did not show a loss of protein function but rather disruption of the C-terminal of MED11, likely impairing binding to other MED subunits. A zebrafish knockout model recapitulates key clinical phenotypes. Conclusion: Loss of the C-terminal of MED subunit 11 may affect its binding efficiency to other MED subunits, thus implicating the MED-complex stability in brain development and neurodegeneration

    Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome

    Get PDF
    The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetÂź convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetÂź model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy

    No full text
    BackgroundDeveloping the ability to use tumor-directed therapies to trigger potentially therapeutic immune responses against cancer antigens remains a high priority for cancer immunotherapy. We hypothesized that histotripsy, a novel non-invasive, non-thermal ablation modality that uses ultrasound-generated acoustic cavitation to disrupt tissues, could engender adaptive immune responses to tumor antigens.MethodsImmunocompetent C57BL/6 mice inoculated with flank melanoma or hepatocellular carcinoma tumors were treated with histotripsy, thermal ablation, radiation therapy, or cytotoxic T lymphocyte-associated protein-4 (CTLA-4) blockade checkpoint inhibition. Lymphocyte responses were measured using flow cytometric and immunohistochemical analyses. The impact of histotripsy on abscopal immune responses was assessed in mice bearing bilateral tumors, or unilateral tumors with pulmonary tumors established via tail vein injection.ResultsHistotripsy ablation of subcutaneous murine melanoma tumors stimulated potent local intratumoral infiltration of innate and adaptive immune cell populations. The magnitude of this immunostimulation was stronger than that seen with tumor irradiation or thermal ablation. Histotripsy also promoted abscopal immune responses at untreated tumor sites and inhibited growth of pulmonary metastases. Histotripsy was capable of releasing tumor antigens with retained immunogenicity, and this immunostimulatory effect was associated with calreticulin translocation to the cellular membrane and local and systemic release of high mobility group box protein 1. Histotripsy ablation potentiated the efficacy of checkpoint inhibition immunotherapy in murine models of melanoma and hepatocellular carcinoma.ConclusionsThese preclinical observations suggest that non-invasive histotripsy ablation can be used to stimulate tumor-specific immune responses capable of magnifying the impact of checkpoint inhibition immunotherapy

    A homozygous MED11 C-terminal variant causes a lethal neurodegenerative disease

    No full text
    The mediator (MED) multisubunit-complex modulates the activity of the transcriptional machinery, and genetic defects in different MED subunits (17, 20, 27) have been implicated in neurologic diseases. In this study, we identified a recurrent homozygous variant in MED11 (c.325C>T; p.Arg109Ter) in 7 affected individuals from 5 unrelated families

    An Overview of SOM Literature

    No full text
    corecore